首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has previously been shown that the tomato pathogen Clavibacter michiganensis subsp. michiganensis secretes a 14-kDa protein, C. michiganensis subsp. michiganensis AMP-I (CmmAMP-I), that inhibits growth of Clavibacter michiganensis subsp. sepedonicus, the causal agent of bacterial ring rot of potato. Using sequences obtained from tryptic fragments, we have identified the gene encoding CmmAMP-I and we have recombinantly produced the protein with an N-terminal intein tag. The gene sequence showed that CmmAMP-I contains a typical N-terminal signal peptide for Sec-dependent secretion. The recombinant protein was highly active, with 50% growth inhibition (IC50) of approximately 10 pmol, but was not toxic to potato leaves or tubers. CmmAMP-I does not resemble any known protein and thus represents a completely new type of bacteriocin. Due to its high antimicrobial activity and its very narrow inhibitory spectrum, CmmAMP-1 may be of interest in combating potato ring rot disease.  相似文献   

2.
A multiplex polymerase chain reaction (PCR) assay for simultaneous, fast and reliable detection of the main soft rot and blackleg potato pathogens in Europe has been developed. It utilises three pairs of primers and enables detection of three groups of pectinolytic bacteria frequently found in potato, namely: Pectobacterium atrosepticum, Pectobacterium carotovorum subsp. carotovorum together with Pectobacterium wasabiae and Dickeya spp. in a multiplex PCR assay. In studies with axenic cultures of bacteria, the multiplex assay was specific as it gave positive results only with strains of the target species and negative results with 18 non‐target species of bacteria that can possibly coexist with pectinolytic bacteria in a potato ecosystem. The developed assay could detect as little as 0.01 ng µL–1 of Dickeya sp. genomic DNA, and down to 0.1 ng µL–1 of P. atrosepticum and P. carotovorum subsp. carotovorum genomic DNA in vitro. In the presence of competitor genomic DNA, isolated from Pseudomonas fluorescens cells, the sensitivity of the multiplex PCR decreased tenfold for P. atrosepticum and Dickeya sp., while no change was observed for P. carotovorum subsp. carotovorum and P. wasabiae. In spiked potato haulm and tuber samples, the threshold level for target bacteria was 101 cfu mL–1 plant extract (102 cfu g–1 plant tissue), 102 cfu mL–1 plant extract (103 cfu g–1 plant tissue), 103 cfu mL–1 plant extract (104 cfu g–1 plant tissue), for Dickeya spp., P. atrosepticum and P. carotovorum subsp. carotovorum/P. wasabiae, respectively. Most of all, this assay allowed reliable detection and identification of soft rot and blackleg pathogens in naturally infected symptomatic and asymptomatic potato stem and progeny tuber samples collected from potato fields all over Poland.  相似文献   

3.
The Gram-positive bacterium Clavibacter michiganensis subsp. sepedonicus is the causal agent of bacterial wilt and ring rot of potato. So far, only two proteins have been shown to be essential for virulence, namely a plasmid-encoded cellulase CelA and a hypersensitive response-inducing protein. We have examined the relative expression of CelA and eight putative virulence factors during infection of potato and in liquid culture, using quantitative real-time PCR. The examined putative virulence genes were celB, a cellulase-encoding gene and genes encoding a pectate lyase, a xylanase and five homologues of the Clavibacter michiganensis subsp. michiganensis pathogenicity factor Pat-1 thought to encode a serine protease. Six of the nine assayed genes were up-regulated during infection of potato, including celA, celB, the xylanase gene, and two of the pat genes. The pectate lyase gene showed only slightly elevated expression, whereas three of the five examined pat genes were down-regulated during infection in potato. Interestingly, the two up-regulated pat genes showed a noticeable sequence difference compared to the three down-regulated pat genes. These results reveal several new proteins that are likely to be involved in Clavibacter michiganensis subsp. sepedonicus pathogenicity.  相似文献   

4.

Aim

Create a method for highly sensitive, selective, rapid and easy‐to‐use detection and identification of economically significant potato pathogens, including viruses, bacteria and oomycetes, be it single pathogen, or a range of various pathogens occurring simultaneously.

Methods and Results

Test‐systems for real‐time PCR, operating in the unified amplification regime, have been developed for Phytophthora infestans, Pectobacterium atrosepticum, Dickeya dianthicola, Dickeya solani, Ralstonia solanacearum, Pectobacterium carotovorum, Clavibacter michiganensis subsp. sepedonicus, potato viruses Y (ordinary and necrotic forms as well as indiscriminative test system, detecting all forms), A, X, S, M, potato leaf roll virus, potato mop top virus and potato spindle tuber viroid. The test‐systems (including polymerase and revertase) were immobilized and lyophilized in miniature microreactors (1·2 μl) on silicon DNA/RNA microarrays (micromatrices) to be used with a mobile AriaDNA® amplifier.

Conclusions

Preloaded 30‐reaction micromatrices having shelf life of 3 and 6 months (for RNA‐ and DNA‐based pathogens, respectively) at room temperature with no special conditions were successfully tested on both reference and field samples in comparison with traditional ELISA and microbiological methods, showing perfect performance and sensitivity (1 pg).

Significance and Impact of the Study

The accurate, rapid and user‐friendly diagnostic system in a micromatrix format may significantly contribute to pathogen screening and phytopathological studies.  相似文献   

5.
Aims: To evaluate the effectiveness of the optimized immunomagnetic separation (IMS)‐plating protocol in relation to other culture, serological and molecular techniques currently used for Clavibacter michiganensis subsp. michiganensis in seed‐testing laboratories. Methods and results: Bacterial suspensions, tomato seed extracts spiked with the pathogen and naturally infected seeds were IMS‐plated for the detection of C. m. subsp. michiganensis. These results were compared with plating on general (YPGA) and semiselective (mSCM) media, double‐antibody sandwich enzyme‐linked immunosorbent assay (DAS‐ELISA), immunofluorescent assay (IF) or polymerase chain reaction (PCR). Different seed lots and pathogen strains were also tested. IMS‐plating allowed the detection of less than 10 CFU ml?1 of pathogen in all assayed samples. The mSCM medium provided positive results for 10 CFU ml?1 in naturally infected seeds, but up to 14 days was necessary for the typical colonies of the target to be come visible. By serological techniques, 103 and up to 104 CFU ml?1 were detected by IF and ELISA, respectively. DNA extraction was required to obtain positive results by PCR in seed extracts containing 103 CFU ml?1 or more. Conclusions: Among the evaluated methods, IMS‐plating provided the best results regarding sensitivity and specificity for C. m. subsp. michiganensis detection, allowing the recovery of viable bacteria from seed extracts. Significance and impact of the study: IMS‐plating increases isolation rates of C. m. subsp. michiganensis and could improve standard protocols currently used for routine analysis.  相似文献   

6.
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil.  相似文献   

7.
The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial wilt and canker of tomato, is an economically devastating pathogen that inflicts considerable damage throughout all major tomato-producing regions. Annual outbreaks continue to occur in New York, where C. michiganensis subsp. michiganensis spreads via infected transplants, trellising stakes, tools, and/or soil. Globally, new outbreaks can be accompanied by the introduction of contaminated seed stock; however, the route of seed infection, especially the role of fruit lesions, remains undefined. In order to investigate the modes of seed infection, New York C. michiganensis subsp. michiganensis field strains were stably transformed with a gene encoding enhanced green fluorescent protein (eGFP). A constitutively eGFP-expressing virulent C. michiganensis subsp. michiganensis isolate, GCMM-22, was used to demonstrate that C. michiganensis subsp. michiganensis could not only access seeds systemically through the xylem but also externally through tomato fruit lesions, which harbored high intra- and intercellular populations. Active movement and expansion of bacteria into the fruit mesocarp and nearby xylem vessels followed, once the fruits began to ripen. These results highlight the ability of C. michiganensis subsp. michiganensis to invade tomato fruits and seeds through multiple entry routes.  相似文献   

8.
9.
The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this “framework” with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced.  相似文献   

10.
Members of the actinomycete genus Clavibacter are known to produce antimicrobial compounds, but so far none of these compounds has been purified and characterized. We have isolated an antimicrobial peptide, michiganin A, from the tomato pathogen Clavibacter michiganensis subsp. michiganensis, using ammonium sulfate precipitation followed by cation-exchange and reversed-phase chromatography steps. Upon chemical derivatization of putative dehydrated amino acids and lanthionine bridges by alkaline ethanethiol, Edman degradation yielded sequence information that proved to be sufficient for cloning of the gene by a genome-walking strategy. The mature unmodified peptide consists of 21 amino acids, SSSGWLCTLTIECGTIICACR. All of the threonine residues undergo dehydration, and three of them interact with cysteines via thioether bonds to form methyllanthionine bridges. Michiganin A resembles actagardine, a type B lantibiotic with a known three-dimensional structure, produced by Actinoplanes liguriae, which is a filamentous actinomycete. The DNA sequence of the gene showed that the michiganin A precursor contains an unusual putative signal peptide with no similarity to well-known secretion signals and only very limited similarity to the (only two) available leader peptides of other type B lantibiotics. Michiganin A inhibits the growth of Clavibacter michiganensis subsp. sepedonicus, the causal agent of ring rot of potatoes, with MICs in the low nanomolar range. Thus, michiganin A may have some potential in biological control of potato ring rot.  相似文献   

11.
This is the first study demonstrating that ortho-phthalic acid esters, dibutylphthalate (DBP) and di-(2-ethylhexyl)-o-phthalate (DEHP), inhibit the ability to form biofilms of the biotrophic pathogen Clavibacter michiganensis ssp. sepedonicus and Pectobacterium carotovorum ssp. carotovorum necrotroph. Inhibition of biofilm formation depends on the DBP and DEHP concentrations.  相似文献   

12.
Clavibacter michiganensis subsp. michiganensis (Cmm) is a seed-transmitted, quarantine pathogen which causes bacterial wilt and canker of tomato. Despite efforts to prevent seed contamination, new introductions are regularly detected, associated with new regions of tomato seed production. It seems as if the expanding diversity of Cmm also challenges the limited host range.  相似文献   

13.
The use of disease-free seeds or bulbs is very crucial to ensure sustainable and profitable agricultural production. Seed-borne pathogens which are responsible for significant yield losses in various crops need to be successfully eliminated with appropriate seed treatments. In this study, we investigated the efficacy of gaseous ozone (O3) and ozonated water treatments on the inactivation of seed-borne fungal and bacterial pathogens of widely cultivated vegetable and cereal seeds, and ornamental bulbs. We demonstrated that O3 application to tomato and cucumber seeds inactivates Fusarium oxysporum f. sp. lycopersici, Fusarium oxysporum f. sp. radicis-lycopersici, Clavibacter michiganensis subsp. michiganensis, Pseuodomonas syringae pv. tomato, and Pseudomonas syringae pv. lachrymans, respectively, with no negative effect on seed germination rate. The sterilization capacity of O3 has substantially increased when the seeds were soaked in water before the treatments. The saprophytic fungal load and the infection rate of Pectobacterium carotovorum subsp. carotovorum on several species and cultivars of ornamental bulbs were suppressed by O3 treatment. A strong decrease in the infection rate of Tilletia caries was also shown in O3-treated wheat seeds under field conditions. Overall, the current study indicated that O3 treatment has great potential in ensuring the use of disease-free seeds or other propagation materials, which is indispensable at the beginning of crop production.  相似文献   

14.
Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 108 or 109 CFU/liter for bacteria or 104 or 105 zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively.  相似文献   

15.
To identify bacteria causing soft rot and blackleg in potato in Finland, pectinolytic enterobacteria were isolated from diseased potato stems and tubers. In addition to isolates identified as Pectobacterium atrosepticum and Dickeya sp., many of the isolated strains were identified as Pectobacterium carotovorum subsp. carotovorum. Phylogenetic analysis and biochemical tests indicated that one of the isolates from potato stems resembled Pectobacterium wasabiae. Furthermore, two blackleg‐causing P. carotovorum strains recently isolated in Europe clustered with P. wasabiae, suggesting that at least some of these isolates were originally misidentified. All the other Finnish P. carotovorum isolates resembled the subsp. carotovorum type strain in biochemical tests but could be clustered into two distinct groups in the phylogenetic analysis. One of the groups mainly contained strains isolated from diseased tubers, whereas the other mainly included isolates from potato stems. In contrast to the tuber isolates, the stem isolates lacked genes in Type III secretion genes, were not able to elicit a hypersensitive response in tobacco leaves and produced only small amounts of autoinducers in the stationary phase in vitro. P. wasabiae isolate was able to cause similar amount of blackleg‐like symptoms as P. atrosepticum in a field experiment with vacuum‐infiltrated tubers, whereas both P. atrosepticum and P. carotovorum isolates reduced emergence and delayed growth more than P. wasabiae. Our findings confirm the presence of P. wasabiae in Finland and show that the Finnish P. carotovorum subsp. carotovorum isolates can be divided into two groups with specific characteristics and possibly also different ecologies.  相似文献   

16.
Detection of Clavibacter michiganensis subsp. michiganensis (Cmm), causing bacterial canker of tomato, was verified using PTA-ELISA and IFAS with PAbs of Neogen Europe Ltd. (UK), and with published and also laboratory-generated PCR primers from the Cmm tomatinase gene. The specificity of this technique was determined with 15 plant-pathogenic and 4 common, saprophytic bacteria. With IFAS, crossreactions were found for Pantoea dispersa, P. agglomerans and Rahnella aquatilis, and with PTA-ELISA for Curtobacterium flaccumfaciens, Pectobacterium atrosepticum and Dickeya sp. Cross-reactions with subspecies other than michiganensis were also found using both methods. Molecular methods were optimized by verification of annealing temperatures and times for both primers. Conditions were finally adjusted to 30 s at 65 °C for Dreier’s and 10 s at 69 °C for our primer set. After this optimization, both primer pairs produced positive reaction only with Cmm. By means of PTA-ELISA and IFAS, Cmm strains were detected at a concentration up to 105 CFU/mL and 103 CFU/mL, respectively. The PCR test with bacterial cell suspensions reached a sensitivity of 103 CFU/mL with our designed primers and 104 CFU/mL with Dreier’s primer pair.  相似文献   

17.
Biological treatments to control bacterial canker of greenhouse tomatoes   总被引:1,自引:0,他引:1  
Raj Utkhede  Carol Koch 《BioControl》2004,49(3):305-313
Experiments were conducted to determine the effects of treatments on Clavibacter michiganensis subsp. michiganensis in vitro and on young seedlingsinoculated with the pathogen under greenhouseconditions. Lysozyme was bactericidal at 10 g/l concentration in vitro. Tomato plantstreated with lysozyme at 10 g/l and 100 g/lshowed significantly higher plant heightcompared with the inoculated control plants,and plants in these treatments were as tall asthose observed in untreated uninoculatedcontrol plants. Treatments with B. subtilis (Quadra 136) and Trichoderma harzianum (RootShield®), lysozyme,vermicompostea, Rhodosporidium diobovatum(S33), B. subtilis (Quadra 137) appliedas a spray at 0.3 g/l, 0.6 g/l, 10 g/l,concentrated, 1 × 109 CFU/ml, and 0.5 g/l,respectively, have the ability to prevent theincidence of bacterial canker of tomato plantscaused by C. michiganensis subsp.michiganensis under greenhouse conditions.  相似文献   

18.
Clavibacter michiganensis subsp. michiganensis is a Gram-positive bacterium that causes wilting and cankers, leading to severe economic losses in commercial tomato production worldwide. The disease is transmitted from infected seeds to seedlings and mechanically from plant to plant during seedling production, grafting, pruning, and harvesting. Because of the lack of tools for genetic manipulation, very little is known regarding the mechanisms of seed and seedling infection and movement of C. michiganensis subsp. michiganensis in grafted plants, two focal points for application of bacterial canker control measures in tomato. To facilitate studies on the C. michiganensis subsp. michiganensis movement in tomato seed and grafted plants, we isolated a bioluminescent C. michiganensis subsp. michiganensis strain using the modified Tn1409 containing a promoterless lux reporter. A total of 19 bioluminescent C. michiganensis subsp. michiganensis mutants were obtained. All mutants tested induced a hypersensitive response in Mirabilis jalapa and caused wilting of tomato plants. Real-time colonization studies of germinating seeds using a virulent, stable, constitutively bioluminescent strain, BL-Cmm17, showed that C. michiganensis subsp. michiganensis aggregated on hypocotyls and cotyledons at an early stage of germination. In grafted seedlings in which either the rootstock or scion was exposed to BL-Cmm17 via a contaminated grafting knife, bacteria were translocated in both directions from the graft union at higher inoculum doses. These results emphasize the use of bioluminescent C. michiganensis subsp. michiganensis to help better elucidate the C. michiganensis subsp. michiganensis-tomato plant interactions. Further, we demonstrated the broader applicability of this tool by successful transformation of C. michiganensis subsp. nebraskensis with Tn1409::lux. Thus, our approach would be highly useful to understand the pathogenesis of diseases caused by other subspecies of the agriculturally important C. michiganensis.Clavibacter michiganensis subsp. michiganensis is a Gram-positive, aerobic bacterium that belongs to a group of plant-pathogenic actinomycetes (37). Infections by C. michiganensis subsp. michiganensis cause bacterial canker and wilt in tomato, which is considered one of the most destructive and economically significant diseases of this crop. Severe epidemics can cause up to 80% yield loss, mainly due to wilting and death of plants and lesions on fruit. Bacterial canker was first discovered in Michigan greenhouses in 1909 and has now been reported to occur in most tomato production areas around the world (11, 40).Plant wounds facilitate but are not required for infection by C. michiganensis subsp. michiganensis, which invades the xylem vessels and causes vascular disease with high titers (109 bacteria/g of plant tissue) (2, 29), impairing water transport and leading to plant wilting, canker stem lesions, and death (17, 23). Alternatively, asymptomatic infections can be induced by C. michiganensis subsp. michiganensis during late stages of plant development, resulting in the production of contaminated seeds, a major source of outbreaks of C. michiganensis subsp. michiganensis infections in tomato production (13, 34). Traditional bacterial-disease management measures, such as applications of antibiotics and copper bactericides, have not been successful against this disease, and canker-resistant tomato cultivars are not available. As a result, C. michiganensis subsp. michiganensis has been included under international quarantine regulation (10, 11). Consequently, seed testing and maintaining pathogen-free seeds and transplants is currently the most appropriate approach to minimize the spread of disease (23). However, even a low C. michiganensis subsp. michiganensis transmission rate (0.01%) from seed to seedling can cause a disease epidemic under favorable conditions (5). Due to overcrowding of seedlings during transplant production, the pathogen can easily spread through splashing of irrigation water and leaf contact. Despite its apparent significance in C. michiganensis subsp. michiganensis epidemiology, the mechanism of seed-to-seedling transmission of C. michiganensis subsp. michiganensis is not well understood.Another critical point for disease spread is the grafting process, which is now a common practice for the majority of plants used in production greenhouses. Desirable tomato cultivars (scions) are grafted onto rootstocks that provide greater vigor, longevity, or, in some cases, disease resistance (26). Grafting requires cutting both rootstock and scion, providing a quick way for C. michiganensis subsp. michiganensis to spread from plant to plant. However, grafting is a relatively recent innovation in tomato production, and little is known about how grafting affects the dynamics of C. michiganensis subsp. michiganensis infection. Developing adequate control measures for C. michiganensis subsp. michiganensis is complicated by the complexity of genetic manipulation of Gram-positive bacteria, which impairs analysis and characterization of pathogenesis mechanisms (23). Consequently, there is a need to develop molecular techniques that would allow a better understanding of C. michiganensis subsp. michiganensis infections.One method of interest is using engineered bioluminescent bacteria to monitor plant-pathogen interactions in real time. By exploiting natural light-emitting reactions that are encoded by the luxCDABE genes, bioluminescent bacteria have been used to assess gene expression and to monitor the internalization and distribution of bacteria in hosts (3, 6, 7, 8, 9, 12, 15, 24, 31, 35, 36). In particular, bioluminescent phytopathogenic Xanthomonas campestris pathovars and Pseudomonas spp. have been used to track bacterial movement and distribution in host plants (7, 8, 15, 31, 36), as well as to assess host susceptibility quantitatively (15). Likewise, the lux genes have also been transferred to beneficial bacteria, such as Rhizobium leguminosarum and Pseudomonas spp. to visualize colonization patterns in rhizospheres (3, 9).The genes that carry the function of light emission are luxAB, which express luciferase enzymes that catalyze the bioluminescent reaction, while luxCDE encode the enzymes required for biosynthesis of a fatty aldehyde substrate necessary for the reaction (28, 39). Bioluminescence involves an intracellular oxidation of the reduced form of flavin mononucleotide and the fatty aldehyde by luciferase in the presence of molecular oxygen; therefore, bacterial bioluminescence also requires oxygen, a source of energy (38). Cells that express the lux operon spontaneously emit photons that can be captured by a sensitive charge-coupled-device (CCD) camera, enabling imaging and visualization of bacterial cells (22). Luciferase activity depends on the metabolic integrity of the cell, while the number of photons emitted correlates with the biomass of living bacteria (12, 31). Furthermore, since the half-life of luciferase binding to its substrate is several seconds (28), captured light events reflect processes in real time and are not artifacts of accumulated signals. Consequently, live imaging of bioluminescence provides a sensitive means of visualizing bacterial colonization and invasion of hosts and allows real-time representation and examination of pathogen-plant interactions (24, 36).Very little information is available about the mechanisms of C. michiganensis subsp. michiganensis pathogenesis and its colonization of seeds and subsequent transmission to seedlings. This is largely attributable to a lack of tools and difficulties in genetically manipulating this Gram-positive bacterium (30). However, recent development of an insertion sequence element IS1409 (Tn1409)-based efficient transposon mutagenesis system for C. michiganensis subsp. michiganensis has increased our knowledge of the pathogenesis of tomato canker (16, 25). To better understand the dynamics of seed-to-seedling transmission of C. michiganensis subsp. michiganensis, as well as movement of C. michiganensis subsp. michiganensis in grafted plants, we constructed a bioluminescent C. michiganensis subsp. michiganensis strain using the Tn1409 transposon mutagenesis system. Our results demonstrated the utility of using a bioluminescent C. michiganensis subsp. michiganensis strain as a novel approach to elucidate the interaction of plants with this economically important pathogen.  相似文献   

19.
Test-tube plants and suspension cell cultures of two cultivars of the potato (Solanum tuberosum L.) differing in their resistance to ring rot caused by Clavibacter michiganensis subsp. sepedonicus and six strains of this bacterium were used to test the relationship between the virulence, the leaf ability to adsorb bacteria, and the symptoms of the disease. In addition to chlorosis and drying, heavy inoculation with virulent strains caused unusual symptoms, such as leaf necrotic lesions. In the resistant cultivar, the necrotic lesions were predominantly local, whereas in the susceptible cultivar, they expanded. Unlike the susceptible cultivar, suspension cells of the resistant cultivar weakly adhered bacteria of the tested strains. Bacteria entered the plants through the leaf stomata. The sorption and penetration were much more pronounced in the susceptible cultivar. It was concluded that strain virulence varies depending on the conditions of inoculation, and uncharacteristic symptoms (necrotic lesions) arise. The local necrotic lesions are considered a hypersensitive response, and exopolysaccharides of the pathogen as the factors of virulence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号