首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large trees support unique habitat structures (e.g. hollows) that form over centuries and cannot be provided by small trees. Large trees are also declining in human‐modified landscapes worldwide. One restoration strategy gaining popularity involves adding nest boxes to smaller trees to replicate natural hollows. However, limited empirical research has tested how hollow‐nesting fauna responds to the presence of nest boxes. We asked: can the addition of nest boxes increase tree visitation by hollow‐nesting birds? We conducted a before‐after control‐impact (BACI) experiment using 144 nest boxes and 96 sample trees comprised of three sizes (small [20–50 cm dbh], medium [51–80 cm], and large [>80 cm]) and located in four landscape contexts (reserves, pasture, urban parklands, and urban built‐up areas). We recorded a significant increase in hollow‐nesting bird abundance and richness at large trees after nest box additions. However, the same response was not observed at medium, small, or control trees. We also recorded nonsignificant increases in hollow‐nesting bird abundance and richness at trees in modified landscapes after nest box additions compared to trees in reserves and control trees. Our results suggest that adding nest boxes to smaller‐sized trees may not attract hollow‐nesting birds. Therefore, nest box management strategies may require re‐evaluation as it is often assumed that hollow supplementation will attract hollow‐using fauna and sufficiently ameliorate the loss of large, hollow‐bearing trees. We advocate that large tree retention remains crucial and should be prioritized. Large trees could be effective target structures for habitat restoration, especially in modified landscapes.  相似文献   

2.
The use of paddock trees by birds was assessed in a grazinglandscape in southern New South Wales, Australia. Seventy paddock treesites were surveyed for 20 min each in the morning, and 36sites were surveyed again at midday in March 2000. During this time, thepresence and abundance of birds was recorded. Several site and landscapevariables were measured at each site. These included tree species, atree size index, a measure of the crown cover density around the site,and proximity to the nearest woodland patch. During formal surveys, 31bird species, including several woodland species, were observed usingpaddock trees. Data from bird surveys in woodland patches that wereobtained in a separate study in November 1999 were used to comparewhether there was a relationship between the abundance of a given birdspecies in woodland patches and paddock trees. Many birds commonlydetected in woodland patches were also common in paddock trees. However,some birds with special habitat requirements were absent from paddocktrees although they were common in woodland patches. Site occupancypatterns were modelled for several guilds of birds using logisticregression. Foliage-foraging birds were more likely to occupy clumps oftrees and sites with a high tree size index. Nectarivores appeared to bemore likely to be detected at sites more than 200 m fromwoodland, although this result was marginally non-significant(P = 0.08). The probability of detecting granivoreswas higher at sites with a low tree size index. Open country specieswere most likely to occupy large trees and sites that were located morethan 200 m from the nearest woodland patch. The value ofpaddock trees may have been underestimated in the past because a widevariety of bird species use paddock trees on a regular basis. Ensuringthe continued survival of paddock trees should be an important aspect offuture conservation and revegetation efforts.  相似文献   

3.
Scattered trees are considered ‘keystone structures’ in many agricultural landscapes worldwide because of the disproportionate effect they have on ecosystem function and biodiversity. Populations of these trees are in decline in many regions. Understanding the processes driving these declines is crucial for better management. Here, we examine the impact of wildfire on populations of this keystone resource. We examined 62 observation plots affected by wildfire and matched with 62 control observation plots where fire was absent. Counts of scattered trees were conducted pre‐fire in 2005 and repeated post‐fire in 2011. Changes in populations were compared between the control and fire‐affected observation plots. Our results show wildfire had a significant local impact, with an average decline of 19.9% in scattered tree populations on burned plots. In contrast, scattered trees increased on average by 5.3% in the control observation plots. The impact of wildfire was amplified (as revealed by greater percentage tree losses) by larger wildfires. Wildfire effects on scattered tree populations are of concern, given a background of other (usually) chronic stressors (often associated with agriculture) and that the frequency and intensity of wildfire are predicted to increase in many landscapes.  相似文献   

4.
As human population, food consumption, and demand for forest products continue to rise over the next century, the pressures of land‐use change on biodiversity are projected to intensify. In tropical regions, countryside habitats that retain abundant tree cover and structurally complex canopies may complement protected areas by providing suitable habitats and landscape connectivity for a significant portion of the native biota. Species with low dispersal capabilities are among the most at risk of extinction as a consequence of land‐use change. We assessed how the spatial distribution of the brown‐throated sloth (Bradypus variegatus), a model species for a vertebrate with limited dispersal ability, is shaped by differences in habitat structure and landscape patterns of countryside habitats in north‐central Costa Rica using a multi‐scale framework. We quantified the influence of local habitat characteristics and landscape context on sloth occurrence using mixed‐effects logistic regression models. We recorded 27 sloths within countryside habitats and found that both local and landscape factors significantly influenced their spatial distribution. Locally, sloths favored structurally complex habitats, with greater canopy cover and variation in tree height and basal area. At the landscape scale, sloths demonstrated a preference for habitats with high proportions of forest and nearby large tracts of forest. Although mixed‐use areas and tree plantations are not substitutes for protected forests, our results suggest they provide important supplemental habitats for sloths. To promote the conservation and long‐term viability of sloth populations in the tropical countryside, we recommend that land managers retain structurally complex vegetation and large patches of native habitat.  相似文献   

5.
Anthropogenic influences have dramatically altered the environments with which primates interact. In particular, the introduction of anthropogenic food sources to primate groups has implications for feeding behaviour, social behaviour, activity budgets, demography and life history. While the incorporation of anthropogenic foods can be beneficial to primates in a variety of nutritional ways including increased energetic return, they also carry risks associated with proximity to humans, such as risk of being hunted, disease risk and risk of conflict. Given such risks, we initiated a 3‐year study where we sought to understand the underlying nutritional motivations for anthropogenic food resource use by vervet monkeys (Cercopithecus aethiops) in the humanized matrix surrounding the Nabugabo Field Station in central Uganda. Feeding effort, defined as proportion of feeding scans spent on anthropogenic food, was not associated with ripe fruit availability nor with crop availability as determined by phenological monitoring. Likewise, there was no difference in the protein, fibre, or lipid composition of crop food items compared to wild food items. Individuals spent less time feeding overall in months over the 3 years with a higher proportion of time spent feeding on crop foods, suggesting a potential benefit in terms of accessibility (reduction in the proportion of activity budget devoted to feeding).  相似文献   

6.
古树是人类聚居地最具标志性的生物体,具有极其重要的社会文化和生态价值。由于人类活动和气候变化的影响,全球范围内的古树正面临衰退。如何保护人类聚居地的古树及其社会文化和生态价值是科学家和林业管理者需要共同思考的问题。尽管目前在世界范围内有一定数量的古树研究论文发表,但仍然缺乏对人类聚居地古树研究现状和观点的总结。我们从古树的社会文化和生态价值、分布格局和驱动因素、保护的文化根源和保护实践,以及古树保护面临的挑战等方面对目前人类聚居地古树的研究现状和观点进行了综述。希望能够对未来古树的研究提供一定的思考和启发,并为古树的可持续保护提供建议和参考。  相似文献   

7.
Large old trees are some of the most iconic biota on earth and are integral parts of many terrestrial ecosystems including those in tropical, temperate and boreal forests, deserts, savannas, agro‐ecological areas, and urban environments. In this review, we provide new insights into the ecology, function, evolution and management of large old trees through broad cross‐disciplinary perspectives from literatures in plant physiology, growth and development, evolution, habitat value for fauna and flora, and conservation management. Our review reveals that the diameter, height and longevity of large old trees varies greatly on an inter‐specific basis, thereby creating serious challenges in defining large old trees and demanding an ecosystem‐ and species‐specific definition that will only rarely be readily transferable to other species or ecosystems. Such variation is also manifested by marked inter‐specific differences in the key attributes of large old trees (beyond diameter and height) such as the extent of buttressing, canopy architecture, the extent of bark micro‐environments and the prevalence of cavities. We found that large old trees play an extraordinary range of critical ecological roles including in hydrological regimes, nutrient cycles and numerous ecosystem processes. Large old trees strongly influence the spatial and temporal distribution and abundance of individuals of the same species and populations of numerous other plant and animal species. We suggest many key characteristics of large old trees such as extreme height, prolonged lifespans, and the presence of cavities – which confer competitive and evolutionary advantages in undisturbed environments – can render such trees highly susceptible to a range of human influences. Large old trees are vulnerable to threats ranging from droughts, fire, pests and pathogens, to logging, land clearing, landscape fragmentation and climate change. Tackling such diverse threats is challenging because they often interact and manifest in different ways in different ecosystems, demanding targeted species‐ or ecosystem‐specific responses. We argue that novel management actions will often be required to protect existing large old trees and ensure the recruitment of new cohorts of such trees. For example, fine‐scale tree‐level conservation such as buffering individual stems will be required in many environments such as in agricultural areas and urban environments. Landscape‐level approaches like protecting places where large old trees are most likely to occur will be needed. However, this brings challenges associated with likely changes in tree distributions associated with climate change, because long‐lived trees may presently exist in places unsuitable for the development of new cohorts of the same species. Appropriate future environmental domains for a species could exist in new locations where it has never previously occurred. The future distribution and persistence of large old trees may require controversial responses including assisted migration via seed or seedling establishment in new locales. However, the effectiveness of such approaches may be limited where key ecological features of large old trees (such as cavity presence) depend on other species such as termites, fungi and bacteria. Unless other species with similar ecological roles are present to fulfil these functions, these taxa might need to be moved concurrently with the target tree species.  相似文献   

8.
Summary Isolated trees and small patches of trees – paddock trees – are a prominent feature of agricultural landscapes in Australia, but are declining in many areas due to natural senescence, clearing, dieback and the general absence of recruitment. We assessed the importance of paddock trees for woodland conservation in a 30 000 ha sample of the New South Wales (NSW) South‐west Slopes using Satellite Pour l’Observation de la Terre (SPOT) panchromatic satellite imagery combined with models predicting the original distribution of vegetation communities. Tree‐cover occurred over 12% of the study area. The patch‐size distribution of vegetation in the study area varied between woodland types. For woodland communities that were confined to hills and ridges, most tree‐cover occurred as few, large remnants. For woodland communities of the foothills and plains (Blakely's Red Gum, Eucalyptus blakelyi and Yellow Box, Eucalyptus melliodora, or White Box, Eucalyptus albens and Red Stringybark), 54% of remnant tree‐cover occurred as patches < 1 ha. The loss of paddock trees will cause substantial reductions to some woodland communities. For example, the loss of patches < 1 ha in woodlands dominated by Blakely's Red Gum and Yellow Box would reduce this association from 7.4% to 3.4% of its predicted pre‐1750 distribution. Mean distance to tree‐cover across the study area increased almost fourfold if patches < 1 ha were removed from the landscape, which may have consequences for movements of some flora and fauna. Failure to protect and perpetuate paddock trees will diminish the likelihood of achieving the conservation objectives of comprehensiveness, adequacy and representativeness in agricultural landscapes.  相似文献   

9.
The use of paddock trees as stepping stones by birds was assessedin a grazing landscape in southern New South Wales, Australia. A totalof 70 paddock tree sites was surveyed for 20 min each inthe morning, and 36 sites were surveyed again in the afternoon in March2000. During the surveys, the presence, direction of arrival, anddirection of departure to and from sites was recorded for each bird. Astepping stone effect of paddock trees was examined in two ways: (1) byanalysing the arrival and departure direction of birds relative tosurrounding vegetation cover, and (2) by analysing the departuredirection of birds relative to their arrival direction. An arrivaldirection was obtained for 150 independently acting groups of birds, anda departure direction was obtained for 203 independently acting groupsof birds. Both arrival and departure direction were obtained for 87independently acting groups. Foliage-foraging birds tended to followrelatively densely vegetated areas. There was some indication thatgranivores and nectarivores also preferred to move along denselyvegetated areas. This trend was absent for open-country species. Allgroups of birds examined tended to return to their place of origin ormove in the opposite direction of their arrival. This trend was mostpronounced for nectarivores and the foliage-foraging White-plumedHoneyeater (Lichenostomus penicillatus), and lesspronounced for open-country species and parrots. The results arediscussed in relation to the biology and ecology of the various speciesof birds. We conclude that paddock trees have the potential to enhancelandscape connectivity by acting as stepping stones to assist movement.This further highlights their conservation value as demonstrated in thefirst paper of this series.  相似文献   

10.
Traditional approaches to the study of species persistence in fragmented landscapes generally consider a binary classification of habitat being suitable or unsuitable; however, the range of human‐modified habitats within a region may offer a gradient of habitat suitability (or conservation value) for species. We identified such a gradient by comparing bird assemblages among contrasting land uses (pine plantations of different age, annual crops, clear cuts and cattle pastures) in the Upper Parana Atlantic forest. Bird assemblages and vegetation structure were characterized in an extensive area of 4400 km2 in Argentina and Paraguay during the breeding seasons of 2005–2010. Similarity of bird assemblages between anthropogenic habitats and the native forest and the proportion of forest species increased with vegetation vertical structure, while the proportion of open‐area species decreased. As a consequence, mature tree plantations were the most suitable habitats for forest species and were mainly used by frugivores and bark insectivores. In contrast, open habitats were the least suitable habitat for forest species and were used primarily by insectivores. Human‐created habitats that are structurally complex can be used by a subset of forest species, and may improve functional connectivity and mitigate edge effects. The conservation of large tracks of native forests, however, is critical for the long‐term persistence of the entire bird assemblage, especially for native forest dependent species.  相似文献   

11.
Extant species in human‐dominated landscapes differ in their sensitivity to habitat loss and fragmentation, although extinctions induced by environmental alteration reduce variation and result in a surviving subset of species with some degree of ‘resistance’. Here, we test the degree to which variable responses to habitat alteration are (1) essentially an inherent property of a taxon subject to constraints imposed by its geographical range, as suggested by Swihart et al. (2003), (2) a function of the landscape in which a species occurs, or (3) a function of spatial trends occurring on large scales. We used data collected on 33 vertebrate species during 2001–04 across the upper Wabash River basin, Indiana, in 35 square ‘landscapes’, each 23 km2 in size. Six species of forest rodent, six species of grassland rodents, seven species of bats, eight species of aquatic turtles, and six species of amphibians were sampled at 504, 212, 590, 228, and 625 patches, respectively. The fraction of patches of primary habitat (e.g. forests for tree squirrels, wetlands for aquatic turtles) occupied by a target species was used as a response variable. On a basin‐wide scale, 47% of variation in proportional occupancy among species could be explained by taxon‐specific variables; occupancy rates were related positively to niche breadth and negatively to the proximity of a geographical range boundary. After controlling for species effects, landscape‐level occupancy rates varied significantly for 16 of 33 species, with variation partitioned among landscape variables alone (mean = 11% of variation), spatial trend variables alone (26%), and both variable sets jointly (8%). Among landscape variables, percentage forest cover positively affected occupancy rates of three bat species and a tree squirrel. Variation in occupancy rates among landscapes was consistent with large‐scale spatial trends for 13 species. Our findings demonstrate the general importance of niche breadth as a predictor of species responses to habitat alteration and highlight the importance of viewing the effects of habitat loss and fragmentation at multiple spatial scales.  相似文献   

12.
This study intends to assess the influence of fragment age, size and isolation (from the regional species pool) on bird community composition patterns in urban parks in Madrid, and the role of local and regional factors on community structure. Park age was a good indicator of habitat complexity. Park age and area accounted for 62% of the variability in species richness, but two measures of isolation from the regional species pool were not included as significant factors. Species composition in urban parks showed a high degree of nestedness, which was associated with park age and area, but not with two measures of isolation from the regional species pool. The degree of nestedness increased with park age; the distribution of species varying from nested in old and mature parks to random in young parks. The incidence (% of species occurrence in parks) in young parks was correlated with regional densities, whereas in mature and old parks the incidence was correlated with local densities. In this urban landscape, species composition appears to be regulated by local factors (particularly in mature and old parks), such that species accumulate in an orderly (not random) fashion in relation to park age and area. Regional influences seem to be more pronounced only in young parks, which are mainly colonized by species from the regional species pool.  相似文献   

13.
Aim Understanding which human or environmental factors interact to enable or to limit the occurrence and persistence of large carnivores in human‐dominated landscapes is an important issue for their effective conservation, especially under the current scenario of global change where most of their former habitat is being transformed by humans. Location NW Iberian Peninsula. Methods We combine data on the distribution of Iberian wolves (Canis lupus signatus) living in a human‐dominated landscape in NW Spain and variation and partitioning methods to investigate the relative importance of three groups of predictors: food availability, humans and landscape attributes – each group expected to have unequal effects on wolf reproduction and survival – and their interactions on the occurrence of this species. Results We found that the group of predictors related with landscape attributes (altitude, roughness and refuge) strongly determined wolf occurrence, followed by humans and food availability. Variance partitioning analysis revealed that the three most important components determining wolf occurrence were related with landscape attributes: (1) the joint effects of the three predictor groups, (2) the joint effect of humans and landscape attributes and (3) the pure effect of landscape attributes. Altitude had the main independent contribution to explain the probability of wolf occurrence. Main conclusions In human‐dominated landscapes, the occurrence of wolves is the result of a complex interaction among several environmental and human factors. Our results suggest that the characteristics of the landscape (spatial context) – factors associated with the security of wolves facilitating that animals go unnoticed by humans, wolf movements, dispersal events and short‐time colonization – become more important in human‐dominated landscapes and may have played a key role in the occurrence and persistence of this species throughout decades modulating the relationship between humans and wolf distribution.  相似文献   

14.
Conservation and restoration interventions can be mutually reinforcing and are converging through an increased focus on social dimensions. This paper examines how to more effectively integrate the complementary goals of conservation and restoration of tropical forests. Forest conservation and restoration interventions are integral components of a broad approach to forest ecosystem and landscape management that aims to maintain and restore key ecological processes and enhance human well‐being, while minimizing biodiversity loss. The forest transition model provides a useful framework for understanding the relative importance of forest conservation and restoration interventions in different regions. Harmonizing conservation and restoration presents serious challenges for forest policy in tropical countries, particularly regarding the use and management of secondary forests, fallow vegetation, and forests degraded by logging and fire. Research to implement restoration more effectively in tropical regions can be stimulated by transforming questions that initially focused on conservation issues. Examination of papers published in Biotropica from 2000–2018 shows that most studies relevant to tropical forest conservation do not address forest restoration issues. Forest restoration studies, on the other hand, show a consistent association with conservation issues. There is much scope for further integration of conservation and restoration in research, practice, and policy. Securing a sustainable future for tropical forests requires developing and applying integrated approaches to landscape management that effectively combine knowledge and tools from multiple disciplines with practical experience and engagement of local stakeholders. Abstract in Portuguese is available with online material.  相似文献   

15.
Up to 37 species of the birds and microbats inhabiting inland Australia are dependent on tree cavities for breeding or roosting. The river red gum (Eucalyptus camaldulensis), a well‐known hollow‐bearing tree species, occurs in linear semi‐arid woodland along thousands of kilometres of ephemeral river channels and is the only tree species that provides widespread, aggregated hollow resources across a landscape otherwise dominated by shrublands. Here we assess the type and quantity of hollows available along ephemeral rivers of the MacDonnell Ranges bioregion in central Australia and determine which characteristics of river red gums best predict the abundance and characteristics of different tree hollows, as first steps towards assessing the current availability of hollows in the region. Approximately a third of all river red gums sampled were hollow‐bearing, but individual trees with abundant hollows were rare. Further, 36% of hollows had an entrance ≤ 5 cm, and 37% had entrances which were 6–10 cm in diameter, whereas only 13% of hollows had an entrance diameter > 20 cm suitable for larger hollow‐using species. Large and high hollows only occurred on trees that did not display post‐disturbance resprouting. Trees with multiple and diverse hollows were rare and tended to be in advanced stages of senescence and had larger stems (82.3 ± 3.33 cm) and were taller (14.4 ± 0.53 m) compared to non‐hollow‐bearing trees (23.44 ± 1.68 cm, 8.0 ± 0.34 m). Further research is required to establish whether the current abundance of hollows and diversity of hollow types are limiting to cavity‐dependent wildlife, and to identify any threats to availability of hollows.  相似文献   

16.
Conservation policies usually focus on in situ protection of native populations, a priority that requires accurate assessment of population status. Distinction between native and introduced status can be particularly difficult (and at the same time, is most important) for species whose natural habitat has become both rare and highly fragmented. Here, we address the status of the white elm (Ulmus laevis Pallas), a European riparian tree species whose populations have been fragmented by human activity and is protected wherever it is considered native. Small populations of this species are located in Iberia, where they are unprotected because they are considered introductions due to their rarity. However, Iberia and neighbouring regions in southwestern France have been shown to support discrete glacial refuge populations of many European trees, and the possibility remains that Iberian white elms are native relicts. We used chloroplast RFLPs and nuclear microsatellites to establish the relationship between populations in Iberia and the Central European core distribution. Bayesian approaches revealed significant spatial structure across populations. Those in Iberia and southwestern France shared alleles absent from Central Europe, and showed spatial population structure within Iberia common in recognized native taxa. Iberian populations show a demographic signature of ancient population bottlenecks, while those in Central European show a signature of recent population bottlenecks. These patterns are not consistent with historical introduction of white elm to Iberia, and instead strongly support native status, arguing for immediate implementation of conservation measures for white elm populations in Spain and contiguous areas of southern France.  相似文献   

17.
18.
19.
Aim To demonstrate that the concept of carrying capacity for species richness (SK) is highly relevant to the conservation of biodiversity, and to estimate the spatial pattern of SK for native landbirds as a basis for conservation planning. Location North America. Methods We evaluated the leading hypotheses on biophysical factors affecting species richness for Breeding Bird Survey routes from areas with little influence of human activities. We then derived a best model based on information theory, and used this model to extrapolate SK across North America based on the biophysical predictor variables. The predictor variables included the latest and probably most accurate satellite and simulation‐model derived products. Results The best model of SK included mean annual and inter‐annual variation in gross primary productivity and potential evapotranspiration. This model explained 70% of the variation in landbird species richness. Geographically, predicted SK was lowest at higher latitudes and in the arid west, intermediate in the Rocky Mountains and highest in the eastern USA and the Great Lakes region of the USA and Canada. Main conclusions Areas that are high in SK but low in human density are high priorities for protection, and areas high in SK and high in human density are high priorities for restoration. Human density was positively related to SK, indicating that humans select environments similar to those with high bird species richness. Federal lands were disproportionately located in areas of low predicted SK.  相似文献   

20.
1 Macroscopic remains of the fairly thermophilous tree species Alnus glutinosa , Tilia cordata and Betula pendula were recovered in subalpine and adjacent boreal environments far above and beyond their present-day distributional limits. This establishes that the early Holocene tree flora of the Scandes Mountains in northern Sweden was indeed richer than it is today.
2 Dates ranged between c . 8600 and 7000 radiocarbon years bp . These are much earlier than previous estimates by conventional pollen stratigraphical analyses of the arrival of these species at their maximum geographical limits. This highlights problems in using only pollen data for vegetation reconstruction, and suggests re-evaluation of earlier records.
3 The results, together with similar macrofossils for Picea abies and Larix sibirica in northern Sweden, suggest that many tree species spread rapidly and became established at their most extended range limits during the early Holocene. Abundances have subsequently varied in accordance with the ecology of individual species as well as with climatic change.
4 Palaeoclimatic inferences may suggest a strongly continental climate, i.e. warmer and drier summers and possibly fairly cold winters between 8600 and 7000 bp relative to the present. Some change towards a more oceanic climate regime with less pronounced seasonal contrasts may have occurred towards the end of the period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号