共查询到20条相似文献,搜索用时 15 毫秒
1.
Blair C. McLaughlin Rachel Blakey Andrew P. Weitz Xue Feng Brittni J. Brown David D. Ackerly Todd E. Dawson Sally E. Thompson 《Global Change Biology》2020,26(5):3091-3107
Drought extent and severity have increased and are predicted to continue to increase in many parts of the world. Understanding tree vulnerability to drought at both individual and species levels is key to ongoing forest management and preparation for future transitions in community composition. The influence of subsurface hydrologic processes is particularly important in water‐limited ecosystems, and is an under‐studied aspect of tree drought vulnerability. With California's 2013–2016 extraordinary drought as a natural experiment, we studied four co‐occurring woodland tree species, blue oak (Quercus douglasii), valley oak (Quercus lobata), gray pine (Pinus sabiniana), and California juniper (Juniperus californica), examining drought vulnerability as a function of climate, lithology and hydrology using regional aerial dieback surveys and site‐scale field surveys. We found that in addition to climatic drought severity (i.e., rainfall), subsurface processes explained variation in drought vulnerability within and across species at both scales. Regionally for blue oak, severity of dieback was related to the bedrock lithology, with higher mortality on igneous and metamorphic substrates, and to regional reductions in groundwater. At the site scale, access to deep subsurface water, evidenced by stem water stable isotope composition, was related to canopy condition across all species. Along hillslope gradients, channel locations supported similar environments in terms of water stress across a wide climatic gradient, indicating that subsurface hydrology mediates species’ experience of drought, and that areas associated with persistent access to subsurface hydrologic resources may provide important refugia at species’ xeric range edges. Despite this persistent overall influence of the subsurface environment, individual species showed markedly different response patterns. We argue that hydrologic niche segregation can be a useful lens through which to interpret these differences in vulnerability to climatic drought and climate change. 相似文献
2.
James S. Clark Louis Iverson Christopher W. Woodall Craig D. Allen David M. Bell Don C. Bragg Anthony W. D'Amato Frank W. Davis Michelle H. Hersh Ines Ibanez Stephen T. Jackson Stephen Matthews Neil Pederson Matthew Peters Mark W. Schwartz Kristen M. Waring Niklaus E. Zimmermann 《Global Change Biology》2016,22(7):2329-2352
We synthesize insights from current understanding of drought impacts at stand‐to‐biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand‐level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate‐induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought‐tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance. 相似文献
3.
Catherine R. Dickson David J. Baker Dana M. Bergstrom Phillippa K. Bricher Rowan H. Brookes Ben Raymond Patricia M. Selkirk Justine D. Shaw Aleks Terauds Jennie Whinam Melodie A. McGeoch 《Austral ecology》2019,44(5):891-905
Extensive dieback in dominant plant species in response to climate change is increasingly common. Climatic conditions and related variables, such as evapotranspiration, vary in response to topographical complexity. This complexity plays an important role in the provision of climate refugia. In 2008/2009, an island‐wide dieback event of the keystone cushion plant Azorella macquariensis Orchard (Apiaceae) occurred on sub‐Antarctic Macquarie Island. This signalled the start of a potential regime shift, suggested to be driven by increasing vapour pressure deficit. Eight years later, we quantified cover and dieback across the range of putative microclimates to which the species is exposed, with the aim of explaining dieback patterns. We test for the influence of evapotranspiration using a suite of topographic proxies and other variables as proposed drivers of change. We found higher cover and lower dieback towards the south of the island. The high spatial variation in A. macquariensis populations was best explained by latitude, likely a proxy for macroscale climate gradients and geology. Dieback was best explained by A. macquariensis cover and latitude, increasing with cover and towards the north of the island. The effect sizes of terrain variables that influence evapotranspiration rates were small. Island‐wide dieback remains conspicuous. Comparison between a subset of sites and historical data revealed a reduction of cover in the north and central regions of the island, and a shift south in the most active areas of dieback. Dieback remained comparatively low in the south. The presence of seedlings was independent of dieback. This study provides an empirical baseline for spatial variation in the cover and condition of A. macquariensis, both key variables for monitoring condition and ‘cover‐debt’ in this critically endangered endemic plant species. These findings have broader implications for understanding the responses of fellfield ecosystems and other Azorella species across the sub‐Antarctic under future climates. 相似文献
4.
Adrià Barbeta Monica Mejía‐Chang Romà Ogaya Jordi Voltas Todd E. Dawson Josep Peñuelas 《Global Change Biology》2015,21(3):1213-1225
Vegetation in water‐limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species‐specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long‐term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long‐term experimental drought shifted water uptake toward deeper (10–35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought‐affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions. 相似文献
5.
The globally observed trend of changing intensity of tropical cyclones over the past few decades emphasizes the need for a better understanding of the effects of such disturbance events in natural and inhabited areas. On the Korean Peninsula, typhoon intensity has increased over the past 100 years as evidenced by instrumental data recorded from 1904 until present. We examined how the increase in three weather characteristics (maximum hourly and daily precipitation, and maximum wind speed) during the typhoon activity affected old‐growth oak forests. Quercus mongolica is a dominant species in the Korean mountains and the growth releases from 220 individuals from three sites along a latitudinal gradient (33–38°N) of decreasing typhoon activity were studied. Growth releases indicate tree‐stand disturbance and improved light conditions for surviving trees. The trends in release events corresponded to spatiotemporal gradients in maximum wind speed and precipitation. A high positive correlation was found between the maximum values of typhoon characteristics and the proportion of trees showing release. A higher proportion of disturbed trees was found in the middle and southern parts of the Korean peninsula where typhoons are most intense. This shows that the releases are associated with typhoons and also indicates the differential impact of typhoons on the forests. Finally, we present a record of the changing proportion of trees showing release based on tree‐rings for the period 1770–1979. The reconstruction revealed no trend during the period 1770–1879, while the rate of forest disturbances increased rapidly from 1880 to 1979. Our results suggest that if typhoon intensity rises, as is projected by some climatic models, the number of forest disturbance events will increase thus altering the disturbance regime and ecosystem processes. 相似文献
6.
Marcin Penk Ian Donohue Vincent Rcoules Kenneth Irvine 《Diversity & distributions》2015,21(2):200-210
7.
Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest 总被引:2,自引:0,他引:2
MICHAEL MICHAELIAN EDWARD H. HOGG RONALD J. HALL ERIC ARSENAULT 《Global Change Biology》2011,17(6):2084-2094
Drought‐induced, regional‐scale dieback of forests has emerged as a global concern that is expected to escalate under model projections of climate change. Since 2000, drought of unusual severity, extent, and duration has affected large areas of western North America, leading to regional‐scale dieback of forests in the southwestern US. We report on drought impacts on forests in a region farther north, encompassing the transition between boreal forest and prairie in western Canada. A central question is the significance of drought as an agent of large‐scale tree mortality and its potential future impact on carbon cycling in this cold region. We used a combination of plot‐based, meteorological, and remote sensing measures to map and quantify aboveground, dead biomass of trembling aspen (Populus tremuloides Michx.) across an 11.5 Mha survey area where drought was exceptionally severe during 2001–2002. Within this area, a satellite‐based land cover map showed that aspen‐dominated broadleaf forests occupied 2.3 Mha. Aerial surveys revealed extensive patches of severe mortality (>55%) resembling the impacts of fire. Dead aboveground biomass was estimated at 45 Mt, representing 20% of the total aboveground biomass, based on a spatial interpolation of plot‐based measurements. Spatial variation in percentage dead biomass showed a moderately strong correlation with drought severity. In the prairie‐like, southern half of the study area where the drought was most severe, 35% of aspen biomass was dead, compared with an estimated 7% dead biomass in the absence of drought. Drought led to an estimated 29 Mt increase in dead biomass across the survey area, corresponding to 14 Mt of potential future carbon emissions following decomposition. Many recent, comparable episodes of drought‐induced forest dieback have been reported from around the world, which points to an emerging need for multiscale monitoring approaches to quantify drought effects on woody biomass and carbon cycling across large areas. 相似文献
8.
Uwe T. Nickel René Kerner Cynthia Schäfer Christian Kallenbach Jean C. Munch Karin Pritsch 《Global Change Biology》2018,24(2):e560-e576
Forest ecosystems in central Europe are predicted to face an increasing frequency and severity of summer droughts because of global climate change. European beech and Norway spruce often coexist in these forests with mostly positive effects on their growth. However, their different below‐ground responses to drought may lead to differences in ectomycorrhizal (ECM) fungal community composition and functions which we examined at the individual root and ecosystem levels. We installed retractable roofs over plots in Kranzberg Forest (11°39′42″E, 48°25′12″N; 490 m a.s.l.) to impose repeated summer drought conditions and assigned zones within each plot where trees neighboured the same or different species to study mixed species effects. We found that ECM fungal community composition changed and the numbers of vital mycorrhizae decreased for both tree species over 3 drought years (2014–2016), with the ECM fungal community diversity of beech exhibiting a faster and of spruce a stronger decline. Mixed stands had a positive effect on the ECM fungal community diversity of both tree species after the third drought year. Ectomycorrhizae with long rhizomorphs increased in both species under drought, indicating long‐distance water transport. However, there was a progressive decline in the number of vital fine roots during the experiment, resulting in a strong reduction in enzyme activity per unit volume of soil. Hydrolytic enzyme activities of the surviving ectomycorrhizae were stable or stimulated upon drought, but there was a large decline in ECM fungal species with laccase activity, indicating a decreased potential to exploit nutrients bound to phenolic compounds. Thus, the ectomycorrhizae responded to repeated drought by maintaining or increasing their functionality at the individual root level, but were unable to compensate for quantitative losses at the ecosystem level. These findings demonstrate a strong below‐ground impact of recurrent drought events in forests. 相似文献
9.
Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long‐term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought‐tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed‐species stands along an altitudinal gradient (400–1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population‐level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under future climate change. 相似文献
10.
Natalie J. Briscoe Michael R. Kearney Chris A. Taylor Brendan A. Wintle 《Global Change Biology》2016,22(7):2425-2439
Climate refugia are regions that animals can retreat to, persist in and potentially then expand from under changing environmental conditions. Most forecasts of climate change refugia for species are based on correlative species distribution models (SDMs) using long‐term climate averages, projected to future climate scenarios. Limitations of such methods include the need to extrapolate into novel environments and uncertainty regarding the extent to which proximate variables included in the model capture processes driving distribution limits (and thus can be assumed to provide reliable predictions under new conditions). These limitations are well documented; however, their impact on the quality of climate refugia predictions is difficult to quantify. Here, we develop a detailed bioenergetics model for the koala. It indicates that range limits are driven by heat‐induced water stress, with the timing of rainfall and heat waves limiting the koala in the warmer parts of its range. We compare refugia predictions from the bioenergetics model with predictions from a suite of competing correlative SDMs under a range of future climate scenarios. SDMs were fitted using combinations of long‐term climate and weather extremes variables, to test how well each set of predictions captures the knowledge embedded in the bioenergetics model. Correlative models produced broadly similar predictions to the bioenergetics model across much of the species' current range – with SDMs that included weather extremes showing highest congruence. However, predictions in some regions diverged significantly when projecting to future climates due to the breakdown in correlation between climate variables. We provide unique insight into the mechanisms driving koala distribution and illustrate the importance of subtle relationships between the timing of weather events, particularly rain relative to hot‐spells, in driving species–climate relationships and distributions. By unpacking the mechanisms captured by correlative SDMs, we can increase our certainty in forecasts of climate change impacts on species. 相似文献
11.
The effects of predicted climate change on aphid–natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in Northern Europe, which could affect aphid–plant interactions and aphid antagonists. We investigated how simulated summer drought affected the bird cherry–oat aphid, Rhopalosiphum padi L., and its natural enemy the parasitoid wasp Aphidius ervi. Drought and, to a greater extent, aphids reduced barley ( Hordeum vulgare) dry mass by 33% and 39%, respectively. Drought reduced leaf and root nitrogen concentrations by 13% and 28%, respectively, but foliar amino acid concentrations and composition remained similar. Aphid numbers were unaffected by drought, but population demography changed significantly; adults constituted 41% of the population on drought‐treated plants, but only 26% on those receiving ambient irrigation. Nymphs constituted 56% and 69% of the population on these plants, respectively, suggesting altered aphid development rates on drought‐stressed plants. Parasitism rates were significantly lower on drought‐stressed plants (9 attacks h?1 compared with 35 attacks h?1 on ambient‐irrigated plants), most likely because of lower incidence of nymphs and more adults, the latter being more difficult to parasitize. Any physiological changes in individual aphids did not affect parasitoid preferences, suggesting that attacks were postponed because of drought‐induced changes in aphid demography. This study demonstrates the potential for sporadic climate change events, such as summer drought, to be disruptive to herbivore–antagonist interactions. 相似文献
12.
Zihaohan Sang Jaime Sebastian‐Azcona Andreas Hamann Annette Menzel Uwe Hacke 《Evolutionary Applications》2019,12(9):1850-1860
13.
Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long‐term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (?66.5%) and Q. ilex (?17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005–2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra‐ and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long‐term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we evaluate the effect of long‐term (13 years) experimental drought on growth and mortality rates of three forest Mediterranean species, and their response to the different intensities and durations of natural drought. We provide evidence for species‐specific responses to drought, what may eventually lead to a partial community shift favoring the more drought‐resistant species. However, we also report a dampening of the treatment effect on the two drought‐sensitive species, which may indicate a potential adaptation to drier conditions at the ecosystem or population level. These results are thus relevant to account for the stabilizing processes that would alter the initial response of ecosystem to drought through changes in plant physiology, morphology, and demography compensation. 相似文献
14.
Cathleen Balantic Andrea Adams Shana Gross Rachel Mazur Sarah Sawyer Jody Tucker Marian Vernon Claudia Mengelt Jennifer Morales James H. Thorne Timothy M. Brown Nicole Athearn Toni Lyn Morelli 《Conservation Science and Practice》2021,3(9):e497
Climate change uncertainty poses serious challenges to conservation efforts. One emerging conservation strategy is to identify and conserve climate change refugia: areas relatively buffered from contemporary climate change that enable persistence of valued resources. This management paradigm may be pursued at broad scales by leveraging existing resources and placing them into a tangible framework to stimulate further collaboration that fosters management decision-making. Here, we describe a framework for moving toward operationalizing climate change refugia conservation at an ecoregion scale with an analysis for the Sierra Nevada ecoregion (CA, USA). Structured within the Climate Change Refugia Conservation Cycle, we identify a preliminary suite of conservation priorities for the ecoregion, and demonstrate how existing mapping, data, and applications could be used for identifying, prioritizing, managing, and monitoring refugia. We focus on six stakeholder-identified conservation priorities, including two process-based refugial priorities (snow and fire), and four ecosystem-based refugial priorities (meadows, giant sequoia, old growth forests, and alpine communities). This pilot overview of concepts and resources provides a foundation for both near-term implementation and further discussion in moving from science to conservation practice. Such an approach may provide new practical insights for ecosystem management at ecoregion scales in the face of climate change. 相似文献
15.
In the wet forests of Panama, El Niño typically brings a more prolonged and severe dry season. Interestingly, many trees and lianas that comprise the wet forests increase their productivity as a response to El Niño. Here, we quantify the abundance of migrating Marpesia chiron butterflies over 17 yr and the production of new leaves of their hostplants over 9 yr to test the generality of the El Niño migration syndrome, i.e., whether increased abundance of migrating insects and productivity of their food plants are associated with El Niño and La Niña events. We find that the quantity of M. chiron migrating across the Panama Canal was directly proportional to the sea surface temperature (SST) anomaly of the Pacific Ocean, which characterizes El Niño and La Niña events. We also find that production of new leaves by its larval host trees, namely Brosimum alicastrum, Artocarpus altilis, and Ficus citrifolia, was directly proportional to the SST anomaly, with greater leaf flushing occurring during the period of the annual butterfly migration that followed an El Niño event. Combining these and our previously published results for the migratory butterfly Aphrissa statira and its host lianas, we conclude that dry season rainfall and photosynthetically active radiation can serve as primary drivers of larval food production and insect population outbreaks in Neotropical wet forests, with drier years resulting in enhanced plant productivity and herbivore abundance. Insect populations should closely track changes in both frequency and amplitude of the El Niño Southern Oscillation with climate change. 相似文献
16.
Mathieu Jonard Alfred Fürst Arne Verstraeten Anne Thimonier Volkmar Timmermann Nenad Potočić Peter Waldner Sue Benham Karin Hansen Päivi Merilä Quentin Ponette Ana C de la Cruz Peter Roskams Manuel Nicolas Luc Croisé Morten Ingerslev Giorgio Matteucci Bruno Decinti Marco Bascietto Pasi Rautio 《Global Change Biology》2015,21(1):418-430
The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth‐limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992–2009 on the intensive forest monitoring plots of the ICP Forests programme. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and two were increasing. Some of these trends were alarming, among which the foliar P concentration in F. sylvatica, Q. Petraea and P. sylvestris that significantly deteriorated during 1992–2009. In Q. Petraea and P. sylvestris, the decrease in foliar P concentration was more pronounced on plots with low foliar P status, meaning that trees with latent P deficiency could become deficient in the near future. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO2, has led to higher nutrient demand by trees. As the soil nutrient supply was not always sufficient to meet the demands of faster growing trees, this could partly explain the deterioration of tree mineral nutrition. The results suggest that when evaluating forest carbon storage capacity and when planning to reduce CO2 emissions by increasing use of wood biomass for bioenergy, it is crucial that nutrient limitations for forest growth are considered. 相似文献
17.
David M. J. S. Bowman Brett P. Murphy Dominic L. J. Neyland Grant J. Williamson Lynda D. Prior 《Global Change Biology》2014,20(3):1008-1015
Obligate seeder trees requiring high‐severity fires to regenerate may be vulnerable to population collapse if fire frequency increases abruptly. We tested this proposition using a long‐lived obligate seeding forest tree, alpine ash (Eucalyptus delegatensis), in the Australian Alps. Since 2002, 85% of the Alps bioregion has been burnt by several very large fires, tracking the regional trend of more frequent extreme fire weather. High‐severity fires removed 25% of aboveground tree biomass, and switched fuel arrays from low loads of herbaceous and litter fuels to high loads of flammable shrubs and juvenile trees, priming regenerating stands for subsequent fires. Single high‐severity fires caused adult mortality and triggered mass regeneration, but a second fire in quick succession killed 97% of the regenerating alpine ash. Our results indicate that without interventions to reduce fire severity, interactions between flammability of regenerating stands and increased extreme fire weather will eliminate much of the remaining mature alpine ash forest. 相似文献
18.
19.
Brian Buma Paul E. Hennon Constance A. Harrington Jamie R. Popkin John Krapek Melinda S. Lamb Lauren E. Oakes Sari Saunders Stefan Zeglen 《Global Change Biology》2017,23(7):2903-2914
Climate change is causing rapid changes to forest disturbance regimes worldwide. While the consequences of climate change for existing disturbance processes, like fires, are relatively well studied, emerging drivers of disturbance such as snow loss and subsequent mortality are much less documented. As the climate warms, a transition from winter snow to rain in high latitudes will cause significant changes in environmental conditions such as soil temperatures, historically buffered by snow cover. The Pacific coast of North America is an excellent test case, as mean winter temperatures are currently at the snow–rain threshold and have been warming for approximately 100 years post‐Little Ice Age. Increased mortality in a widespread tree species in the region has been linked to warmer winters and snow loss. Here, we present the first high‐resolution range map of this climate‐sensitive species, Callitropsis nootkatensis (yellow‐cedar), and document the magnitude and location of observed mortality across Canada and the United States. Snow cover loss related mortality spans approximately 10° latitude (half the native range of the species) and 7% of the overall species range and appears linked to this snow–rain transition across its range. Mortality is commonly >70% of basal area in affected areas, and more common where mean winter temperatures is at or above the snow–rain threshold (>0 °C mean winter temperature). Approximately 50% of areas with a currently suitable climate for the species (2 °C) are expected to warm beyond that threshold by the late 21st century. Regardless of climate change scenario, little of the range which is expected to remain suitable in the future (e.g., a climatic refugia) is in currently protected landscapes (<1–9%). These results are the first documentation of this type of emerging climate disturbance and highlight the difficulties of anticipating novel disturbance processes when planning for conservation and management. 相似文献
20.
M. Temunović N. Frascaria‐Lacoste J. Franjić Z. Satovic J. F. Fernández‐Manjarrés 《Molecular ecology》2013,22(8):2128-2142
Populations occurring in areas of overlap between the current and future distribution of a species are particularly important because they can represent “refugia from climate change”. We coupled ecological and range‐wide genetic variation data to detect such areas and to evaluate the impacts of habitat suitability changes on the genetic diversity of the transitional Mediterranean‐temperate tree Fraxinus angustifolia. We sampled and genotyped 38 natural populations comprising 1006 individuals from across Europe. We found the highest genetic diversity in western and northern Mediterranean populations, as well as a significant west to east decline in genetic diversity. Areas of potential refugia that correspond to approximately 70% of the suitable habitat may support the persistence of more than 90% of the total number of alleles in the future. Moreover, based on correlations between Bayesian genetic assignment and climate, climate change may favour the westward spread of the Black Sea gene pool in the long term. Overall, our results suggest that the northerly core areas of the current distribution contain the most important part of the genetic variation for this species and may serve as in situ macrorefugia from ongoing climate change. However, rear‐edge populations of the southern Mediterranean may be exposed to a potential loss of unique genetic diversity owing to habitat suitability changes unless populations can persist in microrefugia that have facilitated such persistence in the past. 相似文献