首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
闽江河口湿地植物枯落物立枯和倒伏分解主要元素动态   总被引:3,自引:0,他引:3  
曾从盛  张林海  王天鹅  张文娟  仝川 《生态学报》2012,32(20):6289-6299
采用分解袋法,对闽江河口湿地2种挺水植物——芦苇(Phragmites australis)和互花米草(Spartina alterniflora)花和叶枯落物的立枯和倒伏分解过程及C、N、P元素动态进行研究。结果表明:(1)立枯分解是2种湿地盐沼植物重要的分解阶段,干物质损失率在13.26%—31.89%之间。多项式模型能较好描述2种植物花和叶的枯落物分解残留率动态。(2)立枯分解阶段,芦苇花和叶的C含量主要为波动下降,互花米草较为稳定;倒伏阶段后期,2种植物都以升高为主。立枯分解阶段2种植物枯落物N含量略有下降,而倒伏阶段逐渐上升。分解过程中枯落物P含量的波动较大。(3)2种植物花和叶C、N的NAI值在分解过程中<100%。芦苇的花和叶中P的NAI值在立枯和倒伏分解阶段都经历了明显下降和升高的过程,而互花米草在立枯阶段变化不大,倒伏阶段下降较为明显。(4)与芦苇相比,互花米草的花和叶枯落物C库较高,N库较低,P库差异不大。  相似文献   

2.
Mangroves are essential for maintaining local biodiversity and human well-being, and mangrove structure and functioning depend on the macrobenthos. Although exotic cordgrass, Spartina alterniflora, is an increasing threat to the mangrove wetlands (including the associated unvegetated shoals) of China, its effects on the macrobenthic fauna in such wetlands is poorly understood. The macrobenthic faunal communities were compared in (1) an Avicennia marina monoculture vs. an S. alterniflora-invaded A. marina stand (a mixture of A. marina and S. alterniflora) and in (2) an unvegetated shoal vs. an S. alterniflora-invaded shoal that had rapidly become an S. alterniflora monoculture in Zhanjiang, China. S. alterniflora invasion significantly increased plant density regardless of invaded habitat but significantly increased the contents of total carbon, organic matter, and total sulfur in the sediment only in the unvegetated shoal. The presence of S. alterniflora had little influence on indices of the macrobenthic faunal community in the A. marina monoculture, but significantly decreased the density and biomass of macrobenthic faunal community in the unvegetated shoal. These results indicate that the effects of S. alterniflora on the macrobenthic faunal community depend on which type of mangrove habitat is invaded. The composition of the macrobenthic faunal community was more similar between the invaded and non-invaded A. marina stand than between the invaded and non-invaded unvegetated shoal. Overall, the differences in the macrobenthic faunal community between invaded and non-invaded habitats were associated with increases in the sediment organic matter content and plant density.  相似文献   

3.
Spartina alterniflora has widely invaded the saltmarshes of the Yangtze River Estuary and brought negative effects to the ecosystem. Remote sensing technique has recently been used to monitor its distribution, but the similar morphology and canopy structure among S. alterniflora and its neighbor species make it difficult even with high-resolution images. Nevertheless, these species have divergence on phenological stages throughout the year, which cause distinguishing spectral characteristics among them and provide opportunities for discrimination. The field spectra of the S. alterniflora community as well as its major victims, native Phragmites australis and Scirpus mariqueter, were measured in 2009 and 2010 at multi-phenological stages in the Yangtze River Estuary, aiming to find the most appropriate periods for mapping S. alterniflora. Collected spectral data were analyzed separately for every stage firstly by re-sampling reflectance curves into continued 5-nm-wide hyper-spectral bands and then by re-sampling into broad multi-spectral bands – the same as the band ranges of the TM sensor, as well as calculating commonly used vegetation indices. The results showed that differences among saltmarsh communities’ spectral characteristics were affected by their phenological stages. The germination and early vegetative growth stage and the flowering stage were probably the best timings to identify S. alterniflora. Vegetation indices like NDVI, ANVI, VNVI, and RVI are likely to enhance spectral separability and also make it possible to discriminate S. alterniflora at its withering stage.  相似文献   

4.
On the Jiangsu coast, eastern China, Spartina alterniflora, which was introduced artificially into the region, is becoming a dominant plant species in the inter-tidal salt marshes. In order to evaluate the environmental and ecological impact of the colonization of S. alterniflora, we carried out investigations into the benthic macrofauna of the Spartina marshes of the Wanggang area, central Jiangsu coast, in 2006 and 2007. Based on analysis of the data sets obtained, 12 species of macrobenthos have been identified for the Wanggang salt marsh, including S. alterniflora, Cerithidea cingulata, Littorna scabra, Bithynia fuchsiana, Macrophthalmus japonicus, Uca arcuata, Nereis sp., Boleophthalmus petinirostris, Cyclina sinensis, Bullacta exarata, Angustassiminea castanea and Glaucomya chinensis. The results indicate that some of the native species have adapted to the new ecological environment associated with the cordgrass S. alterniflora. The biomass of macrobenthos varies significantly over different parts of the salt marsh. Further, there is a seasonal change in bio-density, with the density in summer (July and August) > autumn (November) > early summer (May). At the landward edge and over the central part of the S. alterniflora marsh, the bio-diversity is higher than the other areas of the marsh.  相似文献   

5.
Our goal was to quantify the coupled process of litter turnover and leaching as a source of nutrients and fixed carbon in oligotrophic, nutrient-limited wetlands. We conducted poisoned and non-poisoned incubations of leaf material from four different perennial wetland plants (Eleocharis spp., Cladium jamaicense, Rhizophora mangle and Spartina alterniflora) collected from different oligotrophic freshwater and estuarine wetland settings. Total phosphorus (TP) release from the P-limited Everglades plant species (Eleocharis spp., C. jamaicense and R. mangle) was much lower than TP release by the salt marsh plant S. alterniflora from N-limited North Inlet (SC). For most species and sampling times, total organic carbon (TOC) and TP leaching losses were much greater in poisoned than non-poisoned treatments, likely as a result of epiphytic microbial activity. Therefore, a substantial portion of the C and P leached from these wetland plant species was bio-available to microbial communities. Even the microbes associated with S. alterniflora from N-limited North Inlet showed indications of P-limitation early in the leaching process, as P was removed from the water column. Leaves of R. mangle released much more TOC per gram of litter than the other species, likely contributing to the greater waterborne [DOC] observed by others in the mangrove ecotone of Everglades National Park. Between the two freshwater Everglades plants, C. jamaicense leached nearly twice as much P than Eleocharis spp. In scaling this to the landscape level, our observed leaching losses combined with higher litter production of C. jamaicense compared to Eleocharis spp. resulted in a substantially greater P leaching from plant litter to the water column and epiphytic microbes. In conclusion, leaching of fresh plant litter can be an important autochthonous source of nutrients in freshwater and estuarine wetland ecosystems.  相似文献   

6.
We quantified the independent impacts of flooding salinity, flooding depth, and flooding frequency on the native species, Phragmites australis and Scirpus mariqueter, and on the invasive species Spartina alterniflora in the Yangtze River Estuary, China. Total biomass of all three species decreased significantly with increasing salinity, but S. alterniflora was less severely affected than P. australis and S. mariqueter. Elevated flooding depth significantly decreased their live aboveground biomass of P. australis and S. mariqueter, while S. alterniflora still had high live aboveground biomass and total biomass even at the highest flooding depth. These findings indicated that S. alterniflora was more tolerant to experimental conditions than the two native species, and an unavoidable suggestion is the expansion of this non-native species in relation to the native counterparts in future scenarios of increased sea-level and saltwater intrusion. Even so, environmental stresses might lead to significant decreases in total biomass and live aboveground biomass of all three species, which would potentially weaken their ability to trap sediments and accumulate organic matter. However, the relatively high belowground-to-aboveground biomass ratio indicated phenotypic plasticity in response to stressful environmental conditions, which suggest that marsh species can adapt to sea-level rise and maintain marsh elevation.  相似文献   

7.
Spartina alterniflora was recorded in 2004 in the Great Brak Estuary, a system along the southern coast of South Africa that closes to the sea. This is alarming as this is a species with a known history as an aggressive invasive plant which has now been found 8000 km from its nearest known location and furthermore it is spreading under atypical conditions of submergence. This first recorded population in Africa indicates the adaptive potential of this invasive grass which survives inundation and non-tidal conditions for months at a time. Spartina alterniflora spread from 2566 m2 in 2006 to a maximum area covered of 10,221 m2 in 2011. There was an increase in silt, sediment organic matter and a significant reduction in sediment redox potential at sites invaded by S. alterniflora. When the estuary closes to the sea the water level rises and S. alterniflora is flooded, limiting opportunities for mechanical and chemical control. Application of a glyphosate-based herbicide in 2012 showed that chemical control was more effective in reducing the stands than mechanical removal. The additional use of imazapyr in 2014 significantly reduced stem density and the proportion of live stems. Spread of this invasive plant to the intertidal marshes in adjacent estuaries is a potential biodiversity threat although, fortunately, this population does not seem to produce viable seed. There is also the concern that hybridization with the resident S. maritima may occur. Important research and management questions remain i.e. how quickly will the natural marsh re-establish following eradication and how can we prevent movement of the grass to other estuaries?  相似文献   

8.
Invasive plants affect soil food webs through various resource inputs including shoot litter, root litter and living root input. The net impact of invasive plants on soil biota has been recognized; however, the relative contributions of different resource input pathways have not been quantified. Through a 2 × 2 × 2 factorial field experiment, a pair of invasive and native plant species (Spartina alterniflora vs. Phragmites australis) was compared to determine the relative impacts of their living roots or shoots and root litter on soil microbial and nematode communities. Living root identity affected bacteria-to-fungi PLFA ratios, abundance of total nematodes, plant-feeding nematodes and omnivorous nematodes. Specifically, the plant-feeding nematodes were 627% less abundant when living roots of invasive S. alterniflora were present than those of native P. australis. Likewise, shoot and root biomass (within soil at 0–10 cm depth) of S. alterniflora was, respectively, 300 and 100% greater than those of P. australis. These findings support the enemy release hypothesis of plant invasion. Root litter identity affected other components of soil microbiota (that is, bacterial-feeding nematodes), which were 34% more abundant in the presence of root litter of P. australis than S. alterniflora. Overall, more variation associated with nematode community structure and function was explained by differences in living roots than root or shoot litter for this pair of plant species sharing a common habitat but contrasting invasion degrees. We conclude that belowground resource input is an important mechanism used by invasive plants to affect ecosystem structure and function.  相似文献   

9.
Although invasions by non-native species represent a major threat to biodiversity and ecosystem functioning, little attention has been paid to the potential impacts of these invasions on methane (CH4) emission and its 13C-CH4-isotope signature in salt marshes. An invasive perennial C4 grass Spartina alterniflora has spread rapidly along the east coast of China since its introduction from North America in 1979. Since its intentional introduction to the Jiuduansha Island in the Yangtze River estuary in 1997, S. alterniflora monocultures have become the dominant component of the Jiuduansha’s vegetation, where monocultures of the native plant Scirpus mariqueter (a C3 grass) used to dominate the vegetation for more than 30 years. We investigated seasonal variation in soil CH4 emission and its 13C-CH4-isotope signature from S. alterniflora and S. mariqueter marshes. The results obtained here show that S. alterniflora invasion increased soil CH4 emissions compared to native S. mariqueter, possibly resulting from great belowground biomass of S. alterniflora, which might have affected soil microenvironments and /or CH4 production pathways. CH4 emissions from soils in both marshes followed similar seasonal patterns in CH4 emissions that increased significantly from April to August and then decreased from August to October. CH4 emissions were positively correlated with soil temperature, but negatively correlated with soil moisture for both S. alterniflora and S. mariqueter soils (p?<?0.05). The δ13C values of CH4 from S. alterniflora, and S. mariqueter soils ranged from -39.0‰ to -45.0‰, and -37.3‰ to -45.7‰, respectively, with the lowest δ13C values occurring in August in both marshes. Although the leaves, roots and soil organic matter of S. alterniflora had significantly higher δ13C values than those of S. mariqueter, S. alterniflora invasion did not significantly change the 13C- isotopic signature of soil emitted CH4 (p?>?0.05). Generally, the CH4 emissions from both invasive S. alterniflora and native S. mariqueter soils in the salt marshes of Jiuduansha Island were very low (0.01–0.26 mg m-2 h-1), suggesting that S. alterniflora invasion along the east coast of China may not be a significant potential source of atmospheric CH4.  相似文献   

10.
We examined the effects of cold stratification and salinity on seed flotation of eight salt marsh species. Four of the eight species were tested for germination success under different stratification, salinity, and flooding conditions. Species were separated into two groups, four species received wet stratification and four dry stratification and fresh seeds of all species were tested for flotation and germination. Fresh seeds of seven out of eight species had flotation times independent of salinity, six of which had average flotation times of at least 50 d. Seeds of Spartina alterniflora and Spartina patens had the shortest flotation times, averaging 24 and 26 d, respectively. Following wet stratification, the flotation time of S. alterniflora seeds in higher salinity water (15 and 36 ppt) was reduced by over 75% and germination declined by more than 90%. Wet stratification reduced the flotation time of Distichlis spicata seeds in fresh water but increased seed germination from 2 to 16% in a fluctuating inundation regime. Fresh seeds of Iva frutescens and S. alternflora were capable of germination and therefore are non-dormant during dispersal. Fresh seeds of I. frutescens had similar germination to dry stratified seeds ranging 25-30%. Salinity reduced seed germination for all species except for S. alterniflora. A fluctuating inundation regime was important for seed germination of the low marsh species and for germination following cold stratification. The conditions that resulted in seeds sinking faster were similar to the conditions that resulted in higher germination for two of four species.  相似文献   

11.
Summary

Many marine invertebrates exhibit highly seasonal and synchronised reproduction, with offspring production often being confined to just two or three days each year. Several models have been proposed to explain the fitness benefits of this reproductive pattern, many of which assume enhanced offspring survival due to temperature constraints placed on fertilization and development at other times of the year. In this investigation the temperature limits and optimum for fertilization were determined for two polychaete species, Arenicola marina and Nereis virens. These two polychaete species are exposed to the same environmental conditions throughout the year, yet breed at very different times. Other seasonal impacts on fertilization, i.e., reduced salinity due to rainfall and the effect of sub-zero temperatures on sperm of A. marina, were also investigated. In both A. marina and N. virens fertilization success was significantly influenced by temperature, with the maximum success recorded at 15–18°C. The ambient seawater temperature at the time of natural spawning for both worms is around 10°C, which means that both species are spawning right at the lower limit for maximum fertilization. Salinity and exposure of A. marina sperm to sub-zero temperatures were also found to influence fertilization success, but only at levels that would not be experienced by these polychaetes under natural conditions at the time of spawning. These results suggest there must be additional selective pressures acting on the fitness of these two polychaetes causing A. marina to breed later than, and N. virens to breed earlier than, the optimum time for fertilization. A. marina apparently waits as late as possible to maximise adult fecundity and survival. N. virens breeds as soon as it can achieve high fertilization to maximise larval and juvenile competitiveness.  相似文献   

12.
Along the North American Pacific coast, the common intertidal sea anemone Anthopleura elegantissima engages in facultative, flexible symbioses with Symbiodinium muscatinei (a dinoflagellate) and Elliptochloris marina (a chlorophyte). Determining how symbiotic state affects host fitness is essential to understanding the ecological significance of engaging in such flexible relationships with diverse symbionts. Fitness consequences of hosting S. muscatinei, E. marina or negligible numbers of either symbiont (aposymbiosis) were investigated by measuring growth, cloning by fission and gonad development after 8.5–11 months of sustained exposure to high, moderate or low irradiance under seasonal environmental conditions. Both symbiotic state and irradiance affected host fitness, leading to divergent life-history strategies. Moderate and high irradiances led to a greater level of gonad development in individuals hosting E. marina, while high irradiance and high summer temperature promoted cloning in individuals hosting S. muscatinei and reduced fitness of aposymbiotic anemones. Associating with S. muscatinei may contribute to the success of A. elegantissima as a spatial competitor on the high shore: (i) by offsetting the costs of living under high temperature and irradiance conditions, and (ii) by promoting a high fission rate and clonal expansion. Our results suggest that basic life-history characteristics of a clonal cnidarian can be affected by the identity of the endosymbionts it hosts.  相似文献   

13.
植被类型对盐沼湿地空气生境节肢动物功能群的影响   总被引:1,自引:0,他引:1  
童春富 《生态学报》2012,32(3):786-795
2007年4-11月,在长江口崇明东滩盐沼湿地的芦苇带、海三棱藨草带和互花米草带设置固定样地,每月小潮期对空气生境的节肢动物进行了扫网取样调查。在此基础上,分析研究了盐沼湿地空气生境节肢动物功能群特征以及植被类型的影响,特别是对互花米草的生态效应进行了进一步讨论。调查期间共获得节肢动物标本3778头,分属2纲11目37科49种。根据不同种类的营养特征将其划分为植食性、捕食寄生性和腐食性三大功能群。其中,植食性功能群的种类、数量最为丰富,涉及1纲6目19科25种,物种数占总数的51.0%,个体数占总数的86.2%;捕食寄生性功能群次之,涉及2纲7目15科21种,物种数占总数的42.9%,个体数占总数的7.8%;腐食性功能群种类、数量最少,涉及1纲1目3科3种,物种数占总数的6.1%,个体数占总数的6.0%。不同植被带捕食寄生性功能群与植食性功能群均具有一定的"天敌跟随"特征,但主要表现在物种数上,而在个体数上的对应关系并不明显。不同植被带功能群的组成、多样性及月际变化特征存在一定差异,但是植被类型对功能群的影响并不显著。与已有研究结果不同,研究中外来种互花米草对空气生境的节肢动物并未表现出显著的负面影响,相应节肢动物功能群的物种数、个体数、多样性、月际变化等特征与其他植被带并没有显著差异。就植食性功能群而言,尽管互花米草带植食性功能群的个体数明显低于其它植被带,但是物种数并没有减少,相应的作用机理还有待进一步研究。  相似文献   

14.
As a species for ecological engineering, Spartina alterniflora was introduced to Chongming Dongtan in 1995, and over the last 10 years, this species has rapidly invaded large areas of the Chongming Dongtan nature reserve. In this study, use of a normalized biomass size-spectra (NBSS) approach was explored to evaluate the possible impacts of S. alterniflora invasion on the benthic communities along gradients of intertidal zones and the invasion history of S. alterniflora within the nature reserve. The results showed that the characteristics of macrobenthic communities and the variation in macrobenthic communities described by the first two CCA axes revealed clearly the gradients of elevation and invasion history of S. alterniflora. The differences in the macrobenthic assemblages between the Spartina alterniflara marshes and the native Phragmites australis marshes decreased with increasing of invasion history of S. alterniflara. The macrobenthic biomass showed a decreasing trend, while the meiobenthic biomass showed a reverse trend along the elevation gradient. The macrobenthic biomass of S. alterniflora marshes with longer invasion history was higher than that at recently invaded S. alterniflora marshes, while the meiobenthic biomass was lower. The slopes of NBSS for the sampling sites showed a trend of steeper slopes with decreasing of elevation and at the recently invaded S. alterniflora marshes than that at marshes with longer invasion history, while the differences between the native P. australis marshes and the S. alterniflora marshes with long invasion history tended to be diminished. The NBSS approach could thus be used more widely to detect possible impacts of S. alterniflara invasion on benthic assemblages. This study also indicated the potential for this approach to provide valuable insights into the ecosystem ecology of invasive species, which could be very important for wetland biodiversity conservation and resource management in the Yangtze River Estuary and other such impacted areas.  相似文献   

15.
We report the occurrence of the orange-striped green anemone Diadumene lineata (Verrill 1871) (=Haliplanella lineata) in salt marshes at the Bahía Blanca Estuary for the first time in August 2005. We also found this species attached to roots and stems of Spartina alterniflora, an association that has never been registered before. After their determination, sampling was performed during a year to evaluate seasonal abundance of this sea anemone. Results showed that D. lineata was present through the whole year, indicating the existence of a stable population. All individuals sampled were found attached to roots or stems of S. alterniflora, with the higher abundances detected in summer. Further studies are necessary to precise the potential effects of this exotic sea anemone on salt marsh communities.  相似文献   

16.
Floating seaweeds play an important role as a habitat for many animals accompanying or attaching to them in offshore waters. It was in 2000 that the first report described abundant distributions of floating seaweeds in offshore waters in the East China Sea in spring. Young individuals of the yellowtail Seriola quinqueradiata are captured for aquaculture purposes from floating seaweeds in the East China Sea. Therefore, a sound understanding of the distributions of floating seaweeds in the East China Sea is needed. Detailed information is especially important during the late winter to early spring, which corresponds to the juvenile period of the yellowtail. Thus, field surveys using R/V Tansei-Maru were conducted in the Japanese Exclusive Economic Zone in the East China Sea from late winter to early spring in 2010 and 2011. We obtained positions of the vessel by GPS and transversal distances from the vessel to a raft by visual observation. Distance sampling method (Thomas et al. 2010) was applied to estimation of floating seaweed densities (rafts km?2). Seaweed rafts were also randomly sampled using nets during the research cruises. In the East China Sea, seaweed rafts were distributed mainly on the continental shelf west of the Kuroshio, especially in waters between 26° N and 30° N. Collected rafts consisted of only one species, Sargassum horneri (Turner) C. Agardh. Taking into account surface currents and geographical distribution of S. horneri, it is estimated that these floating seaweeds originated from natural beds along the coast between mid and south China. Considering the approximate travel times, it is suggested that floating patches are colonized by yellowtails early on during their trips, i.e., close to the Chinese coast.  相似文献   

17.
We examined the effect of whole-ecosystem manipulations of predator removal and nutrient enrichment on saltmarsh macroinfauna in the Plum Island Estuary, Massachusetts. Nitrate and phosphate loading rates were increased 10× above background levels in experimental creeks, and we significantly reduced (by 60%) the abundance of the killifish, Fundulus heteroclitus, a key predator in this system. Two creek pairs were manipulated; Creek Pair 1 for three growing seasons and Creek Pair 2 for one. Infaunal responses were examined in four habitats along the inundation gradient: mudflat, creek wall, Spartina alterniflora, and S. patens habitats. Although benthic microalgae increased synergistically in our treatments, we detected no long-term, population-level numerical response by any taxon. Similarly, no long-term species diversity or community responses were observed. However, nutrient enrichment increased the population biomass of the polychaete Manayunkia aestuarina in the creek wall habitat and the oligochaete Cernosvitoviella immota in the S. alterniflora habitat. No numerical or biomass responses of infauna were detected in predator removal treatments although indirect effects associated with killifish reduction may have contributed to an ephemeral interaction between nutrient addition and predator reduction in S. patens habitat. Our data suggest that population and community responses between benthic microalgae and macroinfauna are not tightly coupled even though some species benefit from increased benthic algae biomass by achieving larger body size.  相似文献   

18.
Accelerating rates of species extinction and invasion have sparked recent interest in how changes in plant community composition can be propagated through food webs. Research in this area has, however, been largely restricted to considerations of how detrital species mixing affects litter decay processes. The consequences of changing detrital resources for whole assemblages of sediment‐dwelling invertebrates remain largely unknown. We manipulated the availability of three detrital sources, Avicennia marina leaves, Posidonia australis blades and Sargassum sp. thalli, on an Australian mudflat to test hypotheses about how changes in the type and number of macrophytes contributing to detrital resources might impact benthic invertebrate assemblages of estuarine soft‐sediments. By controlling for changes in total detrital biomass and ensuring that each detrital source was present in two‐ and three‐species mixes as well as monocultures, our experimental design was able to distinguish among effects of mixing, identity and biomass. Three months after detrital manipulation, macroinvertebrate abundance and species richness differed among treatments according to the biomass of detritus added and non‐additive effects of detrital species mixing. Whereas the mixing of two detrital species generally had an antagonistic effect on macroinvertebrate abundance and richness, faunal assemblages did not appreciably differ between three‐species mixes and monocultures. Generally negative effects of two‐species mixes on macroinvertebrates were opposed by positive effects on microphytobenthos, an important food‐source for many of the animals. Non‐additive effects on sediment communities were particularly apparent when Sargassum sp., the most labile of the three detrital sources considered, was included in two‐species mixes. This demonstration of non‐additive and identity‐dependent effects of detrital species mixing on soft‐sediment communities suggests that predicted compositional changes to aquatic macrophyte communities, resulting from coastal development and climate change, will flow on to effect other components of the estuarine food‐web.  相似文献   

19.
Decomposition of lignocelluloses from Spartina alterniflora in salt-marsh sediments was measured by using 14C-labeled compounds. Rates of decomposition were fastest in the first 4 days of incubation and declined later. Lignins labeled in side chains were mineralized slightly faster than uniformly labeled lignins; 12% of the [side chain-14C]lignin-labeled lignocellulose was mineralized after 816 h of incubation, whereas only 8% of the [U-14C]lignin-labeled lignocelluloses were degraded during this period. The carbohydrate moiety within the lignocellulose complex was degraded about four times faster than the lignin moiety; after 816 h of incubation, 29 to 37% of the carbohydrate moiety had been mineralized. Changes in concentration of lignin and cellulose in litter of S. alterniflora were followed over 2 years of decay. Cellulose disappeared from litter more rapidly than lignin; 50% of the initial content of cellulose was lost after 130 days, whereas lignin required 330 to 380 days for 50% loss. The slow loss of lignin compared with other litter components resulted in a progressive enrichment of litter in lignin content. The rates of mineralization of [14C]lignocelluloses in marsh sediments were similar to the rates of lignocellulose decomposition in litter on the marsh.  相似文献   

20.
Climate‐driven range shifts of foundation species could alter ecosystem processes and community composition by providing different resources than resident foundation species. Along the US Atlantic coast, the northward expanding foundation species, black mangrove Avicennia germinans, is replacing the dominant salt marsh foundation species, marsh cordgrass Spartina alterniflora. These species have distinct detrital attributes that ostensibly provide different resources to epifauna. We experimentally examined how detritus of these species affects decomposition and community composition in different habitat contexts at regional and local scales. First, we manipulated detritus identity (Avicennia, Spartina) at 13 sites across a 5° latitudinal gradient spanning mangrove, mixed marsh‐mangrove and salt marsh habitats. Across latitude, we found that Avicennia detritus decomposed 2–4 times faster than Spartina detritus, suggesting that detrital turnover will increase with mangrove expansion. Epifaunal abundance and richness increased 2–7 times from south to north (mangrove to salt marsh) and were equivalent between Avicennia and Spartina detritus except for crabs, a dominant taxonomic group that preferred Spartina detritus. Second, to examine the whether changing habitat context affected regional patterns, we manipulated detritus identity and surrounding habitat type (mangrove, salt marsh) at a single mixed site, also including inert mimics to separate structural and nutritional roles of detritus. Epifaunal richness was similar between the two detrital types, but crabs were 2–7 times more abundant in Spartina detritus due to its structural attributes. Surrounding habitat type did not influence decomposition rate or community patterns, which suggests that latitudinal influences, not surrounding habitat, drove the regional community patterns in the first experiment. Overall, mangrove expansion could alter epifaunal communities due to the lower structural value and faster turnover of mangrove detritus. As species shift with changing climate, understanding foundation species substitutability is critical to predict community change, but we must account for concomitant environmental changes that also modify communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号