首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The clonedntrA (rpoN) gene andntrA mutants ofRhizobium meliloti were used to isolate the homologous gene from the broad-host rangeRhizobium sp. NGR234 by hybridization and interspecies complementation. The NGR234 locus was analyzed by deletion and insertional mutagenesis. A site-directedntrA mutant, NGR234rn1, was made with an interposon, GmI, and its phenotype was examined ex planta and in symbiosis. NGR234rn1 formed Fix nodules on six genera tested from among its legume hosts, including both indeterminate and determinate nodule-type plants. Formation of nodules onMacroptilium was delayed, and expression of anR. meliloti nodABC-lacZ fusion was reduced by the mutant allele.  相似文献   

2.
3.
Genetically, Rhizobium sp. strain NGR234 and R. fredii USDA257 are closely related. Small differences in their nodulation genes result in NGR234 secreting larger amounts of more diverse lipo-oligosaccharidic Nod factors than USDA257. What effects these differences have on nodulation were analyzed by inoculating 452 species of legumes, representing all three subfamilies of the Leguminosae, as well as the nonlegume Parasponia andersonii, with both strains. The two bacteria nodulated P. andersonii, induced ineffective outgrowths on Delonix regia, and nodulated Chamaecrista fasciculata, a member of the only nodulating genus of the Caesalpinieae tested. Both strains nodulated a range of mimosoid legumes, especially the Australian species of Acacia, and the tribe Ingeae. Highest compatibilities were found with the papilionoid tribes Phaseoleae and Desmodieae. On Vigna spp. (Phaseoleae), both bacteria formed more effective symbioses than rhizobia of the "cowpea" (V. unguiculata) miscellany. USDA257 nodulated an exact subset (79 genera) of the NGR234 hosts (112 genera). If only one of the bacteria formed effective, nitrogen-fixing nodules it was usually NGR234. The only exceptions were with Apios americana, Glycine max, and G. soja. Few correlations can be drawn between Nod-factor substituents and the ability to nodulate specific legumes. Relationships between the ability to nodulate and the origin of the host were not apparent. As both P. andersonii and NGR234 originate from Indonesia/Malaysia/Papua New Guinea, and NGR234's preferred hosts (Desmodiinae/Phaseoleae) are largely Asian, we suggest that broad host range originated in Southeast Asia and spread outward.  相似文献   

4.
Rhizobium sp. strain NGR234 NodZ protein is a fucosyltransferase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Rhizobium sp. strain NGR234 produces a large family of lipochitooligosaccharide Nod factors carrying specific substituents. Among them are 3-O- (or 4-O-) and 6-O-carbamoyl groups, an N-methyl group, and a 2-O-methylfucose residue which may bear either 3-O-sulfate or 4-O-acetyl substitutions. Investigations on the genetic control of host specificity revealed a number of loci which directly affect Nod factor structure. Here we show that insertion and frameshift mutations in the nodZ gene abolish fucosylation of Nod factors. In vitro assays using GDP-L-fucose as the fucose donor show that fucosyltransferase activity is associated with the nodZ gene product (NodZ). NodZ is located in the soluble protein fraction of NGR234 cells. Together with extra copies of the nodD1 gene, the nodZ gene and its associated nod box were introduced into ANU265, which is NGR234 cured of the symbiotic plasmid. Crude extracts of this transconjugant possess fucosyltransferase activity. Fusion of a His6 tag to the NodZ protein expressed in Escherichia coli yielded a protein able to fucosylate both nonfucosylated NodNGR factors and oligomers of chitin. NodZ is inactive on monomeric N-acetyl-D-glucosamine and on desulfated Rhizobium meliloti Nod factors. Kinetic analyses showed that the NodZ protein is more active on oligomers of chitin than on nonfucosylated NodNGR factors. Pentameric chitin is the preferred substrate. These data suggest that fucosylation occurs before acylation of the Nod factors.  相似文献   

5.
Rhizobia secrete specific lipo-chitooligosaccharide signals (LCOs) called Nod factors that are required for infection and nodulation of legumes. In Rhizobium sp. NGR234, the reducing N -acetyl- d -glucosamine of LCOs is substituted at C6 with 2- O -methyl- l -fucose which can be acetylated or sulphated. We identified a flavonoid-inducible locus on the symbiotic plasmid pNGR234 a that contains a new nodulation gene, noeE which is required for the sulphation of NGR234 Nod factors (NodNGR). noeE was identified by conjugation into the closely related Rhizobium fredii strain USDA257, which produces fucosylated but non-sulphated Nod factors (NodUSDA). R. fredii transconjugants producing sulphated LCOs acquire the capacity to nodulate Calopogonium caeruleum . Furthermore, mutation of noeE (NGRΔ noeE  ) abolishes the production of sulphated LCOs and prevents nodulation of Pachyrhizus tuberosus . The sulphotransferase activity linked to NoeE is specific for fucose. In contrast, the sulphotransferase NodH of Rhizobium meliloti seems to be less specific than NoeE, because its introduction into NGRΔ noeE leads to the production of a mixture of LCOs that are sulphated on C6 of the reducing terminus and sulphated on the 2- O -methylfucose residue. Together, these findings show that noeE is a host-specificity gene which probably encodes a fucose-specific sulphotransferase.  相似文献   

6.
Specificity in legume-Rhizobium symbiosis depends on plant and rhizobial genes. As our objective was to study broad host-range determinants of rhizobia, we sought a legume and a Rhizobium with the lowest possible specificity. By inoculating 12 different legumes with a heterogenous collection of 35 fast-growing rhizobia, we found Rhizobium sp. NGR234 to be the Rhizobium and Vigna unguiculata to be the plant with the lowest specificities. Transfer of cloned fragments of the Sym-plasmid pNGR234a into heterologous rhizobia, screening for extension of host-range of the transconjugants to include V. unguiculata, and restriction mapping of the Hsn- and overlapping clones, proved that there were at least three distinct Hsn-regions (HsnI, II, and III) on pNGR234a. HsnI is located next to nodD, HsnII is linked to nifKDH and HsnIII to nodC. In addition to nodulation of Vigna, HsnI conferred upon the transconjugants the ability to nodulate Glycine max, Macroptilium atropurpureum and Psophocarpus tetragonolobus. All three Hsn-regions, when transferred to the appropriate recipients, induced root-hair-curling on M. atropurpureum. Hsn-region III was able to complement a mutation in the host-range gene nodH of R. meliloti strain 2011. Homology to nod-box-sequences could be shown only for the sub-clones containing HsnII and HsnIII, thus suggesting different regulation mechanisms for HsnI and HsnII/III.  相似文献   

7.
8.
Rhizobium sp. strain NGR234 is a unique alphaproteobacterium (order Rhizobiales) that forms nitrogen-fixing nodules with more legumes than any other microsymbiont. We report here that the 3.93-Mbp chromosome (cNGR234) encodes most functions required for cellular growth. Few essential functions are encoded on the 2.43-Mbp megaplasmid (pNGR234b), and none are present on the second 0.54-Mbp symbiotic plasmid (pNGR234a). Among many striking features, the 6.9-Mbp genome encodes more different secretion systems than any other known rhizobia and probably most known bacteria. Altogether, 132 genes and proteins are linked to secretory processes. Secretion systems identified include general and export pathways, a twin arginine translocase secretion system, six type I transporter genes, one functional and one putative type III system, three type IV attachment systems, and two putative type IV conjugation pili. Type V and VI transporters were not identified, however. NGR234 also carries genes and regulatory networks linked to the metabolism of a wide range of aromatic and nonaromatic compounds. In this way, NGR234 can quickly adapt to changing environmental stimuli in soils, rhizospheres, and plants. Finally, NGR234 carries at least six loci linked to the quenching of quorum-sensing signals, as well as one gene (ngrI) that possibly encodes a novel type of autoinducer I molecule.Diverse soil bacteria interact with plants in ways that range from symbiotic to pathogenic. Symbiotic Eubacteria (both alpha- and betaproteobacteria, collectively called rhizobia) form nitrogen-fixing associations of tremendous environmental importance (41, 66). Although some rhizobia are able to reduce atmospheric nitrogen to ammonia under saprophytic, free-living conditions, the reduced oxygen tensions found within the intracellular environment of specialized organs called nodules, maximizes this process (16). As legume roots penetrate the soil, they come in contact with rhizobia. Symbiotic interactions are initiated by the exchange of diverse molecules between the partners. Among them, plants liberate flavonoids into the rhizosphere that upregulate rhizobial genes. As a result, lipo-chito-oligo-saccharidic Nod factors are produced that trigger the nodulation pathway in susceptible legumes. Then, in many hosts, rhizobia enter the roots through root hairs, make their way to the cortex, multiply and fill the intracellular spaces of mature nodules. Centripetal progression of rhizobia into the plant and their maturation into nitrogen-fixing symbiosomes depends on the continued exchange of diverse signals. Many, but not all of these signals have been identified; one sure way to take stock of what is necessary for effective symbiosis is to sequence the partners. We began this work by assembling overlapping sets of cosmids (contigs) of the microsymbiont Rhizobium sp. strain NGR234 (hereafter NGR234) (63), which enabled us to elucidate the nucleotide sequence of the symbiotic (pNGR243a) plasmid (29). Similar techniques permitted the assembly of sections of the extremely large megaplasmid pNGR234b (86), and some snapshot genome information was made available earlier (91); however, the use of pyrosequencing methods greatly facilitated this process. We report here the genome sequence of NGR234 that is able to nodulate more than 120 genera of legumes and the nonlegume Parasponia andersonii (69). It seems likely that the vast richness of secretory systems might be a major key to the broad host range.  相似文献   

9.
We report the nucleotide sequence of the rpoN gene from broad-host-range Rhizobium sp. strain NGR234 and analyze the encoded RPON protein, a sigma factor. Comparative analysis of the deduced amino acid sequence of RPON from NGR234 with sequences from other gram-negative bacteria identified a perfectly conserved RPON box unique to RPON sigma factors. Symbiotic regulatory phenotypes were defined for a site-directed internal deletion within the coding sequence of the rpoN gene of Rhizobium strain NGR234: they included quantitative nodulation kinetics on Vigna unguiculata and microscopic analysis of the Fix- determinate nodules of V. unguiculata and Macroptilium atropurpureum. RPON was a primary coregulator of nodulation and was implicated in establishment or maintenance of the plant-synthesized peribacteroid membrane. Phenotypes of rpoN in Rhizobium strain NGR234 could be grouped as symbiosis related, rather than simply pleiotropically physiological as in free-living bacteria such as Klebsiella pneumoniae and Pseudomonas putida.  相似文献   

10.
Two closely linked genes involved in the regulation of exopolysaccharide (EPS) production in Rhizobium sp. strain NGR234, exoX and exoY, were sequenced, and their corresponding phenotypes were investigated. Inhibition of EPS synthesis occurred in wild-type strains when extra copies of exoX were introduced, but only when exoY had been deleted or mutated or was present at a lower copy number. Normal EPS synthesis occurred in Rhizobium sp. when both exoX and exoY were introduced on the same replicon. Surprisingly, the presence of multiple copies of exoY in exoY:: Tn5 mutants of NGR234 adversely affected cellular growth. This was apparent when exoY was introduced into exoY mutants on IncP1 vectors, where the copy number was approximately 10, but was not apparent when present on much larger R-prime plasmids with lower copy numbers (approximately 3 per cell). Multiple copies of exoX did not adversely affect cellular growth of any strain. The exoX gene appeared analogous, in size and phenotype, to a previously described Rhizobium leguminosarum biovar phaseoli EPS gene, psi (D. Borthakur and A.W.B. Johnston, Mol. Gen. Genet. 207:149-154, 1987), and the deduced ExoX and Psi shared strikingly similar secondary structures. Despite this, ExoX and Psi showed little homology at the primary amino acid level, except for a central region of 18 amino acids. The interaction of ExoX and ExoY could form the basis of a sensitive regulatory system for EPS acids. The interaction of ExoX and ExoY could form the basis of a sensitive regulatory system for EPS biosynthesis. The presence of a multicopy exoX in Rhizobium meliloti and R. fredii similarly abolished EPS biosynthesis in these species.  相似文献   

11.
Bacterial genomes are usually partitioned in several replicons, which are dynamic structures prone to mutation and genomic rearrangements, thus contributing to genome evolution. Nevertheless, much remains to be learned about the origins and dynamics of the formation of bacterial alternative genomic states and their possible biological consequences. To address these issues, we have studied the dynamics of the genome architecture in Rhizobium sp. strain NGR234 and analyzed its biological significance. NGR234 genome consists of three replicons: the symbiotic plasmid pNGR234a (536,165 bp), the megaplasmid pNGR234b (>2,000 kb), and the chromosome (>3,700 kb). Here we report that genome analyses of cell siblings showed the occurrence of large-scale DNA rearrangements consisting of cointegrations and excisions between the three replicons. As a result, four new genomic architectures have emerged. Three consisted of the cointegrates between two replicons: chromosome-pNGR234a, chromosome-pNGR234b, and pNGR234a-pNGR234b. The other consisted of a cointegrate of the three replicons (chromosome-pNGR234a-pNGR234b). Cointegration and excision of pNGR234a with either the chromosome or pNGR234b were studied and found to proceed via a Campbell-type mechanism, mediated by insertion sequence elements. We provide evidence showing that changes in the genome architecture did not alter the growth and symbiotic proficiency of Rhizobium derivatives.  相似文献   

12.
The type three secretion system (TTSS) encoded by pNGR234a, the symbiotic plasmid of Rhizobium sp. strain NGR234, is responsible for the flavonoid- and NodD1-dependent secretion of nodulation outer proteins (Nops). Abolition of secretion of all or specific Nops significantly alters the nodulation ability of NGR234 on many of its hosts. In the closely related strain Rhizobium fredii USDA257, inactivation of the TTSS modifies the host range of the mutant so that it includes the improved Glycine max variety McCall. To assess the impact of individual TTSS-secreted proteins on symbioses with legumes, various attempts were made to identify nop genes. Amino-terminal sequencing of peptides purified from gels was used to characterize NopA, NopL, and NopX, but it failed to identify SR3, a TTSS-dependent product of USDA257. By using phage display and antibodies that recognize SR3, the corresponding protein of NGR234 was identified as NopP. NopP, like NopL, is an effector secreted by the TTSS of NGR234, and depending on the legume host, it may have a deleterious or beneficial effect on nodulation or it may have little effect.  相似文献   

13.
A 3.6-kb EcoRI fragment containing the ntrA gene of Agrobacterium tumefaciens was cloned by using the homologous ntrA gene of Rhizobium meliloti as a probe. Construction of an ntrA mutant of A. tumefaciens by site-directed insertional mutagenesis demonstrated the requirement of the ntrA gene for nitrate utilization and C4-dicarboxylate transport but not for vir gene expression or tumorigenesis.  相似文献   

14.
Rhizobium sp. strain NGR234 has an exceptionally broad host range and is able to nodulate more than 112 genera of legumes. Since the overall organization of the NGR234 genome is strikingly similar to that of the narrow-host-range symbiont Rhizobium meliloti strain 1021 (also known as Sinorhizobium meliloti), the obvious question is why are the spectra of hosts so different? Study of the early symbiotic genes of both bacteria (carried by the SymA plasmids) did not provide obvious answers. Yet, both rhizobia also possess second megaplasmids that bear, among many other genes, those that are involved in the synthesis of extracellular polysaccharides (EPSs). EPSs are involved in fine-tuning symbiotic interactions and thus may help answer the broad- versus narrow-host-range question. Accordingly, we sequenced two fragments (total, 594 kb) that encode 575 open reading frames (ORFs). Comparisons revealed 19 conserved gene clusters with high similarity to R. meliloti, suggesting that a minimum of 28% (158 ORFs) of the genetic information may have been acquired from a common ancestor. The largest conserved cluster carried the exo and exs genes and contained 31 ORFs. In addition, nine highly conserved regions with high similarity to Agrobacterium tumefaciens C58, Bradyrhizobium japonicum USDA110, and Mesorhizobium loti strain MAFF303099, as well as two conserved clusters that are highly homologous to similar regions in the plant pathogen Erwinia carotovora, were identified. Altogether, these findings suggest that >/==" BORDER="0">40% of the pNGR234b genes are not strain specific and were probably acquired from a wide variety of other microbes. The presence of 26 ORFs coding for transposases and site-specific integrases supports this contention. Surprisingly, several genes involved in the degradation of aromatic carbon sources and genes coding for a type IV pilus were also found.  相似文献   

15.
16.
Bacterial pathogens use type III secretion systems (TTSSs) to deliver virulence factors into eukaryotic cells. These effectors perturb host-defence responses, especially signal transduction pathways. A functional TTSS was identified in the symbiotic, nitrogen-fixing bacterium Rhizobium sp. NGR234. NopL (formerly y4xL) of NGR234 is a putative symbiotic effector that modulates nodulation in legumes. To test whether NopL could interact with plant proteins, in vitro phosphorylation experiments were performed using recombinant nopL protein purified from Escherichia coli as well as protein extracts from Lotus japonicus and tobacco plants. NopL serves as a substrate for plant protein kinases as well as purified protein kinase A. Phosphorylation of NopL was inhibited by the Ser/Thr kinase inhibitor K252a as well as by PD98059, a mitogen-activated protein (MAP) kinase kinase inhibitor. It thus seems likely that, after delivery into the plant cell, NopL modulates MAP kinase pathways.  相似文献   

17.
Rhizobium sp. NGR234 is a broad-host range strain. The rpoN gene of this organism encodes a sigma factor which is a primary co-regulator of endosymbiosis. We characterized the locus upstream of rpoN, and identified a contiguous open reading frame, here termed ORF1. DNA sequence analysis of this ORF showed that it encoded a polypeptide highly conserved with a corresponding ORF of Rhizobium meliloti. The gene product contained two ATP/GTP binding pockets. Codon usage in the ORF and the nitrogenase operon nifKDH of NGR234 was similar. Although we used a non-transposable cassette flanked by appropriate sized DNA fragments, we were unable to isolate site-directed mutants in the ORF, whose ATP/GTP binding protein product is thus probably of essential biological function. ORF1 and rpoN exhibited conserved linkage among diverse rhizobia, and in Azotobacter vinelandii. Intragenomic and interspecific homology studies confirmed directly that ORF1 (NGR234) belonged to a large family of ATP-binding protein genes.  相似文献   

18.
19.
Rhizobium fredii is a nitrogen-fixing symbiont from China that combines broad host range for nodulation of legume species with cultivar specificity for nodulation of soybean. We have compared 10R. fredii strains withRhizobium sp. NGR234, a well known broad host range strain from Papua New Guinea. NGR234 nodulated 16 of 18 tested lugume species, and nodules on 14 of the 16 fixed nitrogen. TheR. fredii strains were not distinguishable from one another. They nodulated 13 of the legumes, and in only nine cases were nodules effective. All legumes nodulated byR. fredii were included within the host range of NGR234. Restriction fragment length polymorphisms (RFLPs) were detected with four DNA hybridization probes: the regulatory and commonnod genes,nodDABC; the soybean cultivar specificity gene,nolC; the nitrogenase structural genes, nifKDH; and RFRS1, a repetitive sequence fromR. fredii USDA257. A fifth locus, corresponding to a second set of soybean cultivar specificity genes,nolBTUVWX, was monomorphic. Using antisera against whole cells of threeR. fredii strains and NGR234, we separated the 11 strains into four serogroups. The anti-NGR234 sera reacted with a singleR. fredii strain, USDA191. Only one serogroup, which included USDA192, USDA201, USDA217, and USDA257, lacked cross reactivity with any of the others. Although genetic and phenotypic differences amongR. fredii strains were as great as those between NGR234 andR. fredii, our results confirm that NGR234 has a distinctly wider host range thanR. fredii.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号