首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

Life history traits and range size are key correlates of genetic diversity in trees. We used a standardized sampling protocol to explore how life history traits and range size relate to the magnitude, variance and structuring (both between‐ and within‐population) of genetic diversity in Neotropical tree species.

Location

The Neotropics

Methods

We present a meta‐analysis of new population genetic data generated for 23 Neotropical tree species (=2,966 trees, 86 populations) across a shared and broad geographic area. We compared established population genetic metrics across these species (e.g., genetic diversity, population structure, fine‐scale genetic structure), plus we estimated the rarely used variance in genetic diversity among populations. We used a multivariate, maximum likelihood, multimodel inference approach to explore the relative influence of life history traits and range size on patterns of neutral genetic diversity.

Results

We found that pioneer and narrow range species had lower levels but greater variance in genetic diversity—signs of founder effects and stronger genetic drift. Animal‐dispersed species had lower population differentiation, indicating extensive gene flow. Abiotically dispersed and pioneer species had stronger fine‐scale genetic structure, suggesting restricted seed dispersal and family cohort establishment.

Main conclusions

Our multivariable and multispecies approach allows ecologically relevant conclusions, since knowing whether one parameter has an effect, or one species shows a response in isolation, is dependent on the combination of traits expressed by a species. Our study demonstrates the influence of ecological processes on the distribution of genetic variation in tropical trees, and will help guide genetic resource management, and contribute to predicting the impacts of land use change.
  相似文献   

2.

Aim

We sought to identify direct and indirect effects of factors contributing to establishment and spread of 272 stream fish species.

Location

Two hundred and ninety‐seven watersheds in the eastern United States.

Methods

We modelled two variables: (1) whether a species had become established outside its native range (establishment) and (2) the number of watersheds in which species established outside their native range (spread). We estimated these variables by comparing historical distributions to a rich data set of contemporary sampling. We calculated metrics of human use (indexing propagule pressure), and gathered species trait data from an open‐access database. We then used piecewise path analysis to estimate direct and indirect effects of human use, native range size and species traits on the two metrics of species introductions.

Results

We identified a hierarchical causal structure in which native range size and fishing pressure were important direct determinants of introductions. Species traits had some direct effects, but played a more indirect role. Native range size was significantly affected by thermal tolerance and diet breadth. Likewise, fishing pressure was significantly affected by life history strategy: larger‐bodied, longer‐living and more fecund species were positively associated with fishing pressure.

Main conclusions

Functional traits can confer an advantage to some species during the establishment phase, but human use is important for subsequent dispersal throughout the non‐native range. However, human use is non‐random, and is largely a function of species traits. Considering both direct and indirect effects of traits across stages of the invasion process can help to elucidate the full role of traits in species invasions.
  相似文献   

3.

Aim

To test whether native and non‐native species have similar diversity–area relationships (species–area relationships [SARs] and phylogenetic diversity–area relationships [PDARs]) and whether they respond similarly to environmental variables.

Location

United States.

Methods

Using lists of native and non‐native species as well as environmental variables for >250 US national parks, we compared SARs and PDARs of native and non‐native species to test whether they respond similarly to environmental conditions. We then used multiple regressions involving climate, land cover and anthropogenic variables to further explore underlying predictors of diversity for plants and birds in US national parks.

Results

Native and non‐native species had different slopes for SARs and PDARs, with significantly higher slopes for native species. Corroborating this pattern, multiple regressions showed that native and non‐native diversity of plants and birds responded differently to a greater number of environmental variables than expected by chance. For native species richness, park area and longitude were the most important variables while the number of park visitors, temperature and the percentage of natural area were among the most important ones for non‐native species richness. Interestingly, the most important predictor of native and non‐native plant phylogenetic diversity, temperature, had positive effects on non‐native plants but negative effects on natives.

Main conclusions

SARs, PDARs and multiple regressions all suggest that native and non‐native plants and birds responded differently to environmental factors that influence their diversity. The agreement between diversity–area relationships and multiple regressions with environmental variables suggests that SARs and PDARs can be both used as quick proxies of overall responses of species to environmental conditions. However, more importantly, our results suggest that global change will have different effects on native and non‐native species, making it inappropriate to apply the large body of knowledge on native species to understand patterns of community assembly of non‐native species.
  相似文献   

4.

Aim

Spring wetlands in arid regions of Australia provide habitat for many highly endemic organisms, including fish, molluscs, crustaceans and plants, but these unique ecosystems have been under pressure since the arrival of Europeans about 250 years ago. Arguments over whether particular plant species are long‐term spring inhabitants or recent immigrants are confounding efforts to conserve spring flora. One such example is the swamp foxtail, Cenchrus purpurascens, a grass that is variably listed in the literature as being native to Australian wetlands or as being an introduced weedy species from Asia.

Location

Australia, China and Korea.

Methods

We use DNA sequences of the nuclear ITS and the chloroplast DNA regions trnL‐F and matK, complemented with newly designed simple sequence repeat (SSR) markers, to assess the native status of C. purpurascens in Australia and determine whether there is genetic differentiation among spring populations.

Results

We find that, although there has been gene flow between Asia and Australia in the geological past, the populations are now strongly differentiated: C. purpurascens has probably been present in Australia through the Pleistocene. In Australia, there is also strong genetic differentiation among populations from different springs, and between springs and non‐springs populations, indicating long‐term occupancy of some springs sites.

Main conclusions

Cenchrus purpurascens was present in Australia well before European colonization of the continent. The level of genetic differentiation among populations enhances the existing conservation values of Elizabeth Springs, Edgbaston, Doongmabulla and Carnarvon Gorge springs complexes within the Great Artesian Basin.
  相似文献   

5.

Aim

Invasive species are predicted to experience a reduction in genetic diversity during the introduction process because of founder effects, yet they are able to successfully establish in new regions and outcompete the native biota. Admixture has been proposed as a potential solution to this genetic paradox. We adopted a phylogeographic approach to investigate the invasion history of the delicate skink ( Lampropholis delicata) in the Pacific region and test the hypothesis that admixture is important for the success of biological invasions.

Location

Eastern Australia and the Pacific region (Lord Howe Island, New Zealand, Hawaii).

Methods

We obtained mitochondrial DNA sequence data ( ND2, ND4) from across the native Australian range (238 samples, 120 populations) and 371 samples from the introduced range of L. delicata. Genetic distances and Analysis of molecular variance (AMOVA) were used to examine the level of genetic variation across the native and introduced ranges.

Results

Fourteen haplotypes were evident in the introduced range (1 in Hawaii, 7 in New Zealand, 7 in Lord Howe Island), with a shared haplotype present in both New Zealand and Lord Howe Island. Five source regions were identified (Brisbane, Tenterfield, Border Ranges, Yamba‐Coffs Harbour, Sydney) from across four distinct native‐range genetic lineages. The Hawaiian population stems from a single introduction from Brisbane, whereas one or more introductions from the Tenterfield region led to the New Zealand populations. Multiple introductions from across all five source regions have resulted in extreme admixture (up to 8.3% sequence divergence) within Lord Howe Island.

Main Conclusions

L. delicata introductions are capable of being successful both in the presence and absence of admixture. Contrary to the predictions of the sequential two‐step model, the presence of admixture was not related to the time since initial introduction. We suggest that the importance of admixture in determining the success of biological invasions has been overemphasized.
  相似文献   

6.

Aim

Brown bear populations in Scandinavia show a strong mitochondrial DNA (mtDNA) phylogeographic structure and low diversity relative to other parts of Europe. Identifying the timing and origins of this mtDNA structure is important for conservation programs aimed at restoring populations to a natural state. Therefore, it is essential to identify whether contemporary genetic structure is linked to post‐glacial recolonisation from divergent source populations or an artefact of demographic impacts during recent population bottlenecks. We employed ancient DNA techniques to investigate the timing and potential causes of these patterns.

Location

Scandinavia and Europe.

Methods

Ancient mtDNA sequences from 20 post‐glacial Scandinavian bears were used to investigate phylogeographic structure and genetic diversity over the last 6000 years. MtDNA from 19 Holocene Norwegian bears was compared with 499 sequences from proximate extant populations in Sweden, Finland, Estonia and western Russia. A single mtDNA sequence from a Holocene Denmark sample was compared with 149 ancient and modern bears from Western Europe.

Results

All nineteen Holocene Norwegian samples are identical to or closely related to the most common mtDNA haplotype found in northern Europe today. MtDNA diversity was low and not significantly different from extant populations in northern Europe. In Denmark, we identified a single mtDNA haplotype that is previously unrecorded from Scandinavia.

Main conclusions

The current discrete phylogeographic structure and lack of mtDNA diversity in Scandinavia is attributed to serial founder effects during post‐glacial recolonisation from divergent source populations rather than an artefact of recent anthropogenic impacts. In contrast to previous interpretations, the recolonisation of southern Scandinavia may not have been limited to bears from a single glacial refugium. Results highlight the importance of conserving the long‐term evolutionary separation between northern and southern populations and identify southern Scandinavia as an important reservoir of mtDNA diversity that is under threat in other parts of Europe.
  相似文献   

7.

Aim

Ecological restoration is critical for recovering biodiversity and ecosystem services, yet designing interventions to achieve particular outcomes remains fraught with challenges. In the extensive regions where non‐native species are firmly established, it is unlikely that historical conditions can be fully reinstated. To what degree, and how rapidly, can human‐dominated areas be shifted via restoration into regimes that benefit target species, communities or processes?

Location

We explore this question in a >20‐year‐old reforestation effort underway at Hakalau Forest National Wildlife Refuge in montane Hawaii. This large‐scale planting of Acacia koa trees is designed to secure populations of globally threatened bird species by transitioning the site rapidly from pasture to native forest.

Methods

We surveyed all forest birds in multiple corridors of young planted trees, remnant corridors of mature trees along gulches and at sites within mature forest. Using a Bayesian hierarchical approach, we identified which factors (distance from forest, habitat type and surrounding tree cover) had the most important influence on native and exotic bird abundance in the reforestation area.

Results

We found that 90% of native and exotic bird species responded quickly, occupying corridors of native trees approximately a decade after planting. However, native and exotic forest birds responded to markedly different characteristics of the reforested area. Native bird abundance was strongly predicted by proximity to mature forest and remnant corridors; conversely, exotic bird abundance was best predicted by overall tree cover throughout the area reforested.

Main conclusions

Our results demonstrate that large‐scale tree planting in corridors adjacent to mature forest can catalyse rapid recovery (both increased abundance and expanded distribution) of forest birds and that it is possible to design reforestation to benefit native species in novel ecosystems.
  相似文献   

8.

Aim

Urbanization broadly affects the phylogenetic and functional diversity of natural communities through a variety of processes including habitat loss and the introduction of non‐native species. Due to the challenge of acquiring direct measurements, these effects have been studied primarily using “space‐for‐time” substitution where spatial urbanization gradients are used to infer the consequences of urbanization occurring across time. The ability of alternative sampling designs to replicate the findings derived using space‐for‐time substitution has not been tested.

Location

Global.

Methods

We contrasted the phylogenetic and functional diversity of breeding bird assemblages in 58 cities worldwide with the corresponding regional breeding bird assemblages estimated using geographic range maps.

Results

Compared to regional assemblages, urban assemblages contained lower phylogenetic diversity, lower phylogenetic beta diversity, a reduction in the least evolutionary distinct species and the loss of the most evolutionarily distinct species. We found no evidence that these effects were related to the presence of non‐native species. Urban assemblages contained fewer aquatic species and fewer aquatic foraging species. The distribution of body size and range size narrowed for urban assemblages with the loss of species at both tails of the distribution, especially large bodied and broadly distributed species. Urban assemblages contained a greater proportion of species classified as passerines, doves or pigeons; species identified as granivores; species that forage within vegetation or in the air; and species with more generalized associations with foraging strata.

Main conclusions

Urbanization is associated with the overall reduction and constriction of phylogenetic and functional diversity, results that largely replicate those generated using space‐for‐time substitution, increasing our confidence in the quality of the combined inferences. When direct measurements are unavailable, our findings emphasize the value of developing independent sampling methods that broaden and reinforce our understanding of the ecological implications of urbanization.
  相似文献   

9.

Aim

In the mid‐20th century, many populations of large‐bodied mammals experienced declines throughout North America. Fortunately, within the last several decades, some have begun to rebound and even recolonize extirpated portions of their native range, including black bears (Ursus americanus) in the montane areas of the western Great Basin. In this study, we examine genetic variation in source and recolonized areas to better understand the genetic consequences of recolonization.

Location

Western Great Basin, USA.

Methods

Using multiple loci, we characterized genetic variation among source and recently recolonized areas occupied by black bears, tested for population structure and applied approximate Bayesian computation to test competing hypotheses of demographic history. We assessed signals of gene flow using expectations of genetic consequences derived from alternative modes of recolonization (bottleneck, metapopulation, island model) and tested for significant signals of genetic bottlenecks in areas recently recolonized by black bears.

Results

As anticipated from field survey data and hypothesized expectations, genetic variation of western Great Basin black bears retain an overall signature of demographic decline followed by recent rebound. Furthermore, results reveal that bears in the recolonized range are minimally differentiated from the source area, but newly established subpopulations have lower effective population sizes and reduced allelic diversity. Nevertheless, recolonized areas fail to show a significant signal of a genetic bottleneck. Moreover, bears occupying recolonized areas experience asymmetric gene flow, yielding strong support for a model of genetic connectivity that is best described as a metapopulation.

Main Conclusion

This study presents one of the few empirical examples of genetic consequences of natural recolonization in large‐bodied mammals. Furthermore, these results have implications for understanding the complexities associated with the genetic consequences of recent and ongoing recolonization and highlight the need to develop management strategies uniquely tailored to support connectivity between source and recolonized areas.
  相似文献   

10.

Aim

The risk climate change poses to biodiversity is often estimated by forecasting the areas that will be climatically suitable for species in the future and measuring the distance of the “range shifts” species would have to make to reach these areas. Species’ traits could indicate their capacity to undergo range shifts. However, it is not clear how range‐shift capacity influences risk. We used traits from a recent evidence review to measure the relative potential of species to track changing climatic conditions.

Location

Europe.

Time period

Baseline period (1961–1990) and forecast period (2035–2064).

Major taxa studied

62 mammal species.

Methods

We modelled species distributions using two general circulation models and two representative concentration pathways (RCPs) to calculate three metrics of “exposure” to climate change: range area gained, range area lost and distance moved by the range margin. We identified traits that could inform species’ range‐shift capacity (i.e., potential to establish new populations and proliferate, and thus undertake range shifts), from a recent evidence‐based framework. The traits represent ecological generalization and reproductive strategy. We ranked species according to each metric of exposure and range‐shift capacity, calculating sensitivity to ranking methods, and synthesized both exposure and range‐shift capacity into “risk syndromes.”

Results

Many species studied whose survival depends on colonizing new areas were relatively unlikely to undergo range shifts. Under the worst‐case scenario, 62% of species studied were relatively highly exposed. 47% were highly exposed and had relatively low range‐shift capacity. Only 14% of species faced both low exposure and high range‐shift capacity. Both range‐shift and exposure metrics had a greater effect on risk assessments than climate models.

Main conclusions

The degree to which species’ potential ranges will be altered by climate change often does not correspond to species’ range‐shift capacities. Both exposure and range‐shift capacity should be considered when evaluating biodiversity risk from climate change.
  相似文献   

11.

Aim

To identify traits related to the severity and type of environmental impacts generated by alien bird species, in order to improve our ability to predict which species may have the most damaging impacts.

Location

Global.

Methods

Information on traits hypothesized to influence the severity and type of alien bird impacts was collated for 113 bird species. These data were analysed using mixed effects models accounting for phylogenetic non‐independence of species.

Results

The severity and type of impacts generated by alien bird species are not randomly distributed with respect to their traits. Alien range size and habitat breadth were strongly associated with impact severity. Predation impacts were strongly associated with dietary preference, but also with alien range size, relative brain size and residence time. Impacts mediated by interactions with other alien species were related to alien range size and diet breadth.

Main conclusions

Widely distributed generalist alien birds have the most severe environmental impacts. This may be because these species have greater opportunity to cause environmental impacts through their sheer number and ubiquity, but this could also be because they are more likely to be identified and studied. Our study found little evidence for an effect of per capita impact on impact severity.
  相似文献   

12.

Aim

Many alien species experience a lag phase between arriving in a region and becoming invasive, which can provide a valuable window of opportunity for management. Our ability to predict which species are experiencing lags has major implications for management decisions that are worth billions of dollars and that may determine the survival of some native species. To date, timing and causes of lag and release have been identified post hoc, based on historical narratives.

Location

Global.

Methods

We use a simple but realistic simulation of population spread over a fragmented landscape. To break the invasion lag, we introduce a sudden, discrete change in dispersal.

Results

We show that the ability to predict invasion lags is minimal even under controlled circumstances. We also show a non‐negligible risk of falsely attributing lag breaks to mechanisms based on invasion trajectories and coincidences in timing.

Main conclusions

We suggest that post hoc narratives may lead us to erroneously believe we can predict lags and that a precautionary approach is the only sound management practice for most alien species.
  相似文献   

13.

Aim

The success of invasive species in their introduced range is often assumed to result from evolutionary changes in defence and growth traits, or as a response to more favourable conditions. The latter is assumed particularly for species exhibiting low, or even no, sexual reproduction in the introduced range.

Location and Methods

Here, we compared Japanese (native range) and French (introduced range) populations of Fallopia japonica under common growth conditions in a glasshouse. We measured height, aboveground and belowground mass, stem stiffness, leaf toughness and secondary metabolites found in hydroalcoholic extracts of rhizomes of F. japonica, as well as the competitive response of Rubus caesius (a co‐occurring native species in the invaded range) in the presence of F. japonica from both ranges.

Results

Aboveground biomass, height, stem stiffness and composition of secondary metabolites were not significantly different between the two ranges, showing that increased aboveground vigour observed in situ in France is probably the result of a plastic response following the release of abiotic or biotic constraints from the native range. On the other hand, belowground mass, effect on R. caesius, and leaf toughness were all higher in French populations, suggesting increases in competitive ability and defence mechanisms. These differences between France and Japan may be explained either by post‐introduction evolution or by the introduction in Europe, in nineteenth century, of an exceptionally vigorous clone (pre‐adaptation).

Main conclusions

Our results provide evidence that the high vigour of this major invasive species in its introduced range is probably due to both a response to more favourable conditions and rapid evolution.
  相似文献   

14.

Aim

Range expansions facilitated by humans or in response to local biotic or abiotic stressors provide the opportunity for species to occupy novel environments. Classifying the status of newly expanded populations can be difficult, particularly when the timing and nature of the range expansion are unclear. Should native species in new habitats be considered invasive pests or actively conserved? Here, we present an analytical framework applied to an Australian marsupial, the sugar glider (Petaurus breviceps), a species that preys upon on an endangered parrot in Tasmania, and whose provenance was uncertain.

Location

Tasmania, Australia.

Methods

We conducted an extensive search of historical records for sugar glider occurrences in Tasmania. Source material included museum collection data, early European expedition logs, community observation records, and peer‐reviewed and grey literature. To determine the provenance of the Tasmanian population, we sequenced two mitochondrial genes and one nuclear gene in Tasmanian animals (n = 27) and in individuals across the species' native range. We then estimated divergence times between Tasmania and southern Australian populations using phylogenetic and Bayesian analyses.

Results

We found no historical evidence of sugar gliders occurring in Tasmania prior to 1835. All Tasmanian individuals (n = 27) were genetically identical at the three genes surveyed here with those individuals being 0.125% divergent from individuals from a population in Victoria. Bayesian analysis of divergence between Tasmanian individuals and southern Australian individuals suggested a recent introduction of sugar gliders into Tasmania from southern Australia.

Main conclusions

Molecular and historical data demonstrate that Tasmanian sugar gliders are a recent, post‐European, anthropogenic introduction from mainland Victoria. This result has implications for the management of the species in relation to their impact on an endangered parrot. The analytical framework outlined here can assist environmental managers with the complex task of assessing the status of recently expanded or introduced native species.
  相似文献   

15.

Aim

Recent, rapid population declines in many Afro‐Palaearctic migratory bird species have focussed attention on changing conditions within Africa. However, processes influencing population change can operate throughout the annual cycle and throughout migratory ranges. Here, we explore the evidence for impacts of breeding and non‐breeding conditions on population trends of British breeding birds of varying migratory status and wintering ecology.

Location

Great Britain (England & Scotland).

Methods

Within‐ and between‐species variation in population trends is quantified for 46 bird species with differing migration strategies.

Results

Between 1994 and 2007, rates of population change in Scotland and England differed significantly for 19 resident and 15 long‐distance migrant species, but were similar for 12 short‐distance migrant species. Of the six long‐distance migrant species that winter in the arid zone of Africa, five are increasing in abundance throughout Britain. In contrast, the seven species wintering in the humid zone of Africa are all declining in England, but five of these are increasing in Scotland. Consequently, populations of both arid and humid zone species are increasing significantly faster in Scotland than England, and only the English breeding populations of species wintering in the humid zone are declining.

Main conclusions

Population declines in long‐distance migrants, especially those wintering in the humid zone, but not residents or short‐distance migrants suggest an influence of non‐breeding season conditions on population trends. However, the consistently less favourable population trends in England than Scotland of long‐distance migrant and resident species strongly suggest that variation in the quality of breeding grounds is influencing recent population changes. The declines in humid zone species in England, but not Scotland, may result from poorer breeding conditions in England exacerbating the impacts of non‐breeding conditions or the costs associated with a longer migration, while better conditions in Scotland may be buffering these impacts.
  相似文献   

16.

Aim

Many invasive populations exhibit dynamic life history shifts along their invasion route. We investigated whether these shifts represent consistent biological responses of a given species to range expansion, even in systems located in different geographic regions.

Location

North‐eastern France, Central Ontario (Canada).

Method

We investigated population density, life history traits and age‐specific reproductive investment in expanding populations of round goby at three invasion stages (expansion front, area colonized one year earlier and area colonized for ~five years) along the invasive routes in two river systems differing in climate and system productivity. Interindividual variability, shown to affect range expansion rates, was also investigated along the invasion routes. The study was based on female round gobies collected in three locations within each invasion stage twice monthly throughout the reproductive season (March/May to July).

Results

In both systems, reproductive investment was highest in the newly colonized area and decreased with time since colonization. A faster decrease in reproductive investment was found in the warmer, more productive system behind the invasion front, potentially associated with faster population growth and increased intraspecific competition. In both systems, individual variability in growth and reproductive traits increased from the newly colonized area to the areas of earlier colonization.

Main conclusions

The patterns observed in the two systems suggest a common invasion strategy independent of environmental conditions and highlight the dynamic nature of invasive populations’ life history behind the invasion front. Common energetic allocation strategies can be expected at the invasion front. Range expansion may be associated with population growth induced by rapid acclimation to biotic conditions associated with range shift.
  相似文献   

17.

Aim

To assess how environmental, biotic and anthropogenic factors shape native–alien plant species richness relationships across a heterogeneous landscape.

Location

Banks Peninsula, New Zealand.

Methods

We integrated a comprehensive floristic survey of over 1200 systematically located 6 × 6 m plots, with corresponding climate, environmental and anthropogenic data. General linear models examined variation in native and alien plant species richness across the entire landscape, between native‐ and alien‐dominated plots, and within separate elevational bands.

Results

Across all plots, there was a significant negative correlation between native and alien species richness, but this relationship differed within subsets of the data: the correlation was positive in alien‐dominated plots but negative in native‐dominated plots. Within separate elevational bands, native and alien species richness were positively correlated at lower elevations, but negatively correlated at higher elevations. Alien species richness tended to be high across the elevation gradient but peaked in warmer, mid‐ to low‐elevation sites, while native species richness increased linearly with elevation. The negative relationship between native and alien species richness in native‐dominated communities reflected a land‐use gradient with low native and high alien richness in more heavily modified native‐dominated vegetation. In contrast, native and alien richness were positively correlated in very heavily modified alien‐dominated plots, most likely due to covariation along a gradient of management intensity.

Main conclusions

Both positive and negative native–alien richness relationships can occur across the same landscape, depending on the plant community and the underlying human and environmental gradients examined. Human habitat modification, which is often confounded with environmental variation, can result in high alien and low native species richness in areas still dominated by native species. In the most heavily human modified areas, dominated by alien species, both native and alien species may be responding to similar underlying gradients.
  相似文献   

18.

Aim

Invasive species are of increasing global concern. Nevertheless, the mechanisms driving further distribution after the initial establishment of non‐native species remain largely unresolved, especially in marine systems. Ocean currents can be a major driver governing range occupancy, but this has not been accounted for in most invasion ecology studies so far. We investigate how well initial establishment areas are interconnected to later occupancy regions to test for the potential role of ocean currents driving secondary spread dynamics in order to infer invasion corridors and the source–sink dynamics of a non‐native holoplanktonic biological probe species on a continental scale.

Location

Western Eurasia.

Time period

1980s–2016.

Major taxa studied

‘Comb jelly’ Mnemiopsis leidyi.

Methods

Based on 12,400 geo‐referenced occurrence data, we reconstruct the invasion history of M. leidyi in western Eurasia. We model ocean currents and calculate their stability to match the temporal and spatial spread dynamics with large‐scale connectivity patterns via ocean currents. Additionally, genetic markers are used to test the predicted connectivity between subpopulations.

Results

Ocean currents can explain secondary spread dynamics, matching observed range expansions and the timing of first occurrence of our holoplanktonic non‐native biological probe species, leading to invasion corridors in western Eurasia. In northern Europe, regional extinctions after cold winters were followed by rapid recolonizations at a speed of up to 2,000 km per season. Source areas hosting year‐round populations in highly interconnected regions can re‐seed genotypes over large distances after local extinctions.

Main conclusions

Although the release of ballast water from container ships may contribute to the dispersal of non‐native species, our results highlight the importance of ocean currents driving secondary spread dynamics. Highly interconnected areas hosting invasive species are crucial for secondary spread dynamics on a continental scale. Invasion risk assessments should consider large‐scale connectivity patterns and the potential source regions of non‐native marine species.
  相似文献   

19.

Aim

With the exception of South Africa there are no systematic, long‐term, large‐scale bird monitoring programmes in Africa, and for much of the continent the most comprehensive available data for most species are incidental occurrence records. Can such data be used to assess range‐wide conservation status of widespread low‐density species? We examine this using Kori Bustard Ardeotis kori, a large, easily identifiable species with an extensive African range.

Location

Southern and East Africa, 14 countries.

Methods

A comprehensive and systematic review of published and unpublished sources provided 1948 unique locality records spanning the years 1863–2009; these included 410 non‐atlas records and 97 historical (pre‐1970) records. Range‐size changes were examined by comparing minimum convex polygons to quantify Extent of Occurrence pre‐ and post‐1970, and by testing whether more historical records fell outside the recent (post‐1970) 95% probability kernel than expected by chance. Additionally, qualitative evidence of changes in abundance was obtained from historical published accounts and contemporary assessments by in‐country experts.

Results

Since the late 19th century, range‐size (measured as Extent of Occurrence) has contracted, by 21% in East Africa and 8% in southern Africa. There is strong qualitative evidence of considerable pre‐ and post‐1970 population declines in all range states, except Zambia (slight increase) and Angola (trend unclear). In some countries, declines occurred from the early 1900s. Thus, while relatively modest change in range‐size has occurred in over 100 years, numbers have greatly reduced throughout the species’ range.

Main conclusions

Our methodology allowed objective appraisal of continent‐wide Kori status. Despite lacking quantitative population estimates and trends, and poor understanding of the species’ autecology, common issues for many African species, incidental occurrence records can be used to assess range‐wide changes in status. We recommend that this or similar approaches be applied to other widespread low‐density species that probably also have rapidly declining populations despite apparently stable range extents.
  相似文献   

20.

Aim

Archipelagos provide ideal natural systems for testing the effects of isolation and fragmentation of habitats on the genetic makeup of populations—an important consideration, given that many insular species are of conservation concern. Two theories predominate: Island Biogeography Theory (IBT) posits that proximity to the mainland drives the potential for migrants and gene flow. The Central Marginal Hypothesis (CMH) predicts that island populations at the periphery of a species range may experience low gene flow, small population size and high rates of genetic drift. We investigated population genetic structure, genetic diversity and key drivers of diversity for Arctic island‐dwelling caribou (Rangifer tarandus). Our aim was to inform intraspecific units for conservation and decipher how IBT and CMH could act in an archipelago where isolation is highly variable due to sea ice and open water.

Location

Canadian Arctic Archipelago, Canada (Latitude, 55–82°N; Longitude, 61–123°W).

Methods

We genotyped 447 caribou at 16 microsatellite loci; these caribou represented two subspecies (R. t. groenlandicus, R. t. pearyi) and three designatable units. We used hierarchical Bayesian clustering and ordination to determine genetic groups. We evaluated the influence of ecological and geographic variables on genetic diversity using linear mixed‐effects models and compared diversity among mainland and island herds.

Results

Bayesian clustering revealed nine genetic clusters with differentiation among and within caribou subspecies. Genetic differentiation was explained predominantly by isolation‐by‐distance across all caribou, even at the scale of subspecies. Island caribou were less genetically diverse than mainland herds; individual heterozygosity was negatively correlated with distance‐to‐mainland and the extent of autumn ice‐free coastline and positively correlated with unglaciated island size.

Main conclusions

Our findings underscore the importance of hierarchical analysis when investigating genetic population structure. Genetic diversity and its key drivers lend support to both IBT and CMH and highlight the pending threat of climate change for Arctic island caribou.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号