首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have studied Ca2+ currents in ascidian eggs using the whole-cell clamp technique. T and L components, as observed in somatic cells, are present and the L-type current predominates. Since the IV relationship for these inward currents overlap at -30 mV, separation of the two components using different voltage regimes is not feasible. Increasing external Ca2+ results in larger currents. The L-type current decreases in a dose-dependent fashion in the presence of Mn2+ and Nifedipine, while the T-type current is inhibited in Ni2+. When Ba2+ was used as the carrier ion, channel kinetics and conductance were completely altered. Considering the density and kinetics of L-type channels in unfertilized eggs it is probable they play an important role in regulating cytosolic Ca2+ during early developmental processes.  相似文献   

2.
Intracellular calcium ion concentration ([Ca(2+)](i)) transients are observed in the fertilized eggs of all species investigated so far, and are critical for initiating several events related to egg activation and cell cycle control. Here, we investigated the role of the Mos/MEK/ERK cascade and Cdk1 on Ca(2+) oscillations in fertilized ascidian eggs. The egg of the ascidian Phallusia nigra shows [Ca(2+)](i) oscillations after fertilization: Ca(2+) waves immediately following fertilization (phase I), and [Ca(2+)](i) oscillations between the first and second polar body extrusions (phase II). Our results show that in P. nigra eggs, ERK activity peaked just before the extrusion of the first polar body, and decreased gradually, eventually disappearing at the extrusion of the second polar body. Cyclin-dependent protein kinase 1(Cdk1) activity decreased to undetectable levels immediately after fertilization, and then periodically increased according to the meiotic and mitotic cell cycle. When the unfertilized eggs were incubated with U0126, an inhibitor of MEK, before insemination, ERK was immediately inactivated, and the phase II [Ca(2+)](i) oscillations disappeared. Alternatively, when the constitutively active Mos protein (GST-Mos) was injected into the unfertilized eggs, ERK activity was preserved for at least 120 min after fertilization, and the phase II [Ca(2+)](i) oscillations lasted for more than 120 min after the second polar body extrusion. These results suggest that ERK activity is necessary for maintaining [Ca(2+)](i) oscillations. GST-ΔN85-cyclin, which maintains Cdk1 activity, caused ERK activity in the eggs to persist for over 120 min after fertilization, and prolonged [Ca(2+)](i) oscillations. Moreover, the effects of GST-ΔN85-cyclin on the egg were abrogated by the application of U0126. Thus, Cdk1-mediated [Ca(2+)](i) oscillations seem to require ERK activity. However, GST-Mos triggered [Ca(2+)](i) oscillations after the second polar body extrusion, whereas GST-ΔN85-cyclin did not, although it prolongs the duration of [Ca(2+)](i) oscillations. Interestingly, GST-ΔN85-cyclin increased the frequency of [Ca(2+)](i) transients in the Mos-induced [Ca(2+)](i) oscillations after the extrusion of the second polar body. Thus, Cdk1 could maintain, but not activate, ERK and [Ca(2+)](i) oscillations. ERK activity and [Ca(2+)](i) oscillations seem to form a negative feedback loop which may be responsible for maintaining the meiotic period.  相似文献   

3.
On mammalian fertilization, long-lasting Ca2+ oscillations are induced in the egg by the fusing spermatozoon. While each transient Ca2+ increase in Ca2+ concentration ([Ca2+]) in the cytosol is due to Ca2+ release from the endoplasmic reticulum (ER), Ca2+ influx from outside is required for Ca2+ oscillations to persist. In this study, we investigated how Ca2+ influx is interrelated to the cycle of Ca2+ release and uptake by the intracellular Ca2+ stores during Ca2+ oscillations in fertilized mouse eggs. In addition to monitoring cytosolic [Ca2+] with fura-2, the influx rate was evaluated using Mn2+ quenching technique, and the change in [Ca2+] in the ER lumen was visualized with a targeted fluorescent probe. We found that the influx was stimulated after each transient Ca2+ release and then diminished gradually to the basal level, and demonstrated that the ER Ca2+ stores once depleted by Ca2+ release were gradually refilled until the next Ca2+ transient to be initiated. Experiments altering extracellular [Ca2+] in the middle of Ca2+ oscillations revealed the dependence of both the refilling rate and the oscillation frequency on the rate of Ca2+ influx, indicating the crucial role of Ca2+ influx in determining the intervals of Ca2+ transients. As for the influx pathway supporting Ca2+ oscillations to persist, STIM1/Orai1-mediated store-operated Ca2+ entry (SOCE) may not significantly contribute, since neither known SOCE blockers nor the expression of protein fragments that interfere the interaction between STIM1 and Orai1 inhibited the oscillation frequency or the influx rate.  相似文献   

4.
In mammalian eggs, sperm-induced Ca2+ oscillations at fertilization are the primary trigger for egg activation and initiation of embryonic development. Identifying the downstream effectors that decode this unique Ca2+ signal is essential to understand how the transition from egg to embryo is coordinated. Here, we investigated whether conventional PKCs (cPKCs) can decode Ca2+ oscillations at fertilization. By monitoring the dynamics of GFP-labeled PKCalpha and PKCgamma in living mouse eggs, we demonstrate that cPKCs translocate to the egg membrane at fertilization following a pattern that is shaped by the amplitude, duration, and frequency of the Ca2+ transients. In addition, we show that cPKC translocation is driven by the C2 domain when Ca2+ concentration reaches 1-3 microM. Finally, we present evidence that one physiological function of activated cPKCs in fertilized eggs is to sustain long-lasting Ca2+ oscillations, presumably via the regulation of store-operated Ca2+ entry.  相似文献   

5.
Sperm-specific phospholipase Czeta (PLCzeta) is known to induce intracellular Ca(2+) oscillations and subsequent early embryonic development when expressed in mouse eggs by injection of RNA encoding PLCzeta (Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K., and Lai, F. A. (2002) Development 129, 3533-3544). The present study addressed characteristics of purified mouse PLCzeta protein that was synthesized using the baculovirus/Sf9 cell expression system. Microinjection of recombinant PLCzeta protein into mouse eggs induced serial Ca(2+) spikes quite similar to those produced by the injection of sperm extract, probably because of repetitive Ca(2+) release from the endoplasmic reticulum caused by continuously produced inositol 1,4,5-trisphosphate. Recombinant PLCdelta1 also induced Ca(2+) oscillations, but a 20-fold higher concentration was required compared with PLCzeta. In the enzymatic assay of phosphatidylinositol 4,5-bisphosphate hydrolyzing activity in vitro at various calcium ion concentrations ([Ca(2+)]), PLCzeta exhibited a significant activity at [Ca(2+)] as low as 10 nm and had 70% maximal activity at 100 nm [Ca(2+)] that is usually the basal intracellular calcium ion concentration level of cells. On the other hand, the activity of PLCdelta1 increased at a [Ca(2+)] between 1 and 30 microm. EC(50) was 52 nm for PLCzeta and 5.7 microm for PLCdelta1. Thus, PLCzeta has an approximately 100-fold higher Ca(2+) sensitivity than PLCdelta1. The ability of purified PLCzeta protein to induce Ca(2+) oscillations qualifies PLCzeta as a proper candidate of the mammalian egg-activating sperm factor. Furthermore, such a high Ca(2+) sensitivity of PLC activity as PLCzeta that can be active in cells at the resting state is thought to be an appropriate characteristic of the sperm factor, which is introduced into the ooplasm upon sperm-egg fusion, triggers Ca(2+) release first, and maintains Ca(2+) oscillations.  相似文献   

6.
Mammalian eggs and embryos rely upon mitochondrial ATP production to survive and proceed through preimplantation development. Ca(2+) oscillations at fertilization have been shown to cause a reduction of mitochondrial NAD+ and flavoproteins, suggesting they might also cause changes in cytosolic ATP levels. Here, we have monitored intracellular Ca(2+) and ATP levels in fertilizing mouse eggs by imaging the fluorescence of a Ca(2+) dye and luminescence of firefly luciferase. At fertilization an initial increase in ATP levels occurs with the first Ca(2+) transient, with a second increase occurring about 1 h later. The increase in cytosolic ATP was estimated to be from a prefertilization concentration of 1.9 mM to a peak value of 3 mM. ATP levels returned to prefertilization values as the Ca(2+) oscillations terminated. An increase in ATP also occurred with other stimuli that increase Ca(2+) and it was blocked when Ca(2+) oscillations were inhibited by BAPTA injection. Additionally, an ATP increase was not seen when eggs were activated by cycloheximide, which does not cause a Ca(2+) increase. These data suggest that mammalian fertilization is associated with a sudden but transient increase in cytosolic ATP and that Ca(2+) oscillations are both necessary and sufficient to cause this increase in ATP levels.  相似文献   

7.
The sulfhydryl reagent thimerosal enhanced the sensitivity of hamster eggs to injected inositol 1,4,5-trisphosphate (InsP3) or Ca2+ to generate regenerative Ca2+ release from intracellular pools. A monoclonal antibody (mAb) to the InsP3 receptor blocked both the InsP3-induced Ca2+ release (IICR) and Ca(2+)-induced Ca2+ release (CICR). The mAb also blocked Ca2+ oscillations induced by thimerosal. The results indicate that thimerosal enhances IICR sensitized by cytosolic Ca2+, but not CICR from InsP3-insensitive pools, and causes repetitive Ca2+ releases from InsP3-sensitive pools.  相似文献   

8.
The calcium ([Ca(2+)](i)) oscillations associated with mammalian fertilization and required to induce egg activation occur during M-phase stages of the cell cycle. The molecular mechanisms underlying this regulation remain unproven and may be multi-layered. Type 1 inositol 1,4,5-trisphosphate receptors (IP(3)R-1), which mediate [Ca(2+)](i) release during fertilization, have emerged as key regulatory units because they contain multiple phosphorylation consensus sites and undergo changes in cellular location and mass prior to and following fertilization. Hence, control of IP(3)R-1 function together with regulation of PLCzeta activity, the putative sperm factor, may combine to impart cell cycle and species-specific [Ca(2+)](i) oscillations characteristic of mammalian fertilization.  相似文献   

9.
Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal‐fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse‐chase LC‐MS‐based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine‐derived fluxes: Oxidation of glucose‐derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation.  相似文献   

10.
We determined the effect of aromatic aminoacid stimulation of the human extracellular Ca2+-sensingreceptor (CaR) on intracellular Ca2+ concentration([Ca2+]i) in single HEK-293 cells. Additionof L-phenylalanine or L-tryptophan (at 5 mM)induced [Ca2+]i oscillations from a restingstate that was quiescent at 1.8 mM extracellular Ca2+concentration ([Ca2+]e). Each[Ca2+]i peak returned to baseline values, andthe average oscillation frequency was ~1 min1 at37°C. Oscillations were not induced or sustained if the[Ca2+]e was reduced to 0.5 mM, even in thecontinued presence of amino acid. Average oscillation frequency inresponse to an increase in [Ca2+]e (from 1.8 to 2.5-5 mM) was much higher (~4 min1) than thatinduced by aromatic amino acids. Oscillations in response to[Ca2+]e were sinusoidal whereas those inducedby amino acids were transient. Thus both amino acids andCa2+, acting through the same CaR, produce oscillatoryincreases in [Ca2+]i, but the resultantoscillation pattern and frequency allow the cell to discriminate whichagonist is bound to the receptor.

  相似文献   

11.
Ishii K  Hirose K  Iino M 《EMBO reports》2006,7(4):390-396
Although many cell functions are regulated by Ca(2+) oscillations induced by a cyclic release of Ca(2+) from intracellular Ca(2+) stores, the pacemaker mechanism of Ca(2+) oscillations remains to be explained. Using green fluorescent protein-based Ca(2+) indicators that are targeted to intracellular Ca(2+) stores, the endoplasmic reticulum (ER) and mitochondria, we found that Ca(2+) shuttles between the ER and mitochondria in phase with Ca(2+) oscillations. Following agonist stimulation, Ca(2+) release from the ER generated the first Ca(2+) oscillation and loaded mitochondria with Ca(2+). Before the second Ca(2+) oscillation, Ca(2+) release from the mitochondria by means of the Na(+)/Ca(2+) exchanger caused a gradual increase in cytoplasmic Ca(2+) concentration, inducing a regenerative ER Ca(2+) release, which generated the peak of Ca(2+) oscillation and partially reloaded the mitochondria. This sequence of events was repeated until mitochondrial Ca(2+) was depleted. Thus, Ca(2+) shuttling between the ER and mitochondria may have a pacemaker role in the generation of Ca(2+) oscillations.  相似文献   

12.
Calcium (Ca2+) oscillations play fundamental roles in various cell signaling processes and have been the subject of numerous modeling studies. Here we have implemented a general mathematical model to simulate the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations. In addition, we have compared two different models of the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and their influences on intracellular Ca2+ oscillations. Store-operated Ca2+ entry following Ca2+ depletion of endoplasmic reticulum (ER) is an important component of Ca2+ signaling. We have developed a phenomenological model of store-operated Ca2+ entry via store-operated Ca2+ (SOC) channels, which are activated upon ER Ca2+ depletion. The depletion evokes a bi-phasic Ca2+ signal, which is also produced in our mathematical model. The IP3R is an important regulator of intracellular Ca2+ signals. This IP3 sensitive Ca2+ channel is also regulated by Ca2+. We apply two IP3R models, the Mak-McBride-Foskett model and the De Young and Keizer model, with significantly different channel characteristics. Our results show that the two separate IP3R models evoke intracellular Ca2+ oscillations with different frequencies and amplitudes. Store-operated Ca2+ entry affects the oscillatory behavior of these intracellular Ca2+ oscillations. The IP3 threshold is altered when store-operated Ca2+ entry is excluded from the model. Frequencies and amplitudes of intracellular Ca2+ oscillations are also altered without store-operated Ca2+ entry. Under certain conditions, when intracellular Ca2+ oscillations are absent, excluding store-operated Ca2+ entry induces an oscillatory response. These findings increase knowledge concerning store-operated Ca2+ entry and its impact on intracellular Ca2+ oscillations.  相似文献   

13.
Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations.   总被引:9,自引:5,他引:4  
Based on realistic mechanisms of Ca2+ buffering that include both stationary and mobile buffers, we derive and investigate models of Ca2+ diffusion in the presence of rapid buffers. We obtain a single transport equation for Ca2+ that contains the effects caused by both stationary and mobile buffers. For stationary buffers alone, we obtain an expression for the effective diffusion constant of Ca2+ that depends on local Ca2+ concentrations. Mobile buffers, such as fura-2, BAPTA, or small endogenous proteins, give rise to a transport equation that is no longer strictly diffusive. Calculations are presented to show that these effects can modify greatly the manner and rate at which Ca2+ diffuses in cells, and we compare these results with recent measurements by Allbritton et al. (1992). As a prelude to work on Ca2+ waves, we use a simplified version of our model of the activation and inhibition of the IP3 receptor Ca2+ channel in the ER membrane to illustrate the way in which Ca2+ buffering can affect both the amplitude and existence of Ca2+ oscillations.  相似文献   

14.
We propose a mechanism for agonist-stimulated Ca2+ oscillations that involves two roles for cytosolic Ca2+: (a) inhibition of inositol-1,4,5-trisphosphate (IP3) stimulated Ca2+ release from the endoplasmic reticulum (ER) and (b) stimulation of the production of IP3 through its action on phospholipase C (PLC), via a Gq protein related mechanism. Relying on quantitative experiments by Parker, I., and I. Ivorra (1990. Proc. Natl. Acad. Sci. USA. 87:260-264) on the inhibition of Ca2+ release from the ER using caged-IP3, we develop a kinetic model of inhibition that allows us to simulate closely their experiments. The model assumes that the ER IP3 receptor is a tetramer of independent subunits that can bind both Ca2+ and IP3. Upon incorporation of the action of Ca2+ on PLC that leads to production of IP3, we observe in-phase-oscillations of Ca2+ and IP3 at intermediate values of agonist stimulation. The oscillations occur on a time scale of 10-20 s, which is comparable to the time scale for inhibition in Xenopus oocytes. Analysis of the mechanism shows that Ca(2+)-inhibition of IP3-stimulated Ca2+ release from the ER is an essential step in the mechanism. We also find that the effect of Ca2+ on PLC can lead to an indirect increase of cytosolic Ca2+, superficially resembling "Ca(2+)-induced Ca(2+)-release." The mechanism that we propose appears to be consistent with recent experiments on REF52 cells by Harootunian, A. T., J. P. Y. Kao, S. Paranjape, and R. Y. Tsien. (1991. Science [Wash. DC]. 251:75-78.) and we propose additional experiments to help test its underlying assumptions.  相似文献   

15.
A simplified mechanism that mimics "adaptation" of the ryanodine receptor (RyR) has been developed and its significance for Ca2+(-)induced Ca2+ release and Ca2+ oscillations investigated. For parameters that reproduce experimental data for the RyR from cardiac cells, adaptation of the RyR in combination with sarco/endoplasmic reticulum Ca2+ ATPase Ca2+ pumps in the internal stores can give rise to either low [Cai2+] steady states or Ca2+ oscillations coexisting with unphysiologically high [Cai2+] steady states. In this closed-cell-type model rapid, adaptation-dependent Ca2+ oscillations occur only in limited ranges of parameters. In the presence of Ca2+ influx and efflux from outside the cell (open-cell model) Ca2+ oscillations occur for a wide range of physiological parameter values and have a period that is determined by the rate of Ca2+ refilling of the stores. Although the rate of adaptation of the RyR has a role in determining the shape and the period of the Ca2+ spike, it is not essential for their existence. This is in marked contrast with what is observed for the inositol 1,4,5-trisphosphate receptor for which the biphasic activation and inhibition of its activity by Ca2+ are sufficient to produce oscillations. Results for this model are compared with those based on Ca2+(-)induced Ca2+ release alone in the bullfrog sympathetic neuron. This kinetic model should be suitable for analyzing phenomena associated with "Ca2+ sparks," including their merger into Ca2+ waves in cardiac myocytes.  相似文献   

16.
Intracellular Ca2+ oscillations in fertilized mammalian eggs, the key signal that stimulates egg activation and early embryonic development, are regulated by inositol 1,4,5-trisphosphate (IP3) signaling pathway. We investigated temporal changes in intracellular IP3 concentration ([IP3]i) in mouse eggs, using a fluorescent probe based on fluorescence resonance energy transfer between two green fluorescent protein variants, during Ca2+ oscillations induced by fertilization or expression of phospholipase Czeta (PLCzeta), an egg-activating sperm factor candidate. Fluorescence measurements suggested the elevation of [IP3]i in fertilized eggs, and the enhancement of PLCzeta-mediated IP3 production by cytoplasmic Ca2+ was observed during Ca2+ oscillations or in response to CaCl2 microinjection. The results supported the view that PLCzeta is the sperm factor to stimulate IP3 pathway, and suggested that high Ca2+ sensitivity of PLCzeta activity and positive feedback from released Ca2+ are important for triggering and maintaining Ca2+ oscillations.  相似文献   

17.
Fertilization of mammalian eggs is characterized by a series of Ca2+ oscillations triggered by a phospholipase C activity. These Ca2+ increases and the parallel generation of diacylglycerol (DAG) stimulate protein kinase C (PKC). However, the dynamics of PKC activity have not been directly measured in living eggs. Here, we have monitored the dynamics of PKC‐induced phosphorylation in mouse eggs, alongside Ca2+ oscillations, using fluorescent C‐kinase activity reporter (CKAR) probes. Ca2+ oscillations triggered either by sperm, phospholipase C zeta (PLCζ) or Sr2+ all caused repetitive increases in PKC‐induced phosphorylation, as detected by CKAR in the cytoplasm or plasma membrane. The CKAR responses lasted for several minutes in both the cytoplasm and plasma membrane then returned to baseline values before subsequent Ca2+ transients. High frequency oscillations caused by PLCζ led to an integration of PKC‐induced phosphorylation. The conventional PKC inhibitor, Gö6976, could inhibit CKAR increases in response to thapsigargin or ionomycin, but not the repetitive responses seen at fertilization. Repetitive increases in PKCδ activity were also detected during Ca2+ oscillations using an isoform‐specific δCKAR. However, PKCδ may already be mostly active in unfertilized eggs, since phorbol esters were effective at stimulating δCKAR only after fertilization, and the PKCδ‐specific inhibitor, rottlerin, decreased the CKAR signals in unfertilized eggs. These data show that PKC‐induced phosphorylation outlasts each Ca2+ increase in mouse eggs but that signal integration only occurs at a non‐physiological, high Ca2+ oscillation frequency. The results also suggest that Ca2+‐induced DAG formation on intracellular membranes may stimulate PKC activity oscillations at fertilization. J. Cell. Physiol. 228: 110–119, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
19.
I model the behavior of intracellular Ca(2+) release with high buffer concentrations. The model uses a spatially discrete array of channel clusters. The channel subunit dynamics is a stochastic representation of the DeYoung-Keizer model. The calculations show that the concentration profile of fast buffer around an open channel is more localized than that of slow buffers. Slow buffers allow for release of larger amounts of Ca(2+) from the endoplasmic reticulum and hence bind more Ca(2+) than fast buffers with the same dissociation constant and concentration. I find oscillation-like behavior for high slow buffer concentration and low Ca(2+) content of the endoplasmic reticulum. High concentration of slow buffer leads to oscillation-like behavior by repetitive wave nucleation for high Ca(2+) content of the endoplasmic reticulum. Localization of Ca(2+) release by slow buffer, as used in experiments, can be reproduced by the modeling approach.  相似文献   

20.
We have analysed in detail the Na+ content and Na+ influx during fertilization and first divisions of the sea urchin egg (Paracentrotus lividus) using a filtration technique devised to eliminate rapidly contamination by the Na+ of external sea water. In the first 5 min following fertilization the egg fills up with Na+ (+ 30%). Thereafter Na+ is extruded and the Na+ content stabilizes at about 60% of the unfertilized egg level by the second cleavage (2 h). The initial increase in Na+ content is due to a large increase in Na+ influx already detected at 20 sec. The Na+ influx reaches its maximum at 1 min and its minimum at 5 min. H+ excretion follows the same kinetics. A second increase in Na+ influx is noted 5–10 min after fertilization; it reaches its maximum at prophase metaphase (30 min) and its minimum during cleavage (60 min). These oscillations in Na+ influx were observed for the first three divisions. Fertilization also immediately stimulates the Na+ efflux which remains elevated throughout the cell cycle and is responsible for the depletion of the Na+ content of the embryos. Activation of the eggs by weak amine bases (5 mM NH4Cl) which bypasses the early cortical reaction produces only a depletion in the Na+ content of the egg similar to that produced by fertilization. NH4Cl also increases the Na+ influx soon after fertilization, although no transient variations are noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号