首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of the -sheet rich molecule, concanavalin A (Con A), shows complicated behaviour when mechanical stress is imposed on adsorbed Con A layers. In the pH range 3.9 to 7.4, the structural changes are dependent on the pH and ionic strength of the solution at the liquid/solid interface. Several molecular shapes are observed ranging from a highly unfolded state characterized by a 1.25 nm thickness of each expelled layer at pH 3.9 to other states with various layer thicknesses at pH 6–7.4 and at a low ionic strength (< 10–4). In the pH range 6 to 7.4, different molecular species appear to be present. Correspondence to: J P. Gallinet  相似文献   

2.
Structure and reactivity of adsorbed fibronectin films on mica   总被引:1,自引:0,他引:1  
Understanding the interactions of adsorbed fibronectin (Fn) with other biomolecules is important for many biomedical applications. Fn is found in almost all body fluids, in the extracellular matrix, and plays a fundamental role in many biological processes. This study found that the structure (conformation, orientation) and reactivity of Fn adsorbed onto mica is dependent on the Fn surface concentration. Atomic force microscopy and x-ray photoelectron spectroscopy were used to determine the surface coverage of adsorbed Fn from isolated molecules at low surface coverage to full monolayers at high surface coverage. Both methods showed that the thickness of Fn film continued to increase after the mica surface was completely covered, consistent with Fn adsorbed in a more upright conformation at the highest surface-Fn concentrations. Time-of-flight secondary ion mass spectrometry showed that relative intensities of both sulfur-containing (cystine, methionine) and hydrophobic (glycine, leucine/isoleucine) amino acids varied with changing Fn surface coverage, indicating that the conformation of adsorbed Fn depended on surface coverage. Single-molecule force spectroscopy with collagen-related peptides immobilized onto the atomic force microscope tip showed that the specific interaction force between the peptide and Fn increases with increasing Fn surface coverage.  相似文献   

3.
H Mueller  H J Butt    E Bamberg 《Biophysical journal》1999,76(2):1072-1079
The mechanical and adhesion properties of myelin basic protein (MBP) are important for its function, namely the compaction of the myelin sheath. To get more information about these properties we used atomic force microscopy to study tip-sample interaction of mica and mixed dioleoylphosphatidylserine (DOPS) (20%)/egg phosphatidylcholine (EPC) (80%) lipid bilayer surfaces in the absence and presence of bovine MBP. On mica or DOPS/EPC bilayers a short-range repulsive force (decay length 1.0-1.3 nm) was observed during the approach. The presence of MBP always led to an attractive force between tip and sample. When retracting the tip again, force curves on mica and on lipid layers were different. While attached to the mica surface, the MBP molecules exhibited elastic stretching behavior that agreed with the worm-like chain model, yielding a persistence length of 0.5 +/- 0.25 nm and an average contour length of 53 +/- 19 nm. MBP attached to a lipid bilayer did not show elastic stretching behavior. This shows that the protein adopts a different conformation when in contact with lipids. The lipid bilayer is strongly modified by MBP attachment, indicating formation of MBP-lipid complexes and possibly disruption of the original bilayer structure.  相似文献   

4.
A model of possible conformational transitions of supercoiled DNA in vitro in the absence of proteins under the conditions of increasing degree of compaction was developed. A 3993-bp pGEMEX supercoiled DNA immobilized on various substrates (freshly cleaved mica, standard amino mica, and modified amino mica with a hydrophobicity higher than that of standard amino mica) was visualized by atomic force microscopy in air. On the modified amino mica, which has an increased density of surface positive charges, single molecules with an extremely high degree of compaction were visualized in addition to plectonemic DNA molecules. As the degree of DNA supercoiling increased, the length of the first-order superhelical axis of molecules decreased from 570 to 370 nm, followed by the formation of second- and third-order superhelical axes about 280 and 140 nm long, respectively. The compaction of molecules ends with the formation of minitoroids about 50 nm in diameter and molecules of spherical shape. It was shown that the compaction of single supercoiled DNA molecules immobilized on amino mica to the level of minitoroids and spheroids is due to the shielding of mutually repulsing negatively charged phosphate groups of DNA by positively charged amino groups of the amino mica, which has a high charge density of its surface.  相似文献   

5.
A model of possible conformational transitions of supercoiled DNA in vitro in the absence of proteins under the conditions of increasing degree of compaction was developed. A 3993-bp pGEMEX supercoiled DNA immobilized on various substrates (freshly cleaved mica, standard amino mica, and modified amino mica with a hydrophobicity higher than that of standard amino mica) was visualized by atomic force microscopy in air. On the modified amino mica, which has an increased density of surface positive charges, single molecules with an extremely high degree of compaction were visualized in addition to plectonemic DNA molecules. As the degree of DNA supercoiling increased, the length of the first-order superhelical axis of molecules decreased from 570 to 370 nm, followed by the formation of second-and third-order superhelical axes about 280 and 140 nm long, respectively. The compaction of molecules ends with the formation of minitoroids about 50 nm in diameter and molecules of spherical shape. It was shown that the compaction of single supercoiled DNA molecules immobilized on amino mica to the level of minitoroids and spheroids is due to the shielding of mutually repulsing negatively charged phosphate groups of DNA by positively charged amino groups of the amino mica, which has a high charge density of its surface.  相似文献   

6.
Attenuated total reflectance Fourier transform infrared spectra of surface-adsorbed proteins are correlated with concentration measurements determined by 125I-labeled proteins. This paper demonstrates that linear correlations between the intensity of the major bands of proteins and the quantity of proteins can be obtained for human albumin and immunoglobulin G up to surface concentrations of approximately 0.25 microgram/cm2. A poorer correlation was observed for human fibrinogen. A linear correlation was also observed between the concentration in the bulk solution and the major bands of albumin up to a concentration of 60 mg/ml.  相似文献   

7.
We propose a general scheme for measuring the attraction between mechanically frustrated semiflexible fibers by measuring their thermal fluctuations and shape. We apply this analysis to a system of sickle hemoglobin (HbS) fibers that laterally attract one another. These fibers appear to "zip" together before reaching mechanical equilibrium due to the existence of cross-links into a dilute fiber network. We are also able to estimate the rigidities of the fibers. These rigidities are found to be consistent with sickle hemoglobin "single" fibers 20 nm in diameter, despite recent experiments indicating that fiber bundling sometimes occurs. Our estimate of the magnitude of the interfiber attraction for HbS fibers is in the range 8 +/- 7 kBT/microm, or 4 +/- 3 k(B)T/microm if the fibers are assumed, a priori to be single fibers (such an assumption is fully consistent with the data). This value is sufficient to bind the fibers, overcoming entropic effects, although extremely chemically weak. Our results are compared to models for the interfiber attraction that include depletion and van der Waals forces. This technique should also facilitate a similar analysis of other filamentous protein assembles in the future, including beta-amyloid, actin, and tubulin.  相似文献   

8.
The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns.  相似文献   

9.
Correlation between spermathecal morphology and mating systems in spiders   总被引:2,自引:0,他引:2  
This study tested predictions regarding male mating preferences which were based on some aspects of female reproductive morphology which may influence sperm precedence patterns in six species of spiders. Males of two species, whose 'conduit' spermathecal design has been associated in previous studies with first male sperm precedence, showed the predicted preference for associating with immature females about to moult to maturity rather than mature females. Those of a third species, however, associated indiscriminately with mature and penultimate instar females. As predicted, males of three other species with 'cul-de-sac' spermathecal morphology did not associate preferentially with immature females. Immature females were avoided in two of the species, but not in the third. One of the species with cul-de-sac spermathecae showed, as predicted, lack of a strong first male advantage in sperm precedence. These data give only limited confirmation of the predictions.  相似文献   

10.
The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both in subphase water molecules and in the alkyl chains of the lipid surface monolayer, was utilized to determine the interface structure on the molecular length scale. In all cases studied, the protein forms monomolecular layers underneath the interface with thickness values of approximately 40 A. A systematic dependence of the structural properties of such self-assembled SA monolayers on the surface chemistry was observed: the lateral protein density depends on the length of the spacer connecting the biotin moiety and its hydrophobic anchor. The hydration of the lipid head groups in the protein-bound state depends on the dipole moment density at the interface.  相似文献   

11.
12.
The effect of added ethanol and (NH(4))(2)SO(4) on the flux decline index (FDI) of bovine serum albumin (BSA) and a fatty acid-poor derivative (BSA/FAP) was examined. Ternary phase diagrams of the two protein species indicated that the concentration polarization (CP) layer on the surface of a nonadsorbing 10 000 MWCO regenerated cellulose membrane had principally a packed bed structure up to 33 wt % ethanol and 21 wt % (NH(4))(2)SO(4). Intrinsic viscosity and turbidity analysis were conducted to determine the degree of intra- and interprotein interactions within this packed bed morphology. With BSA/FAP, the effects of these two interactions tended to counterbalance each other, so the FDI of this protein was not strongly influenced by solute addition. In contrast, the adsorption of fatty acids to BSA caused the protein to expand, producing a less rigid CP layer with a higher FDI. However, the addition of ethanol led to protein compression, reducing this effect. The presence of fatty acids also produced a more associated BSA in salt solution, which increased flux resistance. The results obtained for both proteins indicate that an FDI minimum is observed when a noninteraction hard sphere structure is present in the CP layer.  相似文献   

13.
A species comparison of alveolar size and surface forces   总被引:1,自引:0,他引:1  
The independent roles of alveolar size and surface tension in relation to lung stability were investigated in 11 different mammalian species whose body weight ranged from 0.03 to 50 kg. This range in species provided a wide variation in subgross anatomy as well as a fourfold range in alveolar diameter. Alveolar diameter was estimated from the mean linear intercept (Lm) of fixed lungs. Quasi-static pressure-volume curves were determined in excised lungs and the percent volume remaining on deflation from total lung capacity at 30 cmH2O to 10 cmH2O (%V10) provided an index of deflation stability related to functional surfactant. Surface tension of lung extract was measured in the Wilhelmy balance, and the minimum surface tension measured provided an index of surface tension lowering capacity of surfactant. Relationships of %V10 with alveolar diameter and surface tension with alveolar diameter were examined for correlations. Our results indicated that despite a range in Lm between 31 and 133 micron (mouse to pig), %V10 did not change in proportion with Lm across species. Similarly, minimum surface tension was about the same (6.1 to 8.8 dyn/cm) across a threefold difference in alveolar diameter. These results suggest that a stable alveolar configuration is maintained by both surface and tissue forces in a complex manner yet to be analyzed.  相似文献   

14.
The pollen morphology of 11 genera and 11 species of the Hydrocharitaceae and one species of the Najadaceae was studied using scanning and transmission electron microscopies, and the exine structures and sculptures are discussed in relation to pollination mechanisms and the molecular phylogeny. The pollen grains of the Hydrocharitaceae are spherical, inaperturate, and form monads or tetrads, while those of the Najadaceae are elliptical, inaperturate, and form monads. The entomophilous genera Egeria, Blyxa, Ottelia, Stratiotes, and Hydrocharis share pollen grains that have projections like spines or bacula. The anemophilous genus Limnobium has reticulate pollen grains. The hypohydrophilous genera Thalassia and Najas are characterized by pollen grains with reduced exine structures. The pollen-epihydrophilous genera Elodea and Hydrilla have tightly arranged small spinous pollen grains, and the male flower-epihydrophilous genera Enhalus and Vallisneria have reduced reticulate or gemmate exines. Character state reconstruction of the exine structures and sculptures using a molecular phylogenetic tree suggests that variation in the exine is generally correlated with the pollination mechanism; the selective pressures acting on the pollination mechanisms have reduced the exine structure in hypohydrophilous plants and resulted in various exine sculptures that are adapted to the different pollination mechanisms in entomophilous, anemophilous, and pollen-epihydrophilous plants.  相似文献   

15.
First polar body (PB) morphology of human oocytes can indicate further embryo development and viability. However, controversial data have been published in this topic. Our retrospective study analyses the fertilization and further development of oocytes in relation to different morphological features of the first PB. The morphology of 3387 MII oocytes from 522 in vitro fertilization (IVF) treatments were assessed before intracytoplasmic sperm injection (ICSI). Oocytes were classified according to their first PB morphology. Assessment of fertilization and embryonic development (cell number, embryo grade, amount of anuclear fragmentation and presence of multinucleated blastomeres) was performed 16-20 and 42-48 hours after ICSI. Our results show that fertilization rate and embryo quality is influenced by PB morphology, while speed of development is not affected by the morphology of the first PB. Contrary to previous findings, our results suggest that oocytes with a fragmented PB had a higher developmental ability than those with an intact PB. However, we observed a lower viability of oocytes with a large PB. Since there are contradictions in this and previous observations, an extensive study is needed with standard hormonal stimulation protocol and oocyte evaluation criteria.  相似文献   

16.
17.
Differences are demonstrated in electrophoretic patterns of SCM proteins extracted from the shaft and vane between the plumulaceous and pennaceous portions of normal feathers. Supportive evidence for these differences is given by scanning electron micrographs. In various mutant feathers, the observed structural and electrophoretic differences were due to the distribution of plumulaceous and pennaceous parts, not to new proteins. Feather mutants appear to be due to regulatory gene changes rather than to structural gene products.Supported by NSF Grant BO-20086.  相似文献   

18.
19.
The morphology of colonies developing from cells of UV-2237 fibrosarcoma clones grown in an unattached state correlated with their experimental metastatic potential in vivo. The frequency of bizarre-shaped (non-symmetrical) colonies was increased in colonies that developed from cells of highly metastatic clones growing in an overlay of media on agar, in 1.3% Methocel, or in 0.3% Noble agar. These bizarre-shaped colonies rarely developed from cells of clones with low metastatic frequency. In addition, when tested for in vivo experimental metastasis, the cells from the bizarre colonies were highly metastatic.  相似文献   

20.
We have created phospholipid bilayers supported on soft polymer "cushions" which act as deformable substrates (see accompanying paper, Wong, J. Y., J. Majewski, M. Seitz, C. K. Park, J. N. Israelachvili, and G. S. Smith. 1999. Biophys. J. 77:1445-1457). In contrast to "solid-supported" membranes, such "soft-supported" membranes can exhibit more natural (higher) fluidity. Our bilayer system was constructed by adsorption of small unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles onto polyethylenimine (PEI)-supported Langmuir-Blodgett lipid monolayers on mica. We used the surface forces apparatus (SFA) to investigate the long-range forces, adhesion, and fusion of two DMPC bilayers both above and below their main transition temperature (T(m) approximately 24 degrees C). Above T(m), hemi-fusion activation pressures of apposing bilayers were considerably smaller than for solid-supported bilayers, e.g., directly supported on mica. After separation, the bilayers naturally re-formed after short healing times. Also, for the first time, complete fusion of two fluid (liquid crystalline) phospholipid bilayers was observed in the SFA. Below T(m) (gel state), very high pressures were needed for hemi-fusion and the healing process became very slow. The presence of the polymer cushion significantly alters the interaction potential, e.g., long-range forces as well as fusion pressures, when compared to solid-supported systems. These fluid model membranes should allow the future study of integral membrane proteins under more physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号