首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gene》1997,189(1):73-78
A cDNA encoding a two-domain hemoglobin (Hb) chain of Daphnia magna was cloned and its nucleotide (nt) sequence of 1261 bp was determined. The nt sequence contained 74 bp of the leader sequence, 1047 bp of an open reading frame (ORF), and 119 bp of the 3′-untranslated region (UTR), excluding the polyadenylation tail. A sequence, AATACA, located 24 bp upstream from the polyA sequence was considered to be a polyadenylation signal. cDNA-derived amino acid (aa) sequence revealed that D. magna Hb chain is synthesized as a secretory precursor with a signal peptide of 18 aa. Mature D. magna Hb chain consists of 330-aa residues with a calculated molecular weight of 36 227, which is composed of two large repeated domains, domain 1 and 2. Several key aa that are invariant in all or most of other Hb and required for functional heme-binding are conserved in each of the two domains. The N-terminal extension (pre-A segment) of domain 1 was unusually long and contained an unusual threonine-rich sequence. The homology between the aa sequences of the two domains (24% identity) was much lower than that observed in other two-domain Hb chains from clams or nematode. Hb mRNA level in D. magna reared under low oxygen concentration was more than 12 times higher than that in D. magna reared with sufficient aeration, indicating that the expression of Hb gene is regulated by mRNA level.  相似文献   

2.
3.
4.
Characterization and sequence of a Thermomonospora fusca xylanase.   总被引:7,自引:2,他引:5       下载免费PDF全文
TfxA is a thermostable xylanase produced by the thermophilic soil bacterium Thermomonospora fusca. The enzyme was purified to homogeneity from the culture supernatant of Streptomyces lividans transformed by plasmid pGG92, which carries the gene for TfxA, xynA. The molecular mass of TfxA by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 32 kDa. TfxA is extremely stable, retaining 96% of its activity after 18 h at 75 degrees C. It has a broad pH optimum around pH 7 and retains 80% of its maximum activity between pH 5 and 9. The native enzyme binds strongly to both cellulose and insoluble xylan even though it has no activity on cellulose. Treatment of TfxA with a T. fusca protease produced a 24-kDa catalytically active fragment that had the same N-terminal sequence as TfxA. The fragment does not bind to cellulose and binds weakly to xylan. The Vmax values for TfxA and the fragment are 600 and 540 mumol/min/mg, respectively, while the Kms are 1.1 and 2.3 mg of xylan per ml, respectively. The DNA sequence of the xynA gene was determined, and it contains an open reading frame that codes for a 42-amino-acid (42-aa) actinomycete signal peptide followed by the 32-kDa mature protein. There is a 21-aa Gly-Pro-rich region that separates the catalytic domain from an 86-aa C-terminal binding domain. The amino acid sequence of the catalytic domain of TfxA has from 40 to 72% identity with the sequence of 12 other xylanases from seven different organisms and belongs to family G.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The defective prophage of Bacillus subtilis 168, PBSX, is a chromosomally based element which encodes a non-infectious phage-like particle with bactericidal activity. PBSX is induced by agents which elicit the SOS response. In a PBSX thermoinducible strain which carries the xhi1479 mutation, PBSX is induced by raising the growth temperature from 37 degrees C to 48 degrees C. A 1.2-kb fragment has been cloned which complements the xhi1479 mutation. The nucleotide sequence of this fragment contains an open reading frame (ORF) which encodes a protein of 113 amino acids (aa). This aa sequence resembles that of other bacteriophage repressors and suggests that the N-terminal region forms a helix-turn-helix motif, typical of the DNA-binding domain of many bacterial regulatory proteins. The ORF is preceded by four 15-bp direct repeats, each of which contains an internal palindromic sequence, and by sequences resembling a SigA-dependent promoter. The nt sequence of an equivalent fragment from the PBSX thermoinducible strain has also been determined. There are three aa differences within the ORF compared to the wild type, one of which lies within the helix-turn-helix segment. This ORF encodes a repressor protein of PBSX.  相似文献   

6.
7.
苏云金芽孢杆菌chiA,chiB全基因的克隆、表达及其序列分析   总被引:4,自引:1,他引:4  
以苏云金芽孢杆菌科默尔亚种15A3菌株基因组DNA为模版,用touchdown PCR方法扩增几丁质酶ChiA和ChiB的全基因序列(GenBank登录号:EF103273和DQ512474)。将PCR产物连接pUCm-T克隆载体,获得重组质粒pUCm-chiA和pUCm-chiB,分别转化E.coliXL-Blue。克隆的几丁质酶基因可以利用本身的启动子异源表达各自的蛋白,不需要几丁质作为诱导物。表达的几丁质酶能够分泌到胞外。证明15A3菌株可组成型表达2种几丁质酶。经核苷酸及氨基酸序列分析证明,chiA基因全长1426bp,含有343bp的上游非编码区和1083bp的ORF,编码360个氨基酸。推测成熟蛋白分子量为36kD,只有一个几丁质酶催化域。chiB基因全长2279bp,含有248bp的上游非编码区和2031bp的ORF,编码676个氨基酸。推测成熟蛋白分子量约为70.6kD,具有三个功能域。核苷酸序列分析显示chiA和chiB的启动子所处的位置及转录起始碱基都不相同,-35区相同,而-10区有两个碱基不同,SD序列也不完全一致。  相似文献   

8.
Utilizing a spleen-derived cDNA library and rapid amplification of cDNA 5' ends, we cloned a novel type II C-type lectin from two homozygous clones of rainbow trout. The cDNA is 2535 bp in length, and contains a 1017-bp open reading frame. From this sequence, a protein containing 339 amino acids (aa) was deduced. Using PSI-BLAST to search the GenBank database, the deduced protein is a C-type lectin, belonging to the type II membrane receptors. The protein contains four domains: an 87-aa N-terminal cytoplasmic domain, a 21-aa transmembrane domain, an 82-aa neck domain, and a 149-aa C-terminal C-type lectin domain. Two immunoreceptor tyrosine-based inhibition motifs (ITIMs) were located in the N-terminal cytoplasmic domain. RT-PCR results indicated that this gene is transcribed mainly in peripheral blood lymphocytes, spleen, kidney, and gill, and its expression in liver and intestine is weak. Monoclonal antibody 1.14 was used to isolate B cells from peripheral blood lymphocytes. Analysis revealed that this gene is highly expressed in B cells. Genomic DNA was amplified with long-template PCR and sequenced. The gDNA is 12.0 kb in length and contains nine exons and eight introns. The first intron of the genes from the OSU and AR clones differed in length. Based on this difference, the genotype of 69 doubled-haploid offspring of OSU and AR were screened. Subsequently, this gene was mapped on the rainbow trout linkage map to group XXI. Results of a Southern blot indicated that the gene ( TCL-2) exists as a single copy in the rainbow trout genome. The genomic structure, the deduced protein structure, the tissue expression pattern, as well as the phylogenetic analysis of the carbohydrate recognition domain based on the deduced amino acid sequence indicate that TCL-2 resembles CD72; however, the carbohydrate recognition domain sequences of TCL-2 and CD72 are highly diverged.  相似文献   

9.
以苏云金芽孢杆菌科默尔亚种15A3菌株基因组DNA为模版,用touchdown PCR方法扩增几丁质酶ChiA和ChiB的全基因序列(GenBank登录号:EF103273和DQ512474)。将PCR产物连接pUCm-T克隆载体,获得重组质粒pUCm-chiA和pUCm-chiB,分别转化E.coliXL-Blue。克隆的几丁质酶基因可以利用本身的启动子异源表达各自的蛋白,不需要几丁质作为诱导物。表达的几丁质酶能够分泌到胞外。证明15A3菌株可组成型表达2种几丁质酶。经核苷酸及氨基酸序列分析证明,chiA基因全长1426bp,含有343bp的上游非编码区和1083bp的ORF,编码360个氨基酸。推测成熟蛋白分子量为36kD,只有一个几丁质酶催化域。chiB基因全长2279bp,含有248bp的上游非编码区和2031bp的ORF,编码676个氨基酸。推测成熟蛋白分子量约为70.6kD,具有三个功能域。核苷酸序列分析显示chiAchiB的启动子所处的位置及转录起始碱基都不相同,-35区相同,而-10区有两个碱基不同,SD序列也不完全一致。  相似文献   

10.
The complete sequences of the RhsB and RhsC elements of Escherichia coli K-12 have been determined. These sequence data reveal a new repeated sequence, called H-rpt (Hinc repeat), which is distinct from the Rhs core repetition that is found in all five Rhs elements. H-rpt is found in RhsB, RhsC, and RhsE. Characterization of H-rpt supports the view that the Rhs elements are composite structures assembled from components with very different evolutionary histories and that their incorporation into the E. coli genome is relatively recent. In each case, H-rpt is found downstream from the Rhs core and is separated from the core by a segment of DNA that is unique to the individual element. The H-rpt's of RhsB and RhsE are very similar, diverging by only 2.1%. They are 1,291 bp in length, and each contains an 1,134-bp open reading frame (ORF). RhsC has three tandem copies of H-rpt, all of which appear defective in that they are large deletions and/or have the reading frame interrupted. Features of H-rpt are analogous to features typical of insertion sequences; however, no associated transposition activity has been detected. A 291-bp fragment of H-rpt is found near min 5 of the E. coli K-12 map and is not associated with any Rhs core homology. The complete core sequences of RhsB and RhsC have been compared with that of RhsA. As anticipated, the three core sequences are closely related, all having identical lengths of 3,714 bp each. Like RhsA, the RhsB and RhsC cores constitute single ORFs that begin with the first core base. In each case, the core ORF extends beyond the core into the unique sequence. Of the three cores, RhsB and RhsA are the most similar, showing only 0.9% sequence divergence, while RhsB and RhsC are the least similar, diverging by 2.9%. All three cores conserve the 28 repetitions of a peptide motif noted originally for RhsA. A secondary structure is proposed for this motif, and the possibility of its having an extracellular binding function is discussed. RhsB contains one additional unique ORF, and RhsC contains two additional unique ORFs. One of these ORFs includes a signal peptide that is functional when fused to TnphoA.  相似文献   

11.
E Yagüe  P Béguin  J P Aubert 《Gene》1990,89(1):61-67
The complete nucleotide sequence of the celH gene of Clostridium thermocellum was determined. The open reading frame extended over 2.7-kb DNA fragment and encoded a 900-amino acid (aa) protein (Mr 102,301) which hydrolyzes carboxymethylcellulose, p-nitrophenyl-beta-D-cellobioside, methylumbelliferyl- beta-D-cellobioside, barley beta-glucan, and larchwood xylan. The N terminus showed a typical signal peptide, and a cleavage site after Ser44 was predicted. Two Pro-Thr-Ser-rich regions divided the protein into three approximately equal domains. The central 328-aa region was similar to the N-terminal part, carrying the active site, of C. thermocellum endoglucanase E (EGE; 30.2%). The C-terminal region ended with two conserved 24-aa stretches showing close similarity with those previously described in EGA, EGB, EGD, EGE, EGX, and xylanase from C. thermocellum. Deletions of celH removing up to 327 codons from the 5' end and up to 245 codons from the 3' end of the coding sequence did not affect enzyme activity, confirming that the central domain was indeed responsible for catalytic activity. Production of truncated EGH in Escherichia coli was increased up to 120-fold by fusing fragments containing the 3' portion of the gene with the start of lacZ' present in pTZ19R.  相似文献   

12.
Hauer PJ  Yeary TJ  Rosenbusch RF 《Anaerobe》2004,10(4):243-254
The phospholipase C (PLPC) gene from Clostridium haemolyticum was amplified using the polymerase chain reaction. Primers were selected from a consensus sequence of closely related clostridial PLPC genes and used to amplify an 871-base pair internal segment of the gene. The internal sequence was used to design nested primers that, together with adapter-specific primers, were used to amplify upstream and downstream sequences. The sequences of upstream and downstream segments were aligned with the internal segment to obtain the entire gene sequence. Primers were selected from the aligned sequence, and the entire gene was amplified, and the PCR product was inserted by ligatation into the pCR 2.1 plasmid. An open reading frame that encodes a 399-amino acid protein, containing a 27-amino acid signal sequence, was identified (GenBank Accession Number AF525415). The molecular weight of the active protein was 42869 Da. A 16-amino acid N-terminal sequence, determined by Edman degradation, exactly matched the putative amino acid sequence of the gene product. Together, N-terminal peptide sequencing and tryptic digestion followed by MALDI-ToF mass spectroscopy verified 48% of the amino acid sequences of the active beta toxin. Comparison of the nucleotide and amino acid sequences with Gene-bank databases demonstrated that the beta toxin of C. haemolyticum exhibits high homology with other bacterial PLPCs. The N-terminal portion of the beta toxin contains zinc-binding residues common to clostridial and other bacterial PLPCs, and it shows 34% homology to the N-terminal domain of bovine arachidonate 5-lipoxygenase. The C-terminal domain of the beta toxin protein shows considerable homology with the C-terminal domains of C. novyi type A PLPC, C. perfringens alpha toxin, C. bifermentens PLPC, although the percent identity between the N-terminal regions is much higher overall than that in the C-terminal domain.  相似文献   

13.
The nucleotide sequence of the cellulase gene celC, encoding endoglucanase C of Clostridium thermocellum, has been determined. The coding region of 1032 bp was identified by comparison with the N-terminal amino acid (aa) sequence of endoglucanase C purified from Escherichia coli. The ATG start codon is preceded by an AGGAGG sequence typical of ribosome-binding sites in Gram-positive bacteria. The derived amino acid sequence corresponds to a protein of Mr 40,439. Amino acid analysis and apparent Mr of endoglucanase C are consistent with the amino acid sequence as derived from the DNA sequencing data. A proposed N-terminal 21-aa residue leader (signal) sequence differs from other prokaryotic signal peptides and is non-functional in E. coli. Most of the protein bears no resemblance to the endoglucanases A, B, and D of the same organism. However, a short region of homology between endoglucanases A and C was identified, which is similar to the established active sites of lysozymes and to related sequences of fungal cellulases.  相似文献   

14.
The nucleotide sequence of a 1082 bp fragment from the pea (Pisum sativum) chloroplast genome is presented. This fragment contains genes for tRNAGlu, tRNATyr and tRNAAsp as well as an open reading frame (ORF) of 91 codons on one strand and two ORFs of 52 and 59 codons on the complementary strand. The tRNAAsp gene is located entirely within the ORF of 91 codons. The first 366 bp of the fragment correspond to 376 bp at one end of a recently published (1) sequence from the broad bean (Vicia faba) chloroplast genome. These regions contain the tRNAGlu and tRNATyr genes, which are identical and separated by 60 bp in both species. These two genes are probably cotranscribed. The intergenic regions in the corresponding segments from the two species are, except for a 10 bp deletion in the pea sequence, 94% homologous.  相似文献   

15.
16.
The complete nucleotide sequence of the Clostridium thermocellum celE gene, coding for an endo-beta-1,4-glucanase (endoglucanase E; EGE) with xylan-hydrolysing activity has been determined. The structural gene consists of an open reading frame (ORF) of 2442 bp commencing with a GTG start codon and followed by a TAA stop codon. The nucleotide sequence obtained has been confirmed by comparing the predicted amino acid sequence with that derived by N-terminal amino acid sequencing of the purified protein. The EGE sequence contains a region homologous to the reiterated domain found at the C terminus of other endoglucanases from the same organism. BAL 31 deletions of the structural gene have revealed the extent to which this conserved sequence is necessary for endoglucanase and xylanase activity. A region of DNA, upstream from the structural gene has also been sequenced and a ribosome-binding site and putative promoter sequences have been identified. A second ORF which ends 349 bp 5' to the GTG start codon of the celE gene has also been identified. The encoded product contains a C terminus homologous to other C. thermocellum endoglucanases.  相似文献   

17.
18.
19.
We have cloned and sequenced the nitrate reductase (NR)-encoding gene (nia) from tomato. When compared to the two Nicotiana tabacum nia structural genes, this 5-kb tomato gene shows a highly conserved structure, the coding sequence being interspersed with three introns at the same positions. Nucleotide sequences of the 5' promoter regions are not homologous, except for a 250-bp fragment. This small region might be involved in the similar regulation of the nia expression in tomato and tobacco plant species. The tomato gene codes for a 911 amino acid (aa) polypeptide chain. This sequence was aligned with and compared to other higher plant NR sequences. This alignment clearly identifies the three catalytic domains of NR, namely, a molybdopterin cofactor-binding domain, a heme domain and a FAD/NADH domain. On the other hand, it suggests that the less conserved 80-aa N-terminal region, containing a striking acidic aa cluster, is an additional domain bearing regulatory or structural function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号