首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of two bacterial endosymbionts, designated PASS and PAR, were evaluated on the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera:Aphididae), in which they occur facultatively, and on the blue alfalfa aphid, A. kondoi Shinji, in which these bacteria have not been found in natural populations. Subclones of pea aphids and blue alfalfa aphids, derived from parent aphid clones that did not contain PASS or PAR, were infected with one or both bacteria, generating PASS- and/or PAR-positive subclones with minimal genetic differences from the parent clones. Under laboratory conditions at 20 °C, PAR consistently reduced the fecundity (by between 19 and 60%) of subclones derived from three different parent pea aphid clones on bur clover, Medicago hispida Gaertn. PAR had intermediate effects on pea aphids reared on sweet pea, Lathyrus odoratus L., and had no significant effect on pea aphids on alfalfa, Medicago sativa L. The effect of PASS was either neutral or negative, depending on parent clone as well as host plant. Also at 20 °C, PASS reduced fecundity (70–77%) and longevity (40–48%), and increased the age of first reproduction (by up to 1.5 days) of blue alfalfa aphid reared on alfalfa and clover. PAR had a less dramatic effect (e.g., 30–39% reduction in fecundity) on these traits of blue alfalfa aphid. In contrast, PAR and PASS increased the fitness of pea aphid subclones of one parent clone reared for three generations at 25 °C on each of the three test plants. Without facultative bacteria, fecundity of the parent clone was reduced to a mean total of < 6 offspring per adult at this elevated temperature, but with PASS or PAR, mean total fecundity of its subclones was > 35. However, this ameliorative effect of facultative bacteria at 25 °C was not found for two other sets of parent clones and their derived subclones. Alate production in pea aphids was significantly increased in large populations of two PASS- and PAR-positive subclones relative to their parent clones. Attempts to transmit PASS or PAR horizontally, i.e., from aphid to aphid via feeding on host plants (bur clover), were unsuccessful.  相似文献   

2.
The spotted alfalfa aphid (SAA), Therioaphis trifolii maculata (Buckton), causes a characteristic veinal chlorosis and necrosis in the growing tips of susceptible cultivars of alfalfa. The pea aphid, Acyrthosiphon pisum (Harris), causes general degenerative changes in alfalfa but no specific, local symptoms. Biochemical and electrophoretic analyses detected similar enzymes in the ejected saliva of either species: pectin methylesterase, endopolygalacturonase and at least three isozymes of a copper dependent oxido-reductase that showed both catechol oxidase and peroxidase activity. Pectinase and catechol oxidase activities per unit of soluble protein were much greater in the saliva of pea aphid compared with that of SAA. The isozymes of the oxidase from SAA were roughly half the molecular weights of the corresponding isozymes from pea aphid, however, and radiotracer studies showed that soluble secretions injected into alfalfa by SAA travelled to growing tips considerably faster than the secretions of pea aphid. It is suggested that differences in the lesions caused by these aphids may be due to reaction kinetics rather than specific salivary toxins; that the rate of arrival of salivary components, possibly the oxidases, at phloem unloading sites may determine whether the plant's local defensive system is able to repress the immediate challenge or undergoes a run-away reaction leading to necrosis.  相似文献   

3.
The effects of five burning treatments of alfalfa (Medicago sativa L.) stubble combined with two insecticide treatments on populations of alfalfa weevil, Hypera postica (Gyllenhal), and the pea aphid, Acyrthosiphon pisum (Harris) were evaluated over an eight year period. The effects of the burn treatments were dependent on insect species, time of burn and year. Immature alfalfa weevil population levels were significantly reduced by the burn-every-autumn treatment in 3 of the 8 years, in 2 out of 8 years by the burn-e very-spring treatment, and by the alternate-year-burn treatment in 1 out of 4 years. Burning had little or no effect on pea aphid populations.  相似文献   

4.
Effect of low and high-saponin lines of alfalfa on pea aphid   总被引:4,自引:0,他引:4  
Pea aphid fed on a high-saponin line of alfalfa showed reduction of reproduction and survival, and disturbance in development of its population. This line negatively influenced aphid probing behaviour, particularly prolonging the non-probing period and probing of the peripheral tissues (epidermis and mesophyll) and shortening the period of phloem sap ingestion. The high-saponin line of alfalfa differed from the low-saponin one by the presence of zanhic acid tridesmoside and a higher level of 3-GlcA,28-AraRhaXyl medicagenic acid glycoside. The saponins incorporated into sucrose-agarose gels significantly reduced number of the aphid probes into the gels and extended their duration in comparison to the control gels (without tested compounds). Role of zanhic acid tridesmoside and 3-GlcA,28-AraRhaXyl medicagenic acid glycoside as potential factors for partial resistance of alfalfa towards the pea aphid is discussed.  相似文献   

5.
Dispersions and resource utilization of primary and secondary parasitoids developing in non-depletable primary host populations were determined for an aphid-parasitoid community occurring on strawberries. Analyses of dispersions based onGreen 's coefficient andLloyd 's Patchiness Index indicated parasitized aphids were highly aggregated initially, became less aggregated as density increased, and remained aggregated following collapse of the aphid populations. The “index of aggregation” values calculated usingTaylor 's Power Law concurred with results from the other indices, and the similarity of the regression coefficients from both seasons suggests that the index of aggregation may be characteristic for communities as well as species. Analysis withIwao 's regression of mean crowding on the mean generated similar results when population data were stratified temporally, and also indicated that the individual was the basic unit of the population. In a non-depletable environment, oviposition of individuals exhibiting an aggregated dispersion pattern within clumps of hosts provides primary parasitoids with a suitable trade-off between energy utilization or genetic potential, and losses associated with hyperparasitism.  相似文献   

6.
Time-specific life tables were constructed for three pea aphid, Acyrthosiphon pisum (Harris ) (Homoptera: Aphididae), populations using a modification ofHughes' analytical procedure. All populations were studied on second-growth alfalfa (mid-June to mid-July) in south central Wisconsin; data for two populations were collected during 1980, and data for the third population were collected during 1982. The intrinsic rate of increase (rm) estimated on a physiological time (day-degree) scale under field conditions but in the absence of natural enemies, provided a reliable estimate of potential population growth rate and was used in preference toHughes' approach of estimating potential population growth rates directly from stage structure data. Emigration by adult alatae and fungal disease were the major sources of A. pisum mortality in each of the three populations studied. These factors were most important because of their impact on reducing birth rates within the local population. Parasitism was never greater than 9 percent. Mortality attributable to predation ranged from 0.0 to about 30.0%; however, even at the highest predator densities A. pisum populations increased exponentially.  相似文献   

7.
Abstract 1. Motivated by a community study on aphids and their fungal pathogens, three hypotheses were tested experimentally to investigate the influence of the fungal pathogen, Erynia neoaphidis Remaudière and Hennebert, on aphid population and community ecology.
2. Field experiments were performed in 2 years to test whether two susceptible aphid species on different host plants might interact through the shared fungal pathogen. No strong pathogen-mediated indirect interactions (apparent competition) between populations of pea aphid Acyrthosiphon pisum Harris and nettle aphid Microlophium carnosum Buckton were detected.
3. In the first of the field experiments, pea aphids exposed to the fungus showed a weak tendency to produce more winged dispersal morphs than control populations not exposed to the fungus. In a laboratory test, however, no support was found for the hypothesis that the presence of volatiles from fungus-infected cadavers promotes production of winged offspring.
4. The response of the pea aphid parasitoid Aphidius ervi Halliday to colonies containing hosts infected 1 and 3 days previously was assessed. Wasps initiated fewer attacks on 1-day-old infected colonies than on healthy colonies, with the numbers on 3-day-old fungus-infected colonies intermediate.  相似文献   

8.
The evolution of associations between herbivorous insects and their parasitoids is likely to be influenced by the relationship between the herbivore and its host plants. If populations of specialized herbivorous insects are structured by their host plants such that populations on different hosts are genetically differentiated, then the traits affecting insect-parasitoid interactions may exhibit an associated structure. The pea aphid (Acyrthosiphon pisum) is a herbivorous insect species comprised of genetically distinct groups that are specialized on different host plants (Via 1991a, 1994). Here, we examine how the genetic differentiation of pea aphid populations on different host plants affects their interaction with a parasitoid wasp, Aphidius ervi. We performed four experiments. (1) By exposing pea aphids from both alfalfa and clover to parasitoids from both crops, we demonstrate that pea aphid populations that are specialized on alfalfa are successfully parasitized less often than are populations specialized on clover. This difference in parasitism rate does not depend upon whether the wasps were collected from alfalfa or clover fields. (2) When we controlled for potential differences in aphid and parasitoid behavior between the two host plants and ensured that aphids were attacked, we found that pea aphids from alfalfa were still parasitized less often than pea aphids from clover. Thus, the difference in parasitism rates is not due to behavior of either aphids or wasps, but appears to be a physiologically based difference in resistance to parasitism. (3) Replicates of pea aphid clones reared on their own host plant and on a common host plant, fava bean, exhibited the same pattern of resistance as above. Thus, there do not appear to be nutritional or secondary chemical effects on the level of physiological resistance in the aphids due to feeding on clover or alfalfa, and therefore the difference in resistance on the two crops appears to be genetically based. (4) We assayed for genetic variation in resistance among individual pea aphid clones collected from clover fields and found no detectable genetic variation for resistance to parasitism within two populations sampled from clover. This is in contrast to Henter and Via's (1995) report of abundant genetic variation in resistance to this parasitoid within a pea aphid population on alfalfa. Low levels of genetic variation may be one factor that constrains the evolution of resistance to parasitism in the populations of pea aphids from clover, leading them to remain more susceptible than populations of the same species from alfalfa.  相似文献   

9.
We studied the development and feeding behaviour of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), on the Radius and Sapko alfalfa ( Medicago sativa L.) (Fabaceae) cultivars. Three saponins and flavones were identified in the alfalfa cultivars after thin layer chromatography separation. Cultivar Radius differed from Sapko in that it had a higher level of saponins, including zanhic acid tridesmoside and 3-GlcA,28-AraRhaXyl medicagenic acid glycoside. The flavones identified, including 7- O -β-D-glucuronopyranosyl-4'- O- [2'- O- E-feruloyl- O -β-D-glucuronopyranosyl(1→2)- O -β-D-glucuronopyranoside] apigenin, 7- O -{2- O- E-feruloyl-[β-D-glucuronopyranosyl(1→3)]- O -β-D-glucuronopyranosyl(1→2)- O -β-D-glucuronopyranoside} apigenin, and 4'- O- [2'- O -E-feruloyl- O -β-D-glucuronopyranosyl(1→2)- O -β-D-glucuronopyranoside] apigenin, occurred in tissues of both alfalfa cultivars. However, cv. Radius had very low mean flavonoid concentrations in comparison to cv. Sapko. Pea aphids that fed on cv. Radius plants showed a reduction in reproduction and survival. The aphid pre-reproductive period on cv. Radius was prolonged and the reproductive and post-reproductive periods on cv. Radius were reduced, compared to those on cv. Sapko. Cultivar Radius also negatively influenced aphid probing behaviour. This was especially the case during the initial period of the pathway phase. The results suggested that alfalfa cv. Radius, which had a higher level of saponins and a lower level of flavonoids, was less accepted by the pea aphid.  相似文献   

10.
Study of mechanisms responsible for regulating populations of living organisms is essential for a better comprehension of the structure of biological communities and evolutionary forces in nature. Aphids (Hemiptera: Sternorrhyncha) comprise a large and economically important group of phytophagous insects distributed worldwide. Previous studies determined that density-dependent mechanisms play an important role in regulating their populations. However, only a few of those studies identified specific factors responsible for the observed regulation. Time series data used in this study originated from the untreated control plots that were a part of potato (Solanum tuberosum L.) insecticide trials in northern Maine from 1971 to 2004. The data set contained information on population densities of three potato-colonizing aphid species (buckthorn aphid, Aphis nasturtii; potato aphid, Macrosiphum euphorbiae; and green peach aphid, Myzus persicae) and their natural enemies. We used path analysis to explore effects of weather and natural enemies on the intrinsic growth rates of aphid populations. Weather factors considered in our analyses contributed to the regulation of aphid populations, either directly or through natural enemies. However, direct weather effects were in most cases detectable only at P ≤ 0.10. Potato aphids were negatively affected by both fungal disease and predators, although buckthorn aphids were negatively affected by predators only. Parasitoids did not have a noticeable effect on the growth of any of the three aphid species. Growth of green peach aphid populations was negatively influenced by interspecific interactions with the other two aphid species. Differential population regulation mechanisms detected in the current study might at least partially explain coexistence of three ecologically similar aphid species sharing the same host plant.  相似文献   

11.
This research aims to examine the effect of phenolics on pea aphid (Acyrthosiphon pisum) (Homoptera: Aphididae) development and feeding behaviour, on leaves of selected low-saponin lines of Radius alfalfa (Medicago sativa). There was a slight, negative correlation (Spearman rank correlation r s = −0.80) between concentrations of saponins and phenols. Lines with higher concentrations of saponins had less phenolics. Levels of phenolics in low-saponin lines of alfalfa cv. Radius were related to their acceptance by the pea aphid. Our data revealed an inverse relationship between level of phenolics and the aphid abundance and its biology on studied alfalfa lines. Larval development of the pea aphid was longer, reproduction period was shorter, and the fecundity was lower on low-saponin lines with higher level of phenolics. There were observed some tendencies in the pea aphid feeding behaviour on these lines: prolonging the probing of the peripheral tissues (epidermis and mesophyll) and shortening the period of phloem sap ingestion. The better hosts for the pea aphid were low-saponin lines with low levels of phenolic compounds.  相似文献   

12.
The pea aphid, Acyrthosiphon pisum, encompasses distinct host races specialized on various Fabaceae species, but the extent of genetic divergence associated with ecological specialization varies greatly depending on plant and geographic origins of aphid populations. Here, we studied the genetic structure of French sympatric pea aphid populations collected on perennial (pea and faba bean) and annual (alfalfa and red clover) hosts using 14 microsatellite loci. Classical and Bayesian population genetics analyses consistently identified genetic clusters mostly related to plant origin: the pea/faba bean cluster was highly divergent from the red clover and the alfalfa ones, indicating they represent different stages along the continuum of genetic differentiation. Some genotypes were assigned to a cluster differing from the one expected from their plant origin while others exhibited intermediate genetic characteristics. These results suggest incomplete barriers to gene flow. However, this limited gene flow seems insufficient to prevent ecological specialization and genetic differentiation in sympatry.  相似文献   

13.
Among alfalfa pests in Iran three aphid species, green alfalfa aphid Acyrthosiphon pisum Harris spotted alfalfa aphid Therioaphis trifolii forma maculata Buckton and blue alfalfa aphid, Acyrthosiphon kondoi Shinji are important pests. The green alfalfa aphid can be observed all along the growing season particularly from late May to mid June at Karaj climate conditions. During this period, the mean monthly maximum temperature and relative humidity were about 28 degrees C and 60-65% respectively. This aphid overwinters as nymph and viviparous female. Sexual forms and eggs could not be seen under field conditions. Spotted alfalfa aphid, Therioaphis trifolii fonna maculata is the most prevalent aphid in summer time, when the mean monthly maximum temperature and relative humidity are about 33-34 degrees C and 44-58% respectively. Sexual individuals have been observed in the laboratory but not in the field. Among predators (Coccinella septempunctata, Adonia variegata, Syrphus cinctus, S. corolae, S. grassulariae, Chrysoperla carnea and Nabis capsiformis) one coccinellid species, C. septempunctata, had greatest impact on fluctuations of population. Among hymenopterous parasitoids two species have been collected from alfalfa field they were Aphidius ervi and Praon palitans. These parasitoids destroyed a good percent of aphids and statistically proved to lower aphid populations significantly.  相似文献   

14.
The free cyclitols pinitol, ononitol and myo-inositol occur in the honeydew (excreta) of pea aphids (Acyrthosiphon pisum) which feed on pea aphid-susceptible alfalfa (Medicago sativa cv Caliverde). These cyclitols also occur in the leaves and stems of alfalfa. Aphids were incapable of de novo synthesis of these cyclitols. Honeydew production by the pea aphid results from ingesting phloem-sap, so the occurrence of cyclitols in honeydew results from their translocation in the phloem. The relatively high content of myo-inositol in honeydew indicates that it is selectively translocated. The most abundant alfalfa cyclitol, pinitol, had no effect on aphid feeding behavior at concentrations up to 1% (w/v; artificial diet).  相似文献   

15.
1. Insect population size is regulated by both intrinsic traits of organisms and extrinsic factors. The impacts of natural enemies are typically considered to be extrinsic factors, however insects have traits that affect their vulnerability to attack by natural enemies, and thus intrinsic and extrinsic factors can interact in their effects on population size. 2. Pea aphids Acyrthosiphon pisum Harris (Hemiptera: Aphididae) in New York and Maryland that are specialised on alfalfa are approximately two times more physiologically resistant to parasitism by Aphidius ervi Haliday (Hymenoptera: Braconidae) than pea aphids specialised on clover. To assess the potential influence of this genetically based difference in resistance to parasitism on pea aphid population dynamics, pea aphids, A. ervi, and other natural enemies of aphids in clover and alfalfa fields were sampled. 3. Rates of successful parasitism by A. ervi were higher and pea aphid population sizes were lower in clover, where the aphids are less resistant to parasitism. In contrast, mortality due to a fungal pathogen of pea aphids was higher in alfalfa. Generalist aphid predators did not differ significantly in density between the crops. 4. To explore whether intrinsic resistance to parasitism influences field dynamics, the relationship between resistance and successful field parasitism in 12 populations was analysed. The average level of resistance of a population strongly predicts rates of successful parasitism in the field. The ability of the parasitoid to regulate the aphid may vary among pea aphid populations of different levels of resistance.  相似文献   

16.
The performance of one clone of the pea aphid,Acyrthosiphon pisum (Harris), was assessed on 37 different cultivars and species ofPisum L. In addition, random samples of 36 pea aphid clones collected on alfalfa and clover were tested on a selection of fivePisum sativum L. cultivars. Aphid performance was evaluated in terms of the mean relative growth rate (MRGR) during the first five days of life or other life history variables. The MRGR of the first-mentioned pea aphid clone differed little between cultivars. No significant differences in MRGR were found between wild and cultivatedPisum species or between modern and oldP. sativum cultivars. There was considerable variation in host adaptation among the 36 pea aphid clones within each sampled field. The pea aphid clones showed no consistent pattern in performance on four of the five pea cultivars i.e. there was a significant pea aphid genotype —pea genotype interaction. On one of the cultivars all clones performed well. Pea aphid clones collected from red clover generally performed relatively poorly on pea cultivars, in contrast to the pea aphid clones collected on alfalfa. There was no difference in performance between the two pea aphid colour forms tested. Possible reasons for the high variation and the observed adaptation patterns are discussed. The fact that all clones were collected in two adjacent fields indicates thatA. pisum shows high local intraspecific variability in terms of host adaptation.  相似文献   

17.
The pea aphidAcyrthosiphon pisum (Harris) and the blue alfalfa aphidA. kondoi Shinji are pests of alfalfaMedicago sativa L. worldwide. The parasitoidAphidium ervi Haliday attacks both species andA. smithi is host specific to pea aphid Experiments were conducted to determine the preference ofA. ervi forA. pisum andA. kondoi at three densities of hosts using the percentages of parasitism and superparasitism, and the distribution of eggs among hosts as criteria. Also examined was the outcome of competition between the two parasitoids when exposed to the same hosts. A. ervi attacks moreA. pisum when provided alone (no choice test) and when provided together in equal numbers withA. kondoi (choice test). There was no significant difference in the number of progeny produced by either parasitoid when a female of each species was introduced simultaneously into the same test unit containingA. pisum hosts. The effects of the pathogenPandora neoaphidis on this competition is reviewed.  相似文献   

18.
Edward W. Evans 《Oecologia》1991,87(3):401-408
Summary The nature and relative strengths of intra versus interspecific interactions among foraging ladybeetle larvae were studied experimentally by measuring short-term growth rates of predators and reductions in population sizes of prey in laboratory microcosms. In these microcosms, ladybeetle larvae foraged singly or as conspecific or heterospecific pairs, for pea aphids on bean plants over a two-day period. Similarly sized third instar larvae ofHippodamia convergens andH. tredecimpunctata, H. convergens andH. sinuata, andH. convergens andCoccinella septempunctata, were tested in experiments designed to ensure that paired larvae experienced moderate competition. Interspecific competition in these experiments did not differ significantly from intraspecific competition, in that an individual's weight gain did not depend on whether its competitor was heterospecific or conspecific. Furthermore, aphid populations were reduced equally by heterospecific and conspecific pairs. These results suggest that there is little or no difference between intra and interspecific interactions among larvae of these ladybeetles when two similarly sized individuals co-occur on a host plant. Thus, the species diversityper se of assemblages of ladybeetle larvae may have little influence over the short term on the reduction of aphid populations by ladybeetle predation.  相似文献   

19.
Nelson EH 《Oecologia》2007,151(1):22-32
Induced prey defenses can be costly. These costs have the potential to reduce prey survival or reproduction and, therefore, prey population growth. I estimated the potential for predators to suppress populations of pea aphids (Acyrthosiphon pisum) in alfalfa fields through the induction of pea aphid predator avoidance behavior. I quantified (1) the period of non-feeding activity that follows a disturbance event, (2) the effect of frequent disturbance on aphid reproduction, and (3) the frequency at which aphids are disturbed by predators. In combination, these three values predict that the disturbances induced by predators can substantially reduce aphid population growth. This result stems from the high frequency of predator-induced disturbance, and the observation that even brief disturbances reduce aphid reproduction. The potential for predators to suppress prey populations through induction of prey defenses may be strongest in systems where (1) predators frequently induce prey defensive responses, and (2) prey defenses incur acute survival or reproductive costs. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

20.
Alfalfa (Medicago sativa) stem elongation is strongly reduced by a pea aphid (Acyrthosiphon pisum Harris) infestation. As pea aphid is a phloem feeder that does not transmit virus or toxins, assimilate withdrawal is generally considered as the main mechanism responsible for growth reduction. Using a kinematic analysis, we investigated the spatial distributions of relative elemental growth rates of control and infested alfalfa stems. The water, carbon, and nitrogen contents per unit stem length were measured along the growth zone. Deposition rates and growth-sustaining fluxes were estimated from these patterns. Severe short-term aphid infestation (200 young adults over a 24-h period) induced a strong and synchronized reduction in rates of elongation and of water and carbon deposition. Reduced nitrogen content and associated negative nitrogen deposition rates were observed in some parts of the infested stems, especially in the apex. This suggested a mobilization of nitrogen from the apical part of the growth zone, converted from a sink tissue into a source tissue by aphids. Calculation of radial growth rates suggested that aphid infestation led to a smaller reduction in radial expansion than in elongation. Together with earlier observations of long-lasting effects of a short-term infestation, this supports the hypothesis that in addition to nutrient withdrawal, a thigmomorphogenesis-like mechanism is involved in the effect of aphid infestation on stem growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号