首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The Wiskott-Aldrich homology domain 2 (WH2) family protein Spir and the formin Cappuccino belong to two distinct classes of actin organizers. Despite their functional classification as actin organizers, a major defect of Drosophila spire and cappuccino mutant oocytes is a failure in the orientation of microtubule plus ends towards the posterior pole. Mammalian homologues of spire are the spir-1 and spir-2 genes. The mouse and human formin-1 and formin-2 genes have high similarity to the cappuccino gene. The mouse formin-2 gene has been found to be expressed in the developing nervous system and in neuronal cells of the adult brain. By analyzing the expression of the spir-1 gene we show that spir-1 and formin-2 have a nearly identical expression pattern during mouse embryogenesis and in the adult brain. In mouse embryos both genes are expressed in the developing nervous system. In the adult brain high expression of the genes was found in the Purkinje cells of the cerebellum and in neuronal cells of the hippocampus and dentate gyrus.  相似文献   

2.
The Disabled-1 (Dab1) gene encodes a key regulator of Reelin signaling. Reelin is a large glycoprotein secreted by neurons of the developing brain, particularly Cajal-Retzius cells. The DAB1 protein docks to the intracellular part of the Reelin very low density lipoprotein receptor and apoE receptor type 2 and becomes tyrosine-phosphorylated following binding of Reelin to cortical neurons. In mice, mutations of Dab1 and Reelin generate identical phenotypes. In humans, Reelin mutations are associated with brain malformations and mental retardation; mutations in DAB1 have not been identified. Here, we define the organization of Dab1, which is similar in human and mouse. The Dab1 gene spreads over 1100 kb of genomic DNA and is composed of 14 exons encoding the major protein form, some alternative internal exons, and multiple 5'-exons. Alternative polyadenylation and splicing events generate DAB1 isoforms. Several 5'-untranslated regions (UTRs) correspond to different promoters. Two 5'-UTRs (1A and 1B) are predominantly used in the developing brain. 5'-UTR 1B is composed of 10 small exons spread over 800 kb. With a genomic length of 1.1 Mbp for a coding region of 5.5 kb, Dab1 provides a rare example of genomic complexity, which will impede the identification of human mutations.  相似文献   

3.
4.
The murine Lbx2 gene is a member of the ladybird family of homeobox genes, which is expressed in the developing urogenital system, eye, and brain. Using transgenic mice, we demonstrate that 9 kb of the 5' flanking region of mouse Lbx2 is able to direct expression of a reporter gene in a tissue-specific manner recapitulating the endogenous expression pattern. This regulatory region provides a novel reagent allowing for transgenic expression in the developing urogenital ridge. In addition, we describe the identification of the human homologue, LBX2. Comparison of the human LBX2 and mouse Lbx2 sequences upstream of the coding regions reveals sequence conservation suggesting conserved regulatory regions. Both the human LBX2 and the mouse Lbx2 genes have similar genomic structures and are composed of two exons separated by an intron. We mapped the mouse Lbx2 gene to 35 cM on chromosome 6 and the human LBX2 gene to a homologous region of chromosome 2p13. This is a candidate region for several inherited disorders, including Alstr?m syndrome, a disorder that includes ocular, urogenital, and renal abnormalities. Given the expression pattern of Lbx2, the chromosomal location in humans, and the potential function of mammalian ladybird genes, we have begun to analyze patients with ocular disorders and those with Alstr?m syndrome for mutations in LBX2. Although polymorphisms were identified, our results indicate that mutations in the coding region of LBX2 do not account for Alstr?m syndrome in the six kindreds analyzed.  相似文献   

5.
The osa gene of Drosophila melanogaster encodes a nuclear protein that is a component of the Brahma chromatin-remodeling complex. Osa is required for embryonic segmentation, development of the notum and wing margin, and photoreceptor differentiation. In these tissues, osa mutations have effects opposite to those caused by wingless (wg) mutations, suggesting that osa functions as an antagonist of wg signaling. Here we describe the cloning and characterization of mammalian orthologues of osa. Three evolutionarily conserved domains were identified in Osa family members: the N-terminal Bright domain and C-terminally located Osa homology domains 1 and 2. RNase protection analysis indicates a widespread expression of the Osa1 gene during mouse development, in adult tissues, and in cultured cell lines. The Osa1 gene was localized to mouse chromosome 4, within the region syntenic to chromosomal position 1p35-p36 of its human counterpart. We present evidence that the OSA1 product is localized in the nucleus and associates with human Brahma complex, which suggests evolutionarily conserved function for Osa in gene regulation between mammals and Drosophila.  相似文献   

6.
Vidal R  Calero M  Révész T  Plant G  Ghiso J  Frangione B 《Gene》2001,266(1-2):95-102
The BRI3 gene is a member of the BRI gene family, made up of at least three different genes (BRI1-3). Previous studies established the cDNA sequence and structure of the human and mouse BRI1 and BRI2 genes and we recently reported that mutations in the BRI2 isoform, located on chromosome 13, are associated with dementia in humans. In the present work, we determine the complete cDNA sequence and genomic organization of the human BRI3 gene. BRI3 codes for a polypeptide of 267 amino acids, with a Mr of 30 KDa and a pI of 8.47. The amino acid sequence is 43.7% identical to the sequence of the human BRI2, and 38.3% identical to that of human BRI1, with the highest percentage of amino acid identity being concentrated on the C-terminal half of the molecules. In Northern blots, BRI3 cDNA hybridizes only one message of approximately 2.1 kilobases, which is predominantly present in the human brain. The BRI3 gene is localized on chromosome 2 and consists of six exons spanning more than 20 kb. Homology search of EST data banks retrieved a Caenorhabditis briggsae homolog of BRI, indicating that the BRI gene belongs to a strongly conserved gene family. These studies, aimed at characterizing the members of the BRI gene family, may provide valuable clues to the understanding of their normal function and how mutations in BRI2 can cause neurodegeneration and dementia similar to Alzheimer's disease.  相似文献   

7.
Three homeobox genes, one from Drosophila melanogaster (Drosophila Hmx gene) and two from mouse (murine Hmx2 and Hmx3) were isolated and the full-length cDNAs and corresponding genomic structures were characterized. The striking homeodomain similarity encoded by these three genes to previously identified genes in sea urchin, chick and human, as well as the recently cloned murine Hmx1 gene, and the low homology to other homeobox genes indicate that the Hmx genes comprise a novel gene family. The widespread existence of Hmx genes in the animal kingdom suggests that this gene family is of ancient origin. Drosophila Hmx was mapped to the 90B5 region of Chromosome 3 and at early embryonic stages is primarily expressed in distinct areas of the neuroectoderm and subsets of neuroblasts in the developing fly brain. Later its expression continues in rostral areas of the brain in a segmented pattern, suggesting a putative role in the development of the Drosophila central nervous system. During evolution, mouse Hmx2 and Hmx3 may have retained a primary function in central nervous system development as suggested by their expression in the postmitotic cells of the neural tube, as well as in the hypothalamus, the mesencephalon, metencephalon and discrete regions in the myelencephalon during embryogenesis. Hmx1 has diverged from other Hmx members by its expression in the dorsal root, sympathetic and vagal nerve (X) ganglia. Aside from their expression in the developing nervous system, all three Hmx genes display expression in sensory organ development, and in the adult uterus. Hmx2 and Hmx3 show identical expression in the otic vesicle, whereas Hmx1 is strongly expressed in the developing eye. Transgenic mouse lines were generated to examine the DNA regulatory elements controlling Hmx2 and Hmx3. Transgenic constructs spanning more than 31 kb of genomic DNA gave reproducible expression patterns in the developing central and peripheral nervous systems, eye, ear and other tissues, yet failed to fully recapitulate the endogenous expression pattern of either Hmx2 or Hmx3, suggesting both the presence and absence of certain critical enhancers in the transgenes, or the requirement of proximal enhancers to work synergistically.  相似文献   

8.
9.
10.
Cytochrome c oxidase (COX) deficiency is the most common cause of Leigh syndrome (LS). COX consists of ten nuclear-encoded and three mtDNA-encoded structural subunits. Although the nucleotide sequences of all 13 genes are known, no mutation was found in nuclear-encoded subunit genes of COX-deficiency patients. Zhu et al. (1998) and Tiranti et al. (1998) found nine mutations in the surfeit 1 (SURF1) gene in LS families with COX deficiency. The mouse surfeit gene cluster consists of six closely spaced housekeeping genes unrelated by sequence homology. Except for the Surf3 gene, the function is still not known. The juxtaposition of at least five of the surfeit genes is conserved between birds and mammals. We identified two novel mutations of SURF1 in a Japanese LS patient with COX deficiency using direct sequencing analysis. Firstly, a 2-bp deletion at nucleotide position 790 (790delAG) in exon 8 was found, which shifts the reading frame such that the mutant protein has a completely different amino acid sequence from codon 264 to the premature stop codon at 290. Secondly, we found a T-to-G transversion at nucleotide 820, resulting in the substitution of tyrosine by aspartic acid at codon 274 (Y274D). We also studied the parents' genes, and found that the Y274D mutation was in his father and the 790delAG mutation was in his mother heterozygously. Therefore, we concluded that the patient was a compound heterozygote with these mutations. These are the first pathogenetic SURF1 mutations identified in a Japanese family.  相似文献   

11.
Plexin-domain containing 2 (Plxdc2) is a relatively uncharacterised transmembrane protein with an area of nidogen homology and a plexin repeat (PSI domain) in its extracellular region. Here, we describe Plxdc2 expression in the embryonic mouse, with particular emphasis on the developing central nervous system. Using light microscopy and optical projection tomography (OPT), we analyse RNA in situ hybridization patterns and expression of two reporter genes, beta-geo (a fusion of beta-galactosidase to neomycin phosphotransferase) and placental alkaline phosphatase (PLAP) in a Plxdc2 gene trap mouse line (KST37; [Leighton, P.A., Mitchell, K.J., Goodrich, L.V., Lu, X., Pinson, K., Scherz, P., Skarnes, W.C., Tessier-Lavigne, M., 2001. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410, 174-179]). At mid-embryonic stages (E9.5-E11.5) Plxdc2-betageo expression is prominent in a number of patterning centres of the brain, including the cortical hem, midbrain-hindbrain boundary and the midbrain floorplate. Plxdc2 is expressed in other tissues, most notably the limbs, lung buds and developing heart, as well as the spinal cord and dorsal root ganglia. At E15.5, expression is apparent in a large number of discrete nuclei and structures throughout the brain, including the glial wedge and derivatives of the cortical hem. Plxdc2-betageo expression is particularly strong in the developing Purkinje cell layer, especially in the posterior half of the cerebellum. The PLAP marker is expressed in a number of axonal tracts, including the posterior commissure, mammillotegmental tract and cerebellar peduncle. We compare Plxdc2-betageo expression in the embryonic brain with the much more restricted expression of the related gene Plxdc1 and with members of the Wnt family (Wnt3a, Wnt5a and Wnt8b) that show a striking overlap with Plxdc2 expression in certain areas.  相似文献   

12.
13.
14.
Genomic organization of the mouse OSF-1 gene.   总被引:3,自引:0,他引:3  
The mouse OSF-1 protein (also known as pleiotrophin, HB-GAM, HBGF-8, or HBNF) gene was isolated from a mouse genomic library and sequenced. OSF-1 is a 15-kD secreted protein specifically expressed in bone and brain, and is believed to play a role in brain development and osteogenesis. The mouse OSF-1 gene consists of at least 5 exons and 4 introns and spans > 32 kb. Computer analysis of approximately 4 kb of 5'-flanking sequence of the OSF-1 gene revealed two candidate promoter regions. One candidate promoter contains a thyroid hormone/retinoic acid-responsive element and the other contains two glucocorticoid-responsive elements. DNA sequence analysis of novel OSF-1 cDNA clones indicates that two promoters can be utilized in MC3T3-E1 osteoblastic cells. The overall organization of the mouse OSF-1 gene is similar and the locations of the three exon-intron junctions within the coding region are identical to the mouse gene encoding the differentiation-related factor midkine (MK). Based on this similarity and on the high degree of nucleotide sequence homology (approximately 55%) of mouse OSF-1 and mouse MK, we conclude that OSF-1 and MK are generated from a common ancestral gene and are members of a family of structurally and probably functionally related proteins.  相似文献   

15.
16.
17.
Maas S  Kim YG  Rich A 《Gene》2000,243(1-2):59-66
We have recently identified the first mammalian tRNA-specific adenosine deaminase human ADAT1, a member of the ADAR family of RNA editing enzymes. This protein is responsible for the first step of the unique A(37) to m(1)I(37) modification in eukaryotic tRNA(Ala). Here, we present the genomic structure of murine ADAT1 and the functional expression of mADAT1 cDNA. In mouse, as well as in human, ADAT1 is expressed from a single copy gene. The coding region of the mADAT1 gene is spread over nine exons, covering approximately 30kb of genomic DNA and encodes a protein of 499 amino acids. Overall, mADAT1 shares 81% nucleotide homology and 87.5% protein homology with the human ortholog. The recombinant mouse protein is active specifically and with a high efficiency on human tRNA(Ala) in vitro. Its genomic organization is compared to the structures of the sequence-related, pre-mRNA specific adenosine deaminases ADAR1 and ADAR2.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号