首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Daunomycin (Dau) is a DNA-binding antineoplastic agent in the treatment of various types of cancer, such as osteosarcomas and acute myeloid leukemia. One approach to improve its selectivity and to decrease the side effects is the conjugation of Dau with oligopeptide carriers, which might alter the drug uptake and intracellular fate. Here, we report on the synthesis, characterization, and in vitro biological properties of a novel conjugate in which Dau is attached, via an oxime bond, to one of the cancer specific small peptides (LTVSPWY) selected from a random phage peptide library. The in vitro cytostatic effect and cellular uptake of Dau═Aoa-LTVSPWY-NH(2) conjugate were studied on various human cancer cell lines expressing different levels of ErbB2 receptor which could be targeted by the peptide. We found that the new daunomycin-peptide conjugate is highly cytostatic and could be taken up efficiently by the human cancer cells studied. However, the conjugate was less effective than the free drug itself. RP-HPLC data indicate that the conjugate is stable at least for 24 h in the pH 2.5-7.0 range of buffers, as well as in cell culture medium. The conjugate in the presence of rat liver lysosomal homogenate, as indicated by LC-MS analysis, could be degraded. The smallest, Dau-containing metabolite (Dau═Aoa-Leu-OH) identified and prepared expresses DNA-binding ability. In order to get insight on the potential mechanism of action, we compared the protein expression profile of HL-60 human leukemia cells after treatment with the free and peptide conjugated daunomycin. Proteomic analysis suggests that the expression of several proteins has been altered. This includes three proteins, whose expression was lower (tubulin β chain) or markedly higher (proliferating cell nuclear antigen and protein kinase C inhibitor protein 1) after administration of cells with Dau-conjugate vs free drug.  相似文献   

2.
Inostamycin, which was recently isolated from Streptomyces sp. MH816-AF15 as an inhibitor of cytidine 5'-diphosphate 1,2-diacyl-sn-glycerol (CDP-DG): inositol transferase, caused a G1-phase accumulation in the cell cycle of small cell lung carcinomas. To investigate whether the cytostatic effect of inostamycin is restricted to lung carcinoma cell lines or applicable to other type of cells, we tested five oral squamous cell carcinoma (SCC) cell lines. Cell growth was suppressed in 62.5--125 ng/ml inostamycin in the culture medium in all oral cancer cell lines tested, with non-viable cells being <1%, indicating inostamycin is cytostatic on SCC cell lines. Decrease in cyclin D1 mRNA and protein expression due to the inostamycin treatment was accompanied by suppression of phosphorylated retinoblastoma susceptibility gene product (pRB-P) levels. Moreover, flow cytometric analysis showed that inostamycin induced an increase in G1/G0 cells (1.2--3.2 fold) over 24 h. These results suggest that inostamycin is a useful agent for tumour dormant cytostatic therapy for oral SCC.  相似文献   

3.
The macrophages belong to the effector cells of both nonspecific and specific immune response. These cells generally express little cytotoxicity unless activated. The present work was intended to determine if peritoneal macrophages collected from patients on Continuous Ambulatory Peritoneal Dialysis (CAPD) during episodes of peritonitis were active against human tumor cell lines without further in vitro stimulation. We also compared macrophage antitumor potential with effectiveness of drugs used in cancer therapy (taxol and suramin). Conditioned medium (CM) of macrophages collected during inflammation-free periods did not exhibit cytostatic and cytotoxic activity against both tumor (A549 and HTB44) and non-transformed (BEAS-2B and CRL2190) cells. Exposure of tumor cells to CM of macrophages harvested during peritonitis resulted in significant suppression of proliferation, impairment of viability and induction of apoptosis, in contrast to non-transformed cells, which remained unaffected. The efficacy of CM of inflammatory macrophages as an antitumor agent appeared to be comparable to cytostatic and cytotoxic potency of taxol and suramin or, in the case of HTB44 cells, even higher. The results obtained suggest that activated human macrophages might represent a useful tool for cancer immunotherapy.  相似文献   

4.
The sesquiterpene α-bisabolol (α-BSB) has been shown to be an effective cytotoxic agent for a variety of human cancer cells in culture and animal models. However, much of its intracellular action remains elusive. We evaluated the cytotoxic action of α-BSB against CML-T1, Jurkat and HeLa cell lines, as preclinical models for myeloid, lymphoid and epithelial neoplasias. The approach included single cell analysis (flow cytometry, immunocytology) combined with cytotoxicity and proliferation assays to characterize organelle damage, autophagy, cytostatic effect, and apoptosis. The study focuses on the relevant steps in the cytotoxic cascade triggered by α-BSB: (1) the lipid rafts through which α-BSB enters the cells, (2) the opening of pores in the mitochondria and lysosomes, (3) the activation of both caspase-dependent and caspase-independent cell death pathways, (4) the induction of autophagy and (5) apoptosis. The effectiveness of α-BSB as an agent against tumor cells is grounded on its capability to act on different layers of cell regulation to elicit different concurrent death signals, thereby neutralizing a variety of aberrant survival mechanisms leading to treatment resistance in neoplastic cell.  相似文献   

5.
Summary Cytorhodin-S, an anthracycline derivative, was covalently coupled to a monoclonal antibody (mAb) CA208, against carcinoembryonic antigen (CEA) in order to achieve selective killing of a CEA-producing colon carcinoma cell line, COLO 205. The conjugate (15 molecules of drugs/antibody) retained substantial antibody activity as well as drug activity as assessed by enzyme-linked immunosorbent assay and 24-h L1210 proliferation assay, respectively. Furthermore, the conjugate inhibited the growth of COLO 205 cells in a short-term cytostatic assay. This cytostatic effect of the immunoconjugate on COLO 205 cells was inhibited in a dose-dependent manner by pretreatment of the cells with unconjugated CA208 mAb. In addition, chloroquine, a lysosomotropic agent, inhibited the cytostatic effect of the immunoconjugate, indicating the involvement of lysosomal enzymes in releasing drugs from the immunoconjugate. The antibody (CA208) was significantly incorporated into the cytoplasm of COLO 205 cells as demonstrated by immuno-electron microscopy. These in vitro results indicate that cytorhodin-S may be a good partner in immunoconjugates. However, in vivo animal experiments with the immunoconjugate revealed that the immunoconjugate was not so effective in prolonging survival. Thus, in vivo efficacy of this immunoconjugate remains to be further improved in application to cancer immunotherapy.  相似文献   

6.
Leflunomide (LFN) is a well-known immunomodulatory and anti-inflammatory prodrug of teriflunomide (TFN). Due to pyrimidine synthesis inhibition TFN also exhibits potent anticancer effect. Because, there is the strict coupling between the pyrimidine synthesis and the mitochondrial respiratory chain, the oxygen level could modify the cytostatic TNF effect.The aim of the study was to evaluate the cytostatic effect of pharmacologically achievable teriflunomide (TFN) concentrations at physiological oxygen levels, i.e. 1% hypoxia and 10% tissue normoxia compared to 21%oxygen level occurred in routine cell culture environment.The TFN effect was evaluated using TB, MTT and FITC Annexin tests for human primary (SW480) and metastatic (SW620) colon cancer cell lines at various oxygen levels.We demonstrated significant differences between proliferation, survival and apoptosis at 1, 10 and 21% oxygen in primary and metastatic colon cancer cell lines (SW480, SW620) under TFN treatment. The cytostatic TFN effect was more pronounced at hypoxia compared to tissue and atmospheric normoxia in both cancer cell lines, however metastatic cells were more resistant to antiproliferative and proapoptotic TFN action. The early apoptosis was predominant in physiological oxygen tension while in atmospheric normoxia the late apoptosis was induced.Our findings showed that anticancer TFN effect is more strong in physiological oxygen compared to atmospheric normoxia. It suggests that results obtained from in vitro studies could be underestimated. Thus, it gives assumption for future comprehensive studies at real oxygen environment involving TNF use in combination with other antitumor agents affecting oxygen-dependent pyrimidine synthesis.  相似文献   

7.
Resveratrol (RSV) has been suggested to have cancer preventive properties, on the basis that it suppresses proliferation and induces apoptosis in various tumor cells. Here we test its cytostatic effects on peripheral blood human lymphocytes. RSV (up to 50 microM) had no detectable effects on resting lymphocytes. With the mitogen phytohemagglutin (PHA), however, RSV elicited concentration- and time-dependent responses in lymphocytes. RSV (>/=50 microM) prevented cell entry into the cell cycle, resulting in 99% suppression at 100 microM. The arrested lymphocytes following 24h treatment with 50 microM RSV had minimal RNA content, the feature characteristic of G(0) cells, and were blocked at the stage past the induction of cyclins D2 and D3 and prior to induction of cyclin E. Prolonged treatment (72h) of PHA-stimulated lymphocytes with 100 microM RSV showed a pronounced decrease in the expression of pRb, cyclins E and B, and reduction in p34cdc2 and PCNA. The activation-induced apoptosis was also reduced in the presence of >/=50 microM RSV. These data suggest that studies designed to test RSV efficacy as a chemopreventive agent should include evaluation of its immunomodulatory effect revealed by suppression of lymphocyte stimulation as well as its effect on apoptosis of stimulated lymphocytes.  相似文献   

8.
Resveratrol (3,4',5-trihydroxystilbene, RV) exerts remarkable cytostatic and cytotoxic effects against a multitude of human cancer cell lines. Since the introduction of additional hydroxyl groups was supposed to increase the biological activity of RV, we have synthesized a number of polyhydroxylated stilbene analogues as potential antitumor agents. In this study, the activity of 3,3',4,4',5,5'-hexahydroxystilbene (M8) was investigated in HL-60 human promyelocytic leukemia cells. Employing a growth inhibition assay, incubation with M8 and RV resulted in IC50 values of 6.25 and 12 microM, respectively. Using a specific Hoechst/propidium iodide double staining method, we found that M8 was able to induce apoptosis in concentrations significantly lower than those of RV. In addition, M8 arrested cells in the S phase and totally depleted cells in the G2-M phase of the cell cycle (143% and 0% of control after treatment with 12.5 microM M8, respectively). We therefore believe that this promising agent deserves further preclinical and in vivo testing.  相似文献   

9.
Increased oxidative stress and indoleamine-2,3-dioxygenase (IDO) activity have been reported in cancer, but their relationship with chemotherapy remains unknown. The aim of the present study was to examine wether the chemotherapy treatments used in colorectal cancer had an additional effect on oxidative stress and on IDO activity. Plasma samples were collected from 27 colorectal cancer patients on cytostatic treatment, 27 with cytostatic drugs plus monoclonal antibodies (cytostatic-Mabs) and 15 non-treated patients. All patients with colorectal cancer had high plasma malondialdehyde (MDA), thioredoxin (Trx) levels, and elevated IDO activity in plasma (IDOp) and in dendritic cells (IDOc). This study shows that treatment with cytostatics have an effect on oxidative stress by increasing MDA levels and by decreasing Trx levels and IDO activity. However, treatment with cytostatic-Mabs showed no effect on MDA levels but decreased Trx levels, and the IDO activity showed values similar to the healthy group. Significant correlations between plasma IDO activity and the levels of Trx (r = 0.2062, p < 0.05) and MDA (r = 0.2873, p < 0.005) were observed. Furthermore, our study suggests that IDO activity measured as kynurenine levels could be used as a marker of the response to the chemotherapy treatments, although further studies are necessary.  相似文献   

10.
Resveratrol (3,4′,5-trihydroxystilbene, RV) exerts remarkable cytostatic and cytotoxic effects against a multitude of human cancer cell lines. Since the introduction of additional hydroxyl groups was supposed to increase the biological activity of RV, we have synthesized a number of polyhydroxylated stilbene analogues as potential antitumor agents. In this study, the activity of 3,3′,4,4′,5,5′-hexahydroxystilbene (M8) was investigated in HL-60 human promyelocytic leukemia cells. Employing a growth inhibition assay, incubation with M8 and RV resulted in IC50 values of 6.25 and 12 μM, respectively. Using a specific Hoechst/propidium iodide double staining method, we found that M8 was able to induce apoptosis in concentrations significantly lower than those of RV. In addition, M8 arrested cells in the S phase and totally depleted cells in the G2-M phase of the cell cycle (143% and 0% of control after treatment with 12.5 μM M8, respectively). We therefore believe that this promising agent deserves further preclinical and in vivo testing.  相似文献   

11.
Chemotherapy continues to be the main therapeutic approach in the treatment of hematological malignancies including acute leukemia. Generally, chemotherapy is used to eliminate cancer cells and to restore normal bone marrow function. Simultaneous action of cytostatic drugs on bone marrow angiogenesis decreases the formation of new capillaries and improves therapeutic effect. However, chemotherapeutic agents may also be cytodestructive for cellular elements of other tissues, particularly the vascular endothelium, which can lead to various cardiovascular complications. In this work, we studied the effects of 2 cytostatic drugs, cytosine arabinoside (ara-C) and daunorubicin (DNR), on cultured human vascular (i.e., umbilical) endothelial cells (ECs). Ara-C and DNR were added to cultured cells at concentrations ranging from 1 ng/mL to 100 microg/mL. Drug effects were studied using phase-contrast microscopy, cell viability tests, BRDU incorporation, immunohistochemistry, flow cytometry, and cell cloning. At various concentrations, ara-C and DNR are able to induce morphological and functional changes in cultured cells related to either cytostatic or cytotoxic action. Moreover, ara-C-treated cultured cells displayed significant disturbances in cell adhesion molecule expression and interaction with blood leukocytes. Preliminary data obtained on acute leukemia patients undergoing standard cytostatic therapy ("7+3" regimen) have shown that concentration of the circulating ECs was significantly increased compared with the control group and could be as high as 500-1500 cells/mL of blood. Results obtained suggest that anticancer chemotherapy may induce systemic damage of vascular endothelium related to massive cell loss and (or) alterations of endothelial function.  相似文献   

12.
13.
W Schreml  H P Lohrmann 《Blut》1979,38(4):331-336
The effect of Levamisole on the human granulopoiesis was studied in patients randomized to receive, in addition to adjuvant chemotherapy for primary breast cancer, either no other treatment or additional unspecific immune therapy with Levamisole. The reaction of granulopoiesis to the cytostatic drugs, as characterized by changes of peripheral blood polymorphonuclear neutrophils (PMN), functional bone marrow granulocyte reserve, serial bone marrow cytology, and granulopoietic stem cells (CFU-C) in marrow and blood, was not affected by administration of Levamisole. The data support the concept that Levamisole has no direct effect on human bone marrow granulopoiesis, but that an allergic mechanism is involved in the pathogenesis of Levamisole-induced agranulocytosis. The expectation that Levamisole exerts a beneficial effect by stimulation of the granulopoiesis, as previously suggested for BCG and Corynebacterium parvum, could not be substantiated in our studies.  相似文献   

14.
The role of long-chain polyunsaturated fatty acids (PUFA) in the etiopathology and treatment of cancer is poorly understood. We have studied the effects of n;-3 and n;-6 PUFA on the proliferation and survival of normal human uroepithelial (NHU) cells, cells with disabled p53 function after stable transfection with the human papillomavirus 16 (HPV16) E6 gene (HU-E6), and p53-disabled cells that had passed through crisis and acquired karyotypic abnormalities (HU-E6P). The n;-3 and n;-6 PUFA had distinct reversible antiproliferative and irreversible cytostatic effects according to concentration and exposure time. The reversible antiproliferative effect was partly due to the production of lipoxygenase metabolites. NHU and HU-E6 cells were equally sensitive to n;-3 and n;-6 PUFA, but HU-E6P cells were more resistant to both the antiproliferative and cytostatic effects. Cytostatic concentrations of n;-3 and n;-6 PUFA did not induce apoptosis, but caused permanent growth arrest ("interphase" or "reproductive" cell death) and mRNA levels for genes involved in cell cycle control (p21, p16, p27, cdk1, cdk2, and cdk4) were not altered. Neither n;-3 nor n;-6 PUFA promoted acquisition of karyotypic abnormalities in HU-E6 cells, suggesting that n;-3 and n;-6 PUFA do not cause genotoxic damage.In conclusion, our studies show that the antiproliferative and cytostatic effects of n;-3 and n;-6 PUFA are not dependent on p53 function and, further, that transformation results in a loss of sensitivity to n;-3 and n;-6 PUFA-mediated growth inhibition.  相似文献   

15.
Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-).  相似文献   

16.
17.
BackgroundBiogenic nanoparticles are gaining attention due to their low toxicity and numerous biomedical applications. Present study aimed to compare the potential anticancer activity of two biogenic silver nanoparticles (bAgNPs and pAgNPs) against human cervical cancer cell lines (HeLa).MethodsbAgNPs were synthesized using Acinetobacter sp. whereas pAgNPs were synthesized using aqueous root extract of Curcuma aromatica. Effect of these nanoparticles on HeLa cells viability was studied using MTT assay and colony formation assay. Anticancer potential was determined using fluorescence microscopy and flow cytometry studies. Bio-compatibility studies were performed against peripheral blood mononuclear cells (PBMCs).ResultsBoth the nanoparticles showed 50 % viability of peripheral blood mononuclear cells (PBMCs) when used at high concentration (200 μg/mL). IC50 for bAgNPs and pAgNPs against HeLa cells were 17.4 and 14 μg/mL respectively. Colony formation ability of Hela cells was reduced on treatment with both nanoparticles. Acridine orange and ethidium bromide staining demonstrated that bAgNPs were cytostatic whereas pAgNPs were apoptotic. JC-1 dye staining revealed that the mitochondrial membrane potential was affected on treatment with pAgNPs while it remained unchanged on bAgNPs treatment. Flow cytometry confirmed cell cycle arrest in HeLa cells on treatment with nanoparticles further leading to apoptosis in case of pAgNPs. About 77 and 58 % HeLa cells were found in subG1 phase on treatment with bAgNPs and pAgNPs respectively. bAgNPs showed cytostatic effect on HeLa cells arresting the cell growth in subG1 phase, whereas, pAgNPs triggered death of HeLa cells through mitochondrial membrane potential impairment and apoptosis.ConclusionOverall, bAgNPs and pAgNPs could be safe and showed potential to be used as anticancer nano-antibiotics against human cervical cancer cells.  相似文献   

18.
Specific targeting of tumor cells to achieve higher drug levels in tumor tissue and to overcome cardiotoxic and other secondary effects is the major goal in cancer therapy. With trastuzumab as a humanized monoclonal antibody binding, the HER2 receptor specific targeting is possible. In the present study, target-oriented nanoparticles based on biodegradable human serum albumin (HSA) loaded with cytostatic drug doxorubicin were developed. The surface of the nanoparticles was modified by covalent attachment of trastuzumab. HER2 overexpressing breast cancer cells showed a good cellular binding and uptake of these nanoparticles. The specific transport of the cytostatic drug doxorubicin with this nanoparticulate formulation into the HER2 overexpressing breast cancer cells, their release, and biological activity was demonstrated. The results indicate that these cell-type specific drug-loaded nanoparticles could achieve an improvement in cancer therapy. To our knowledge, this is the first study demonstrating a specific trastuzumab-based targeting of HER2 overexpressing breast cancer cells with doxorubicin-loaded nanoparticles.  相似文献   

19.
The increased incidence, high rates of mortality and few effective means of treatment of malignant melanoma, stimulate the search for new anti-tumor agents and therapeutic targets to control this deadly metastatic disease. In the present work the antitumor effect of arazyme, a natural bacterial-derived metalloprotease secreted by Serratia proteomaculans, was investigated. Arazyme significantly reduced the number of pulmonary metastatic nodules after intravenous inoculation of B16F10 melanoma cells in syngeneic mice. In vitro, the enzyme showed a dose-dependent cytostatic effect in human and murine tumor cells, and this effect was associated to the proteolytic activity of arazyme, reducing the CD44 expression at the cell surface, and also reducing in vitro adhesion and in vitro/in vivo invasion of these cells. Arazyme treatment or immunization induced the production of protease-specific IgG that cross-reacted with melanoma MMP-8. In vitro, this antibody was cytotoxic to tumor cells, an effect increased by complement. In vivo, arazyme-specific IgG inhibited melanoma lung metastasis. We suggest that the antitumor activity of arazyme in a preclinical model may be due to a direct cytostatic activity of the protease in combination with the elicited anti-protease antibody, which cross-reacts with MMP-8 produced by tumor cells. Our results show that the bacterial metalloprotease arazyme is a promising novel antitumor chemotherapeutic agent.  相似文献   

20.
Ivermectin is a broad-spectrum antiparasitic drug that has recently been demonstrated to exhibit potent anticancer activity against colon cancer, ovarian cancer, melanoma and leukemia. However, the molecular mechanism underlying this anticancer effect remains poorly understood. We recently found that ivermectin markedly inhibits the growth of breast cancer cells by stimulating cytostatic macroautophagy/autophagy in vitro and in vivo. Ivermectin inhibits the AKT-MTOR signaling pathway by promoting ubiquitination-mediated degradation of PAK1 (p21 [RAC1] activated kinase 1), leading to increased autophagic flux. Together, our work unravels the molecular mechanism underpinning ivermectin-induced cytostatic autophagy in breast cancer, and characterizes ivermectin as a potential therapeutic option for breast cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号