首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanisms regulating the release of serotonin into the portal circulation as well as into the gastric lumen were studied in the isolated vascularly and luminally perfused rat stomach. Immunohistochemical study of the rat stomach showed that serotonin-containing enterochromaffin (EC) cells were densely packed in the antral mucosa, sparsely scattered in the corpus, and not found in the fundus. Such morphological findings suggest that serotonin detected in this study may have originated from antral EC cells. Luminal acidification stimulated the vascular release of serotonin but did not affect the luminal release of serotonin. The basal release of serotonin into the vasculature was 10 times higher than that into the gastric lumen at intragastric pH 2. The vascular release of serotonin is regulated by stimulation from cholinergic nicotinic mechanisms, whereas inhibitory neurotransmitters such as vasoactive intestinal peptide and NO are probably not involved. Somatostatin and peptide YY originating from endocrine cells may exert direct inhibitory effects, possibly via somatostatin and peptide YY receptors on the EC cells, and a cholinergic muscarinic mechanism may exert indirect effects on the vascular release of serotonin via the muscarinic receptor on the endocrine cells.  相似文献   

2.
We studied whether physiological concentration of short-chain fatty acids (SCFAs) affects colonic transit and colonic motility in conscious rats. Intraluminal administration of SCFAs (100-200 mM) into the proximal colon significantly accelerated colonic transit. The stimulatory effect of SCFAs on colonic transit was abolished by perivagal capsaicin treatment, atropine, hexamethonium, and vagotomy, but not by guanethidine. The stimulatory effect of SCFAs on colonic transit was also abolished by intraluminal pretreatment with lidocaine and a 5-hydroxytryptamine (HT)(3) receptor antagonist. Intraluminal administration of SCFAs provoked contractions at the proximal colon, which migrated to the mid- and distal colon. SCFAs caused a significant increase in the luminal concentration of 5-HT of the vascularly isolated and luminally perfused rat colon ex vivo. It is suggested that the release of 5-HT from enterochromaffin cells in response to SCFAs stimulates 5-HT(3) receptors located on the vagal sensory fibers. The sensory information is transferred to the vagal efferent and stimulates the release of acetylcholine from the colonic myenteric plexus, resulting in muscle contraction.  相似文献   

3.
In the guinea-pig colon, acetylcholine (ACh) release from intrinsic cholinergic motor neurons is inhibited by adrenoceptors, opioid and muscarinic receptors. Chronic sympathetic denervation resulted in supersensitivity to the inhibitory effect of DAMGO (mu-opioid agonist) on ACh release and on the peristaltic reflex. After chronic treatment with naltrexone (NTX) supersensitivity to DAMGO and subsensitivity to UK14,304 (alpha2-adrenoceptor agonist) developed for both functional parameters. The facilitatory effect of scopolamine on ACh release remained unchanged after chronic NTX treatment, whereas it was potentiated after chronic sympathetic denervation. These data suggest the existence of a functional interaction between different inhibitory pathways modulating cholinergic motor neurons in the guinea-pig colon. Namely, chronic manipulation of an inhibitory pathway may entail adaptive sensitivity changes in another inhibitory pathway so that homeostasis can be maintained.  相似文献   

4.
Vagal efferents, consisting of distinct lower motor and preganglionic parasympathetic fibers, constitute the motor limb of vagally mediated reflexes. Arising from the nucleus ambiguus, vagal lower motor neurons (LMN) mediate reflexes involving striated muscles of the orad gut. LMNs provide cholinergic innervation to motor end plates that are inhibited by myenteric nitrergic neurons. Preganglionic neurons from the dorsal motor nucleus implement parasympathetic motor and secretory functions. Cholinergic preganglionic neurons form parallel inhibitory and excitatory vagal pathways to smooth muscle viscera and stimulate postganglionic neurons via nicotinic and muscarinic receptors. In turn, the postganglionic inhibitory neurons release ATP, VIP, and NO, whereas the excitatory neurons release ACh and substance P. Vagal motor effects are dependent on the viscera's intrinsic motor activity and the interaction between the inhibitory and excitatory vagal influences. These interactions help to explain the physiology of esophageal peristalsis, gastric motility, lower esophageal sphincter, and pyloric sphincter. Vagal secretory pathways are predominantly excitatory and involve ACh and VIP as the postganglionic excitatory neurotransmitters. Vagal effects on secretory functions are exerted either directly or via release of local mediators or circulating hormones.  相似文献   

5.
The purpose of this study was to determine whether vasoactive intestinal peptide (VIP) might have a presynaptic modulatory effect at cholinergic terminals in the rat hippocampal formation. The exposure of rat hippocampal slices to VIP increased [3H]acetylcholine ([3H]ACh) synthesis from the precursor [3H]choline when tissue was incubated in normal or in high K+ medium; the maximal effect was apparent at 10(-8) M VIP and 10(-7) M VIP, respectively. Also, 10(-7) M VIP increased the activity of choline acetyltransferase (ChAT) in a hippocampal homogenate system. The increased synthesis by hippocampal slices was not the result of a VIP-induced alteration in either the basal release of ACh or the uptake of choline via the high-affinity uptake system. The increase in ACh synthesis induced by VIP in hippocampal slices was not associated with either adenylate cyclase or protein kinase C second messenger systems. There was no correlation between the effect of VIP on cyclic AMP production with that on ACh synthesis; also, forskolin, an activator of adenylate cyclase that increased cyclic AMP production 3.5-fold, did not mimic the effect of VIP on ACh synthesis. Similarly, there was no effect of the protein kinase C activator, phorbol myristate acetate, on ACh synthesis in hippocampal slices. However, the effect of VIP to increase ACh synthesis was not evident in the absence of extracellular calcium, suggesting that the effect of VIP is mediated by a calcium-requiring mechanism. The results suggest that, in the rat hippocampus, VIP has a presynaptic action at cholinergic terminals that results in enhanced synthesis of ACh, possibly by an action that alters ChAT activity.  相似文献   

6.
用血管灌流大鼠离体胃制备,研究五肽胃泌素(G5)和八肽胆囊收缩素(CCK8)对胃窦收缩运动的影响。结果表明:(1)血管灌流G5和CCK8都能显著兴奋胃窦收缩运动,并有量效关系;(2)抗胃泌素血清(1:100)可完全取消G5对胃窦收缩运动的兴奋作用;(3)CCK受体阻断剂双丁酰环磷鸟苷和抗CCK8血清(1:100)都能完全取消CCK8对胃窦收缩运动的兴奋作用;(4)M受体阻断剂阿托品能完全阻断G5对胃窦收缩运动的兴奋作用,部分阻断CCK8对胃窦收缩运动的兴奋作用。上述结果提示:(1)G5可特异性兴奋血管灌流大鼠胃窦收缩运动,该作用通过壁内胆碱能神经系统介导;(2)CCK8对血管灌流大鼠胃窦收缩运动亦有特异性兴奋作用,该作用只是部分与壁内胆碱能神经系统有关。  相似文献   

7.
Increased colonic Cl(-) secretion was supposed to be a causative factor of diarrhea in inflammatory bowel diseases. Surprisingly, hyporesponsiveness to Cl(-) secretagogues was later described in inflamed colon. Our aim was to evaluate changes in secretory responses to cholinergic agonist carbachol in distal and proximal colon during colitis development, regarding secretory activity of enteric nervous system (ENS) and prostaglandins. Increased responsiveness to carbachol was observed in both distal and proximal colon after 3 days of 2 % dextran sodium sulfate (DSS) administration. It was measured in the presence of mucosal Ba(2+) to emphasize Cl(-) secretion. The described increase was abolished by combined inhibitory effect of tetrodotoxin (TTX) and indomethacin. Indomethacin also significantly reduced TTX-sensitive current. On the 7th day of colitis development responsiveness to carbachol decreased in distal colon (compared to untreated mice), but did not change in proximal colon. TTX-sensitive current did not change during colitis development, but indomethacin-sensitive current was significantly increased the 7th day. Decreased and deformed current responses to serosal Ba(2+) were observed during colitis induction, but only in proximal colon. We conclude that besides inhibitory effect of DSS on distal colon responsiveness, there is an early stimulatory effect that manifests in both distal and proximal colon.  相似文献   

8.
The rabbit colon consists of four distinct regions. The motility of each region is controlled by myogenic and neurogenic mechanisms. Associating these mechanisms with specific motor patterns throughout all regions of the colon has not previously been achieved. Three sections of the colon (the proximal, mid, and distal colon) were removed from euthanized rabbits. The proximal colon consists of a triply teniated region and a single tenia region. Spatio-temporal maps were constructed from video recordings of colonic wall diameter, with associated intraluminal pressure recorded from the aboral end. Hexamethonium (100 μM) and tetrodotoxin (TTX; 0.6 μM) were used to inhibit neural activity. Four distinct patterns of motility were detected: 1 myogenic and 3 neurogenic. The myogenic activity consisted of circular muscle (CM) contractions (ripples) that occurred throughout the colon and propagated in both antegrade (anal) and retrograde (oral) directions. The neural activity of the proximal colon consisted of slowly (0.1 mm/s) propagating colonic migrating motor complexes, which were abolished by hexamethonium. These complexes were observed in the region of the proximal colon with a single band of tenia. In the distal colon, tetrodotoxin-sensitive, thus neurally mediated, but hexamethonium-resistant, peristaltic (anal) and antiperistaltic (oral) contractions were identified. The distinct patterns of neurogenic and myogenic motor activity recorded from isolated rabbit colon are specific to each anatomically distinct region. The regional specificity motor pattern is likely to facilitate orderly transit of colonic content from semi-liquid to solid composition of feces.  相似文献   

9.
Administration of abdominal radiotherapy results in small intestinal motor dysfunction. We have developed a rat radiation enteritis model that, after exposure in vivo, shows high-amplitude, long-duration (HALD) pressure waves in ex vivo ileal segments. These resemble in vivo dysmotility where giant contractions migrate both antegradely and retrogradely. Mediation of these motor patterns is unclear, although enteric neural components are implicated. After the induction of acute radiation enteritis in vivo, ileal segments were isolated and arterially perfused. TTX, hexamethonium, atropine, or the selective muscarinic antagonists pirenzepine (M(1)), methoctramine (M(2)), and 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP; M(3)) were added to the perfusate. The baseline mean rate per minute per channel of HALD pressure waves was 0.35 +/- 0.047. This was significantly reduced by TTX (83.3%, P < 0.01), hexamethonium (90.3%, P < 0.03), and atropine (98.4%, P < 0.01). The HALD pressure wave mean rate per minute per channel was significantly reduced by pirenzepine (81.1%, P < 0.03), methoctramine (96.8%, P < 0.001), and 4-DAMP (93.1%, P < 0.03) compared with predrug baseline data. As an indicator of normal motility patterns, the frequency of low-amplitude, short-duration pressure waves was also assessed. The mean rate per minute per channel of 5.15 +/- 0.98 was significantly increased by TTX (19%, P < 0.05) but significantly reduced by pirenzepine (35.1%, P < 0.02) and methoctramine (75%, P < 0.0003). However, the rate of small-amplitude pressure waves was not affected by hexamethonium, atropine, or the M(3) antagonist 4-DAMP. The data indicate a role for neuronal mechanisms and the specific involvement of cholinergic receptors in generating dysmotility in acute radiation enteritis. The effect of selective M(3) receptor antagonism suggests that M(3) receptors may provide specific therapeutic targets in acute radiation enteritis.  相似文献   

10.
Nitric oxide (NO) is involved in hippocampal phenomena of synaptic plasticity. The present microdialysis study investigated a possible role of NO and of endothelial NO synthase (eNOS) activity in the control of hippocampal acetylcholine (ACh) release. 3-Morpholinosydnonimine (SIN-1), an NO donor, stimulated ACh release by 50%–70% when infused into the hippocampus of wild type C57B16 mice. Infusion of l-nitroarginine (L-NA), a broad-spectrum inhibitor of NO synthases, decreased hippocampal ACh efflux by approximately 50%. Mice lacking eNOS (eNOS knockouts) had identical basal effluxes of hippocampal ACh as wild type mice, and the responses to SIN-1 and L-NA were unchanged in the absence of eNOS activity. We conclude that nitric oxide (NO) stimulates hippocampal ACh release in a tonic fashion, but independently of eNOS activity.  相似文献   

11.
We have previously shown that procaine and lidocaine stimulate corticotropin-releasing hormone (CRH) secretion by explanted rat hypothalami. This effect was of interest in light of the fact that both lidocaine and CRH administration to experimental animals can produce kindled seizures which cross-sensitize with electrically kindled seizures, and of recent data suggesting that limbic hyperexcitability, perhaps mediated through CRH, may be involved in the pathophysiology of affective illness. Because a prominent effect of the local anesthetics is to decrease neuronal firing by blocking sodium conductance, we were surprised by the capacity of these agents to cause CRH secretion and pituitary-adrenal activation and wished to further elucidate the possible mechanism(s) of these effects. To accomplish this, we first explored the effect of the sodium channel blocker tetrodotoxin (TTX) on basal and stimulated immunoreactive CRH (iCRH) secretion by explanted rat hypothalami. In contrast to procaine and lidocaine, TTX inhibited rather than stimulated iCRH secretion. Moreover, TTX inhibited lidocaine-induced iCRH secretion but had no influence on the response of the CRH neuron to procaine. To explore other potential mechanisms of action, we examined the effect of the calcium channels blocker verapamil and of pharmacologic antagonists to serotonergic, alpha-adrenergic and cholinergic receptors. The latter was particularly of interest because of structural similarities between procaine or lidocaine and acetylcholine (ACh) and because it has been shown that these anesthetic agents interact with the ACh receptor. Verapamil and blockade of serotonergic, alpha-adrenergic and cholinergic receptors did not inhibit the effects of procaine or lidocaine on iCRH secretion, whereas both GABA and dexamethasone exerted inhibitory effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A two-compartment, flat-sheet preparation of rat colon was devised, which enabled exclusive measurement of longitudinal muscle activity during the ascending and descending phases of the peristaltic reflex. A previous study using longitudinal muscle strips revealed the operation of an integrated neuronal circuit consisting of somatostatin, opioid, and VIP/pituitary adenylate cyclase-activating peptide (PACAP)/nitric oxide synthase (NOS) interneurons coupled to cholinergic/tachykinin motor neurons innervating longitudinal muscle strips that could lead to descending contraction and ascending relaxation of this muscle layer. Previous studies in peristaltic preparations have also shown that an increase in somatostatin release during the descending phase causes a decrease in Met-enkephalin release and suppression of the inhibitory effect of Met-enkephalin on VIP/PACAP/NOS motor neurons innervating circular muscle and a distinct set of VIP/PACAP/NOS interneurons. The present study showed that in contrast to circular muscle, longitudinal muscle contracted during the descending phase and relaxed during the ascending phase. Somatostatin antiserum inhibited descending contraction and augmented ascending relaxation of longitudinal muscle, whereas naloxone had the opposite effect. VIP and PACAP antagonists inhibited descending contraction of longitudinal muscle and augmented ascending relaxation. Atropine and tachykinin antagonists inhibited descending contraction of longitudinal muscle. As shown in earlier studies, the same antagonists and antisera produced opposite effects on circular muscle. We conclude that longitudinal muscle contracts and relaxes in reverse fashion to circular muscle during the peristaltic reflex. Longitudinal muscle activity is regulated by excitatory VIP/PACAP/NOS interneurons coupled to cholinergic/tachykinin motor neurons innervating longitudinal muscle.  相似文献   

13.
By immunohistochemistry galanin-like immunoreactivity and vasoactive intestinal polypeptide (VIP)-like immunoreactivity were found in nerve cell bodies mostly in the submucous plexus and in nerve fibres in the mucosa, submucosa and muscularis including the myenteric plexus of the porcine ileum and were found to co-exist in most of these structures. Using isolated, perfused porcine ileum we studied the release of galanin and VIP in response to electrical stimulation of the mixed periarterial nerves or to intraarterial infusions of different neuroactive agents. Nerve stimulation (4-10 Hz) inhibited the basal release of galanin and VIP from the ileum (to 69 +/- 6 and 62 +/- 6% of basal release). After infusion of the alpha-adrenergic blocker, phentolamine, (10(-6) M) electrical stimulation increased the release of both galanin and VIP (to 140 +/- 12 and 133 +/- 13% of basal output). This increase was abolished by atropine (10(-6) M) and by hexamethonium (3.10(-5) M). Infusion of norepinephrine (10(-6) M) inhibited, whereas acetylcholine (10(-6) M) stimulated the release of both peptides. The effect of the latter was abolished by atropine. The inhibitory effect of nerve stimulation was not influenced by atropine. Our results suggest that the galanin- and VIP-producing intrinsic neurons receive inhibitory signals by noradrenergic nerve fibers and stimulatory signals mediated by cholinergic nerves, possibly via a cholinergic interneuron.  相似文献   

14.
The dorsal motor nucleus of the vagus (DMV) contains preganglionic neurons that control gastric motility and secretion. Stimulation of different parts of the DMV results in a decrease or an increase in gastric motor activities, suggesting a spatial organization of vagal preganglionic neurons in the DMV. Little is known about how these preganglionic neurons in the DMV synapse with different groups of intragastric motor neurons to mediate contraction or relaxation of the stomach. We used pharmacological and immunohistochemical methods to characterize intragastric neural pathways involved in mediating gastric contraction and relaxation in rats. Microinjections of L-glutamate (L-Glu) into the rostral or caudal DMV produced gastric contraction and relaxation, respectively, in a dose-related manner. Intravenous infusion of hexamethonium blocked these actions, suggesting mediation via preganglionic cholinergic pathways. Atropine inhibited gastric contraction by 85.5 +/- 4.5%. Gastric relaxation was reduced by intravenous administration of N(G)-nitro-L-arginine methyl ester (L-NAME; 52.5 +/- 11.9%) or VIP antagonist (56.3 +/- 14.9%). Combined administration of L-NAME and VIP antagonist inhibited gastric relaxation evoked by L-Glu (87.8 +/- 4.3%). Immunohistochemical studies demonstrated choline acetyltransferase immunoreactivity in response to L-Glu microinjection into the rostral DMV in 88% of c-Fos-positive intragastric myenteric neurons. Microinjection of L-Glu into the caudal DMV evoked expression of nitric oxide (NO) synthase and VIP immunoreactivity in 81 and 39%, respectively, of all c-Fos-positive intragastric myenteric neurons. These data indicate spatial organization of the DMV. Depending on the location, microinjection of L-Glu into the DMV may stimulate intragastric myenteric cholinergic neurons or NO/VIP neurons to mediate gastric contraction and relaxation.  相似文献   

15.
Acute experiments were performed on the isolated intestinal loop, vascularly perfused with arterial blood by means of the constant flow perfusion pump. Contractile activity of the ileocecal sphincter and proximal parts of the large intestine was estimated by the maximal isometric tension and total (integrated) contractile activity. Isoprenaline (1-2 mg) induced contractile responses of the colonic segment and ileocecal sphincter. These responses were abolished or dramatically diminished by the blockade of beta-adrenoceptors, muscarinic, and nicotinic cholinergic receptors. Data obtained support the idea, that the large intestine and ileocecal sphincter have excitatory beta-adrenoceptors localized on cholinergic interneurones of the enteric nervous system.  相似文献   

16.
The effect and mode of action of vasoactive intestinal polypeptide (VIP), a peptidergic neuromodulator in the gastrointestinal nervous system, were investigated in isolated muscle strips of the guinea-pig ileum. VIP induced concentration-dependent (20 nM-1 microM) contractions of longitudinal ileal strips. TTX (1 microM), a mixture of atropine (3 microM) and spantide (30 microM), a mixture of atropine (3 microM) and omega-conotoxin GVIA (100 nM), somatostatin (60 nM) and dynorphin (100 nM) abolished the effect of VIP. In most cases a small relaxation became evident. Desensitization to substance P in the presence of atropine prevented VIP-induced contraction. A partial inhibition was observed in the presence of atropine (3 microM), spantide (30 microM), omega-conotoxin GVIA (100 nM), beta-endorphin (265 nM), met-enkephalin (1100 nM) and a mixture of spantide (30 microM) and omega-conotoxin GVIA (100 nM). The action of VIP was not significantly modified by guanethidine (3 microM) or hexamethonium (150 microM). In circular ileal strips VIP (10-300 nM) caused concentration-dependent relaxations through a direct myogenic effect. These results indicate that the VIP produced contractions of the guinea-pig ileum are exclusively neurally mediated and involve a cholinergic as well as a noncholinergic-nonadrenergic (NANC) pathway. It is concluded that besides acetylcholine (Ach) VIP releases the peptidergic transmitter substance P from postganglionic nerve fibers of myenteric plexus. Opioid peptides and somatostatin modulate the activity of cholinergic and peptidegic nerves in the guinea-pig ileum. The release of substance P appears to depend completely on N-type voltage sensitive calcium channels.  相似文献   

17.
The effects of substance P and met5-enkephalin in dog ileum   总被引:1,自引:0,他引:1  
Substance P initiated tonic contraction of dog ileum when administered in doses from 1 pg to 20 micrograms intraarterially (ED50 = 67 ng). Low doses acted to excite cholinergic postganglionic neurones since atropine or tetrodotoxin (TTX) increased the ED50 of substance P about 25-fold, while hexamethonium and local field stimulation had only a small effect to increase the ED50. Also atropine and tetrodotoxin effects were not additive. Higher doses apparently acted to stimulate smooth muscle directly, but no evidence was obtained that local field stimulation could release substance P to act on smooth muscle. Substance P tachyphylaxis prevented substance P actions on cholinergic nerves, but it did not affect responses to intraaterial acetylcholine or block distal inhibition from proximal distention or field stimulation. Met-enkephalin given intraarterially, was also excitatory in doses from 1 ng to 20 micrograms; the amplitude of tonic and phasic contractions produced was significantly decreased by TTX and atropine but was not diminished by hexamethonium or substance P tachyphylaxis. Partial tachyphylaxis to met-enkephalin was produced but was not diminished by hexamethonium or substance P tachyphylaxis. Partial tachyphylaxis to met-enkephalin was produced without affecting the ED50 for substance P. We conclude that substance P acts in small amounts on receptors in myenteric nerves to release acetylcholine by a mechanism, presumably involving postganglionic cholinergic nerves, while met-enkephalin also apparently may act at least in part through a similar TTX- and atropine-sensitive mechanism. These peptides also caused activation of other receptors, probably on smooth muscle by noncholinergic. TTX-insensitive mechanisms. Also the receptors for each peptide which are located on nerves were distinct and independent since tachyphylaxis could be produced to each without affecting the response to the other.  相似文献   

18.
The role of electrical activity in the developmental regulation of cholinergic neurons was investigated in dissociated spinal cord--dorsal root ganglion (SC-DRG) cultures. Application of tetrodotoxin (TTX) during the first 6 days after plating had no effect on choline acetyltransferase (CAT) activity. Suppression of electrical activity during the 7th day decreased CAT to 68% of control. These decreases in CAT activity were still apparent 2 weeks after removal of the TTX. GABAergic neurons, as indicated by glutamic acid decarboxylase activity and high affinity [3H]GABA uptake, were not affected by TTX treatment. Addition of 8-bromo-cAMP or conditioned medium obtained from SC-DRG cultures at certain developmental periods produced dose-dependent increases in CAT levels on TTX-treated cultures as compared with those treated with TTX alone. Similar studies with 8-bromo-cGMP revealed no significant effects on CAT activity. Vasoactive intestinal peptide (VIP) produced a dose-dependent increase in CAT activity when added to cultures between days 12 and 14. Similar studies conducted on younger cultures (days 5-7) or older cultures (days 21-23) revealed no increases in CAT activity. Addition of 0.1 nM VIP to TTX-treated cultures resulted in CAT levels which were not significantly different from those of electrically active controls. These data suggest that cyclic AMP, VIP, and trophic substances in conditioned medium may have roles in the mechanism of cholinergic toxicity produced by electrical blockade of developing spinal cord neurons.  相似文献   

19.
This study was meant to analyze the neural control of the branchial muscles of the clam Mercenaria mercenaria. Gills isolated from the animal contract in response to 5-hydroxytryptamine (5HT), dopamine (DA), and acetylcholine (ACh); but the ACh contraction occurred only if the gills had been pretreated with the cholinesterase inhibitor eserine. The 5HT antagonists cyproheptadine and mianserin blocked the contractile effects of all of the agonists. However, gills exposed to the 5HT antagonists and eserine relaxed in response to ACh. The DA antagonist SCH-83566 inhibited the effects of DA, but had no effect on contractions induced by 5HT and ACh. The ACh antagonist hexamethonium inhibited both the excitatory and inhibitory effects of ACh, but had no effect on contractions induced by 5HT and DA. 5HT and DA in gill tissue were visualized by using immunohistochemistry. Within each gill filament are dorsoventral neurons running adjacent to the epithelium and containing immunoreactive 5HT and DA. A complex network of 5HT-positive fibers is associated with the septa, blood vessels, and muscles, whereas DA-positive fibers are restricted to the septa. We propose that 5HT is the excitatory transmitter to the gill muscles, and that DA and ACh exert their excitatory effects by stimulating 5HT motor nerves. ACh may also be an inhibitory transmitter of the muscles.  相似文献   

20.
The effects of neurotensin (NT) on endogenous acetylcholine (ACh) release from basal forebrain, frontal cortex, and parietal cortex slices were tested. The results show that NT differentially regulates evoked ACh release from frontal and parietal cortex slices without altering either spontaneous or evoked ACh release from basal forebrain slices. In the frontal cortex, NT significantly inhibited evoked ACh release by a tetrodotoxin (TTX)-insensitive mechanism, suggesting an action directly on cholinergic terminals. In the parietal cortex, NT enhanced evoked ACh release by a TTX-sensitive mechanism, suggesting an action of NT on the cholinergic neuron or in close proximity to the cholinergic neuron. The effects of NT on ACh release were confined to evoked ACh release; that is, spontaneous ACh release was not affected. NT did not affect spontaneous or potassium-evoked ACh release from occipital cortex slices. The second set of experiments tested the effects of quinolinic acid (QUIN) lesions of the basal forebrain cell bodies on the NT-induced regulation of evoked ACh release in the cerebral cortex. QUIN lesions of basal forebrain cell bodies caused decreases in choline acetyltransferase activity (27 and 28%), spontaneous ACh release (14 and 21%), and evoked ACh release (38 and 44%) in frontal and parietal cortex, respectively. In addition, 11 days following QUIN lesions of basal forebrain cell bodies, the action of NT to regulate evoked ACh release in frontal cortex or parietal cortex was no longer observed. The results suggest that in the rat frontal and parietal cortex, NT differentially regulates the activity of cholinergic neurons by decreasing and increasing evoked ACh release, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号