首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Somatic embryogenesis was achieved from leaves of Agave tequilana Weber cultivar azul utilizing MS medium supplemented with L2 vitamins and the addition of cytokinins: 6-benzylaminopurine (BA), 1-phenyl-3(1,2,3-thiadiazol-5-yl)urea (TDZ), 6-(γ-γ-dimethylamino)purine (2ip) and 6-furfurylaminopurine (KIN), combined with the auxin 2,4-dichlorophenoxyacetic acid (2,4-D). Differences among the six genotypes studied with regard to their embryogenic response in culture were found. Embryos produced by genotype S3 under a hormone regime of high cytokinin (44.4 to 66.6 μM BA) compared to auxin (4.5 μM 2,4-D) contained chlorophyll, whereas those produced when auxin was high compared to cytokinin (9.0 and 13.6 μM 2,4-D and 1.3 and 4.0 μM BA, respectively) were whitish and morphologically similar to their zygotic counterparts. Somatic embryos matured and germinated after transferring the embryogenic calli to maturation and germination medium without growth regulators and enriched with organic nitrogen. Microscopic observations demonstrated a unicellular origin for production of indirect somatic embryos.  相似文献   

3.
Summary Indirect organogenesis was developed in Agave tequilana. Leaf segments and meristematic tissue from the central head (‘pi?a’) were evaluated as explant sources. A minimal-sized explant with high bud-forming capacity (19.5 BFC) was obtained through a cross section of meristematic tissue from in vitro plantlets. In callus culture, the best growth response was due to naphthalene acetic-acid (NAA) presenting a contrasting response compared to 2,4-dichlorophenoxyacetic acid (2,4-D). Regeneration from meristem segments and callus was obtained using 1.1 μM 2,4-D and 44 μM 6-benzylaminopurine (BA). The regeneration capacity of callus was maintained for 3 mo. Shoots regenerated were rooted in a hormone-free MSI medium and acclimatized in a greenhouse with a 100% survival.  相似文献   

4.
Agave tequilana fructans are the source of fermentable sugars for the production of tequila. Fructans are processed by acid hydrolysis or by cooking in ovens at high temperature. Enzymatic hydrolysis is considered an alternative for the bioconversion of fructans. We previously described the isolation of Aspergillus niger CH-A-2010, an indigenous strain that produces extracellular inulinases. Here we evaluated the potential application of A. niger CH-A-2010 inulinases for the bioconversion of A. tequilana fructans, and its impact on the production of ethanol. Inulinases were analyzed by Western blotting and thin layer chromatography. Optimal pH and temperature conditions for inulinase activity were determined. The efficiency of A. niger CH-A-2010 inulinases was compared with commercial enzymes and with acid hydrolysis. The hydrolysates obtained were subsequently fermented by Saccharomyces cerevisiae to determine the efficiency of ethanol production. Results indicate that A. niger CH-A-2010 predominantly produces an exo-inulinase activity. Optimal inulinase activity occurred at pH 5.0 and 50 °C. Hydrolysis of raw agave juice by CH-A-2010 inulinases yielded 33.5 g/l reducing sugars, compared with 27.3 g/l by Fructozyme® (Novozymes Corp, Bagsværd, Denmark) and 29.4 g/l by acid hydrolysis. After fermentation of hydrolysates, we observed that the conversion efficiency of sugars into ethanol was 97.5 % of the theoretical ethanol yield for enzymatically degraded agave juice, compared to 83.8 % for acid-hydrolyzed juice. These observations indicate that fructans from raw Agave tequilana juice can be efficiently hydrolyzed by using A. niger CH-A-2010 inulinases, and that this procedure impacts positively on the production of ethanol.  相似文献   

5.

Background  

Agave tequilana Weber var. azul, is the only one variety permitted by federal law in México to be used for tequila production which is the most popular contemporary alcoholic beverage made from agave and recognized worldwide. Despite the economic, genetic, and ornamental value of the plant, it has not been subjected to detailed cytogenetic research, which could lead to a better understanding of its reproduction for future genetic improvement.  相似文献   

6.
7.
In spite of the importance of somatic embryogenesis for basic research in plant embryology as well as for crop improvement and plant propagation, it is still unclear which mechanisms and cell signals are involved in acquiring embryogenic competence by a somatic cell. The aim of this work was to study cellular and molecular changes involved in the induction stage in calli of Agave tequilana Weber cultivar azul in order to gain more information on the initial stages of somatic embryogenesis in this species. Cytochemical and immunocytochemical techniques were used to identify differences between embryogenic and non-embryogenic cells from several genotypes. Presence of granular structures was detected after somatic embryogenesis induction in embryogenic cells; composition of these structures as well as changes in protein and polysaccharide distribution was studied using Coomassie brilliant blue and Periodic Acid-Schiff stains. Distribution of arabinogalactan proteins (AGPs) and pectins was investigated in embryogenic and non-embryogenic cells by immunolabelling using anti-AGP monoclonal antibodies (JIM4, JIM8 and JIM13) as well as an anti-methyl-esterified pectin-antibody (JIM7), in order to evaluate major modifications in cell wall composition in the initial stages of somatic embryogenesis. Our observations pointed out that induction of somatic embryogenesis produced accumulation of proteins and polysaccharides in embryogenic cells. Presence of JIM8, JIM13 and JIM7 epitopes were detected exclusively in embryogenic cells, which supports the idea that specific changes in cell wall are involved in the acquisition of embryogenic competence of A. tequilana.  相似文献   

8.
9.
This study aimed to improve the fermentation efficiency of Kloeckera africana K1, in tequila fermentations. We investigated organic and inorganic nitrogen source requirements in continuous K. africana fermentations fed with Agave tequilana juice. The addition of a mixture of 20 amino-acids greatly improved the fermentation efficiency of this yeast, increasing the consumption of reducing sugars and production of ethanol, compared with fermentations supplemented with ammonium sulfate. The preference of K. africana for each of the 20 amino-acids was further determined in batch fermentations and we found that asparagine supplementation increased K. africana biomass production, reducing sugar consumption and ethanol production (by 30, 36.7 and 45%, respectively) over fermentations supplemented with ammonium sulfate. Therefore, asparagine appears to overcome K. africana nutritional limitation in Agave juice. Surprisingly, K. africana produced a high concentration of ethanol. This contrasts to poor ethanol productivities reported for other non-Saccharomyces yeasts indicating a relatively high ethanol tolerance for the K. africana K1 strain. Kloeckera spp. strains are known to synthesize a wide variety of volatile compounds and we have shown that amino-acid supplements influenced the synthesis by K. africana of important metabolites involved in the bouquet of tequila. The findings of this study have revealed important nutritional limitations of non-Saccharomyces yeasts fermenting Agave tequilana juice, and have highlighted the potential of K. africana in tequila production processes.  相似文献   

10.
Agave tequilana stem explants were used to produce adventitious shoots under a set of different water potentials induced by different concentrations of gelrite in the medium. At high water potentials all shoots were vitrified; as the medium water potential became more negative the degree of vitrification decreased but the number of shoots per explant also diminished. The enzymes NADH and NAD-GDH (EC. 1.4.1.2) were measured along the water potential gradient. GDH activity was high in the non-vitrified tissues and decreased significantly in the vitrified ones.Abbreviations GDH glutamate dehydrogenase - MS Murashige and Skoog medium - MSO methionine sulfoximine - PVP polyvinylpolypyrrolidone - GS glutamine synthetase - GOGAT glutamine: oxoglutarate amino transferase  相似文献   

11.
Experiments were designed to assess the capacity of an in vitro cultured CAM plant to control water loss and to examine the response of their stomata to various factors. Detached leaves of micropropagated Agave tequilana plants lost water at similar rates as did field-grown plantlets when dehydrated in air. This was consistent with the fact that stomata from micropropagated plants show similar morphology than field-grown plantlets. In addition, stomata from micropropagated plants responded to various factors in a manner similar to those from field-grown plantlets. It appears that in vitro culture does not affect the capacity of leaves to control water loss nor does it alters the nocturnal stomatal opening of this CAM plant.  相似文献   

12.
During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.  相似文献   

13.

Acclimatization ex vitro is a key stage of the micropropagation process, in which the vitro plants leave the sterile, high humidity environment in which they originated and form new leaves and roots, during which they suffer different types of stress. Changes in the telomere length (shortening and lengthening) have been associated with age, the development of tissue, loss of cell replication and the ability of regeneration in different plant species. However, the genetic and biological factors that are involved in the process of shortening of telomeres across the ageing of plant species are still unknown. In this study, we used terminal restriction fragments (TRF) to examine the changes of telomere length during the in vitro to ex vitro transition in vitro plants of Agave tequilana, and their relationships with age in plants grown in commercial plantations. The results showed that in vitro grown plants present the longest telomeres and that a shortening occurs during the first 6 months of ex vitro acclimatization, (compared to the plantlets that were kept in vitro). A lengthening of the telomeres was observed in the acclimatized 1-year-old plants and that this was maintained in 2 and 3-year-old plants. We also observed TRF variations in the different tissues (leaves, stems and roots) of acclimatized plants. In field plants, we did not observe any important changes in the length of the telomeres. We suggest that agaves have a mechanism that maintains telomere length at the non-critical stages during development.

  相似文献   

14.
The Nobel environmental productivity index (EPI) was used as a framework for the development of a predictive geospatial model to estimate the bioethanol yield potential of four crassulacean acid metabolism (CAM) candidates in Australia (Agave fourcroydes, Agave salmiana, Agave tequilana, and Opuntia ficus‐indica). GIS software was used to integrate climate datasets with titratable acidity responses to changes in photosynthetically active radiation (PAR), temperature, and water availability. Additional refinements to Nobel's approach were made to accommodate spatial and temporal fluctuations in soil water potential (ψs) as a function of soil particle size distribution and precipitation, and CO2 uptake response to a range of day and night temperatures. A scalar factor for CO2 persistence during periods of drought was also introduced to model the capacity of succulent species of Agave to buffer against fluctuations in ψs. Macro‐scale criteria were applied to estimate environmentally responsible (ER) bioethanol yield potential on lands that are not suitable for food production. Consideration was given to indigenous vascular plant species richness and endemism scores at ER sites of interest. The highest mean ER bioethanol yield was achieved by A. fourcroydes (μ: 3.89, max. 7.17 kL ha‐1 yr‐1) while the highest maximum yield was achieved by A. tequilana (μ: 3.78, max. 7.63 kL ha‐1 yr‐1). This research indicated the CAM pathway may produce significant yields (≥≥ 5 kL ha‐1 yr‐1) at ER sites totalling 57,700 km2 (0.7% land area of Australia).  相似文献   

15.
16.
17.
Food Biophysics - The beneficial effect of agave fructans on health has been demonstrated gaining popularity as a new prebiotic and functional food ingredient, however, their role as an ingredient...  相似文献   

18.
In this study, 115 isolates of Fusarium oxysporum from roots of Agave tequilana Weber cv azul plants and soil in commercial plantations in western Mexico were characterized using morphological and molecular methods. Genetic analyses of monosporic isolates included restriction enzyme analysis of rDNA (ARDRA) using HaeIII and HinfI, and genetic diversity was determined using Box-PCR molecular markers. Box-PCR analysis generated 14 groups. The groups correlated highly with the geographic location of the isolate and sample type. These results demonstrate the usefulness of ARDRA and Box-PCR techniques in the molecular characterization of the Fusarium genus for the discrimination of pathogenic isolates.  相似文献   

19.
In plants, previous studies show that telomerase activity contributes to the maintenance of telomeric length for the proper development of organs and tissues. In this work, we investigated telomerase activity in A. tequilana during several years of cultivation. We found that during growth of the leaf there are two crucial phases: (1) the onset of cell elongation in 3 years and (2) differentiation of vascular bundles in 6 years. This coincides with the ages where the highest telomerase activity is seen. Therefore indicates that telomerase is associated with cellular activities such as; elongation, division, and cell differentiation. Likewise, we detected high activity during the period of vegetative growth, indicating that telomerase also contributes to telomeric maintenance on the leaf in A. tequilana.  相似文献   

20.
Abstract:  The weevil Scyphophorus acupunctatus Gyllenhal (Col., Curculionidae) is the most important insect pest of cultivated agaves in Mexico. The objective of this study was to search for potential attractants for this weevil species from the freshly cut fleshy leaves of healthy Agave tequilana Weber var. Blue plants. Combined gas chromatography-electroantennography (GC-EAD) analysis of A. tequilana volatile extracts showed that seven peaks elicited antennal responses from males and females. Five of these peaks were identified by gas chromatography-mass spectrometry (GC-MS) as o -xylene, α -pinene, 3-carene, γ -terpinene and linalool. Electroantennogram (EAG) records of both sexes to 1-, 10- and 100- μ g-stimulus load of these five compounds showed that there was a dose effect on the EAG responses for linalool, 3-carene and α -pinene, but not for γ -terpinene and o -xylene. There were no sexual differences between male and female EAG responses to any of the compounds tested. Y-tube olfactometer bioassays of the compounds showed that males and females were attracted to α -pinene, 3-carene, γ -terpinene and/or linalool at doses of 1 and 10  μ g, while weevils were repelled by linalool at a dose of 100  μ g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号