首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prosaposin is the precursor of four sphingolipid activator proteins (saposins A, B, C, and D) for lysosomal hydrolases and is abundant in the nervous system and muscle. In addition to its role as a precursor of saposins in lysosomes, intact prosaposin has neurotrophic effects in vivo or in vitro when supplied exogenously. We examined the distribution of prosaposin in the central and peripheral nervous systems and its intracellular distribution. Using a monospecific antisaposin D antibody that crossreacts with prosaposin but not with saposins A, B, or C, immunoblot experiments showed that both the central and peripheral nervous systems express unprocessed prosaposin and little saposin D. Using the antisaposin D antibodies, we demonstrated that prosaposin is abundant in almost all neurons of both the central and peripheral nervous systems, including autonomic nerves, as well as motor and sensory nerves. Immunoelectron microscopy using double staining with antisaposin D and anticathepsin D antibodies showed strong prosaposin immunoreactivity mainly in the lysosomal granules in the neurons in both the central and peripheral nervous systems. The expression of prosaposin mRNA, examined using in situ hybridization, was observed in these same neurons. Our results suggest that prosaposin is synthesized ubiquitously in neurons of both the central and peripheral nervous systems. Funding: This study was supported by the Ehime University INCS and in part by grants-in-aid for Scientific Research to S.M. (Exploratory Res. 19659380) from the Japan Society for the Promotion of Science and to AS (Priority Areas 18023029) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.  相似文献   

2.
Eight patients were studied in whom a lesion within the central nervous system caused constant pain and hyperpathia. Blockade of the sympathetic supply to the periphery was carried out in each patient by stellate ganglion block or intravenous infusion of guanethidine 15 mg in 30 ml saline into a limb on the affected side. On almost every occasion the pain and hypersensitivity were reduced, sometimes completely. Thus chronic pain and hyperpathia arising from a lesion in the central nervous system may be abolished by blocking the sympathetic supply to the periphery; this effect may be achieved when not all the peripheral nerves of the affected region have had their sympathetic nerve supply blocked. Such blockade may be worth repeating in the hope of achieving lasting relief of the intractable pain.  相似文献   

3.
Morphology of the nervous system of Polychaeta (Annelida)   总被引:8,自引:3,他引:5  
The article summarizes our up to date knowledge about the morphology of the annelid, especially the polychaete, central and peripheral nervous system. Since the cephalic nervous system was in the focus of controversial discussions for decades, the structure of its neuropile, associated ganglia and nerves is reviewed in detail. The enormous variation of the ventral nerve cord and peripheral nerves is presented as well as a theory how this might have evolved. A ground pattern of the polychaete nervous system is suggested, based on developmental and regeneration studies.  相似文献   

4.
Some steroids, named "neurostero?ds", can be synthesized from cholesterol within both the central and peripheral nervous systems. Thus, pregnenolone and progesterone persist in the brain and in peripheral nerves long after removal of the steroidogenic endocrine glands by castration and adrenalectomy. The role of neurosteroids during the development of the nervous system is not well known, although they are synthesized by glial cells and some populations of neurons already during embryonic life. Cell culture experiments suggest that neurosteroids may influence the survival and differentiation of neurons and glial cells. In the adult nervous system, neurosteroids play an important role during regeneration. Progesterone is indeed synthesized by Schwann cells in peripheral nerves, where it plays an important role in the formation of new myelin sheaths after lesion. This is the first demonstration of a vital role for a neurosteroid in the nervous system.  相似文献   

5.
The structure of the perineurium in different parts of the peripheral nervous system of rats, rabbits and cats was studied by light-optical and electron microscopic methods. The structure of the perineurium in all the animals studied is sim8lar and consists of different number of the epithelial type layers of the perineural cells, with bundles of cooagnous fibres between them. The greatest anount of layers is found in the perineurium of the sensory and vegetative ganglia, their amount being less between the nerve trunks and bundles. Solitary sensory mielinated nerve fibres are surrounded with a perineural etui consisting of one or two cellular layers. The thickness of the perineural cells varies from 300 to 1500 A and only in the nucleus field it is equal to 1-2 mu. Every layer of the perineural cells is surrounded by a basal membrane. In their cytoplasm there are many pinocytic vesicles in addition to main organells. Between the perineural cells there exist close contacts. The internal layer of the perineurium is the place of origin of intraganglionic septa and in certain distance surrounds the vessels entering the ganglion. Ultrastructurally the perineural cells are similar to the endothelium of the vessels.  相似文献   

6.
Prion diseases are inevitably fatal neurodegenerative conditions which affect humans and a wide variety of animals. Unlike other protein aggregation diseases such as Alzheimer's, Parkinson's, and polyglutamine repeat diseases, prion diseases are unique in that they are transmissible. Therefore, prion diseases are also called transmissible spongiform encephalopathies. A number of prion diseases are caused by peripheral uptake of the infectious agent. In order to reach their target, the central nervous system, prions enter their host, accumulate and replicate in lymphoid organs, and eventually spread to the central nervous system via peripheral nerves. Once the agent has reached the central nervous system, disease progression is rapid, resulting in neurodegeneration and death. In this article, we review the state of knowledge on the routes of neuroinvasion used by the infectious agent in order to gain access to the central nervous system upon entry into extracerebral sites.  相似文献   

7.
By means of the AChE in toto staining method retroperitoneal paraganglia and the peripheral autonomic nervous system in human fetuses have been investigated. Many small retroperitoneal paraganglia are present near the sympathetic trunks close to the sympathetic trunk ganglia. In the thoracic region small paraganglia are present in the intercostal spaces. Small splanchnic nerves entering small paraganglia have been described. In the lower sacral region no paraganglia are present. The major splanchnic nerve arises at various levels from the sympathetic trunks as well as many smaller thoracic splanchnic nerves. Intermediate ganglia are present in the major splanchnic nerve, the smaller splanchnic nerves and the communicating rami. In the sympathetic trunks many ganglia are fused. In the human fetus there exists a large variability in number and diameter of the communicating rami. Interconnecting bundles of nerve fibers between the left and right sympathetic trunks are present at all levels, but most numerous at the sacral level.  相似文献   

8.
9.
It has been established that the lesion of the sciatic nerve, accompanied by a disturbance of normal neurotrophic provision of a kidney as a result of coming to the organ of the perverted nervous stimuli (by the neuro-conductive path through sympathetic nerves and by participation of the hypothalamus--hypophysis--peripheral glands system), leads to disturbance of functioning of mineral-corticoid receptors of kidneys. It has been also established that simultaneous pharmacological blockade of neuro-conductive and humoral pathways of transmission to the kidney of pathological stimuli from the central stump of the cut sciatic nerve prevents the development of trophic organ disturbances, tested by the state of the kidney mineral-corticoid receptor apparatus, while pharmacological stimulation of sympathetic nervous system leads to the greater disturbance of aldosterone reception by the cells of kidney channels. A valid conclusion can be made that propranolol is a substance, which may weaken possible non-adequate reactions of peripheral tissues to the action of physiologically active substances during the development of the consequences of the lesion of the nervous system and thus to prevent the development of neurogenic dystrophies.  相似文献   

10.
于奇  周启升  刘庆信 《昆虫学报》2011,54(10):1172-1180
家蚕Bombyx mori神经系统属于腹神经索型, 构造简单, 却能产生丰富的行为, 是研究神经生物学的理想实验材料。研究表明: 家蚕神经系统由中枢神经系统、 外周神经系统和交感神经系统构成, 通过信号传递在调节家蚕视觉、 嗅觉、 取食、 结茧、 交配、 排泄等生命活动中发挥作用。家蚕具有编码乙酰胆碱、 γ-氨基丁酸、 多巴胺等多种神经递质及其受体和促前胸腺激素(prothoracicotropic hormone, PTTH)、 滞育激素(diapause hormone, DH)等神经肽的基因。家蚕神经系统发育受到许多基因和bmo-miR-92等小分子RNA的调控。目前研究家蚕神经的方法主要有触角电位技术、 免疫细胞化学法、 转基因方法、 神经信息学及计算机三维重建等。对家蚕神经系统的研究有助于阐明神经系统的信号传递机制和生物神经网络的形成机制。  相似文献   

11.
It has long been proposed that the renin-angiotensin system exerts a stimulatory influence on the sympathetic nervous system, including augmentation of central sympathetic outflow and presynaptic facilitation of norepinephrine release from sympathetic nerves. We tested this proposition in 19 patients with essential hypertension, evaluating whether the angiotensin receptor blockers (ARBs) eprosartan and losartan had identifiable antiadrenergic properties. This was done in a prospective, randomized, three-way placebo-controlled study of crossover design. Patients were randomized to 600 mg of eprosartan daily, 50 mg of losartan daily, or placebo. The treatment period was 4 wk, with 2-wk washout periods. Multiunit firing rates in efferent sympathetic nerves distributed to skeletal muscle vasculature (muscle sympathetic nerve activity, MSNA) were measured with microneurography, testing whether ARBs inhibit central sympathetic outflow. In parallel, isotope dilution methodology was used to measure whole body norepinephrine spillover to plasma. Mean blood pressure on placebo was 151/98 mmHg, with both ARBs causing reductions of approximately 11 mmHg systolic and 6 mmHg diastolic pressure, placebo corrected. Both MSNA [35 +/- 12 bursts/min (mean +/- SD) on placebo] and whole body norepinephrine spillover [366 +/- 247 ng/min] were unchanged by ARB administration, indicating that the ARBs did not materially inhibit central sympathetic outflow or act presynaptically to reduce norepinephrine release at existing rates of nerve firing. These findings contrast with the easily demonstrable reduction in sympathetic nervous activity produced by antihypertensive drugs of the imidazoline-binding class, which are known to act within the brain to inhibit sympathetic nervous outflow. We conclude that sympathetic nervous inhibition is not a major component of the blood pressure-lowering action of ARBs in essential hypertension.  相似文献   

12.
The fine structure of the perineural endothelium   总被引:1,自引:0,他引:1  
Summary Fine strands of motor nerves were examined with the electron microscope using thin section as well as freeze-etching techniques. The specimens were taken from frog cutaneous pectoris nerve, rat sciatic nerve, mouse and shrew phrenic nerves and from human skin nerves. The perineural sheath (Henle, Ranvier, Key and Retzius) consists of one to several concentric laminae of endothelial cells; it encases nerve fascicles and eventually individual nerve fibers and terminals. The endothelial cells are extremely thin and fitted together smoothly by overlap and dove-tailing of their border zones. The cell contacts are formed by continuous zonulae occludentes, often reinforced by maculae adhaerentes, and in depth they comprise 3–15 strands with an average of 5–6 strands per junction. The membranes of endothelial cells are studded with attachment sites and stomata of plasmalemmal vesicles suggesting a high level of pinocytotic activity. This phenomenon is by no means restricted to the external laminae of the endothelial sheath. Each endothelial lamina is vested with basement membranes on both (epineural and endoneural) sides, and the spaces between laminae contain a few collagen fibers and fibroblasts. Occasionally, punctate tight junctions are seen between laminae. Cytological evidence supports the hypothesis that the perineural endothelium provides a relatively tight and highly selective barrier separating the peripheral nerves from surrounding tissue and its extracellular fluid spaces. This effect is achieved on the one hand by the sealing of pericellular spaces and on the other hand by a membrane controlled transcellular transport mechanism (pinocytosis), both of which are enhanced by their serial arrangement.Dedicated to Professor Wolfgang Bargmann, Kiel, on the occasion of his 70th birthday.The technical assistance of Dr. F. Dreyer, Mr. D. Savini, Miss H. Claassen and Miss R. Emch is gratefully acknowledged.Financial support was received by the following institutions: Swiss National Foundation for Scientific Research, grants Nrs. 3.368.0.74, 3.774.72, 3.259.74, 3.045.73. Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 38, Projekt N). The Dr. Eric Slack-Gyr Stiftung in Zürich and the Hartmann-Müller Stiftung for Medical Research in Zürich.  相似文献   

13.
Neurotrophins (NTs) family was first discovered in nervous system and it regulates the proliferation and differentiation of many neural cell types in the peripheral and central nervous system.Due to their perineural invasive characters, certain part of malignant tumor cases was first diagnosed because of nerve paralysis or idiopathic neuralgia caused by perineural invasion. For this reason, the study on the association between NTs and perineural invasion of malignant tumor aroused the attention of many researchers. Increasing evidence indicates that NTs and their receptors, Trks, play important roles in malignant cells, especially the exhibiting perineural invasive phenotype. It was suggested that NTs produced by neural tissue can act as a chemotactic factor, and tumor cells in which the overexpression of Trks' exists seem to be selected to invade the perineural space. Except for contributing to perineural invasion of malignant tumor, accumulated evidence proved NTs now also significantly associated with the metastasis of malignant tumor. Overexpression of NTs or Trks often correlated with the tumorigenesis, angiogenesis and anoikis resistance in these malignancies, contributing significantly to the metastasis and poor prognosis.In summary, besides its role in development and function of nervous system, NTs also play an important role in the perineural invasion and metastasis of malignant tumor. Considering the role that NTs played in malignant tumor, we believe that further studies between NTs and malignant tumor are necessary. Research on the role of NTs pathway might allow advancements in this field.  相似文献   

14.
Summary The localization and intraneuronal distribution of the monoaminergic transmitters in the nervous system of the earthworm, Lumbricus terrestris, have been investigated in detail with the aid of the histochemical fluorescence method of Falck and Hillarp.In the ventral nerve cord, many yellow fluorescent, 5-hydroxytryptamine containing neurons are found, but only few green fluorescent noradrenaline containing cell bodies, which, however, are numerous in the peripheral nervous system. There is an abundance of both fibre types in the neuropile.The 5-hydroxytryptaminergic neurons probably have a motor (possibly inhibitor) function; the adrenergic neurons in the body segments are supposed to have a receptor (exteroceptive and possibly proprioceptive) function.In the cerebral ganglion, both 5-hydroxytryptamine and noradrenaline containing neurons are found in large numbers, and there are closely packed numerous fibres of both types in the neuropile. Their function is more obscure, though an associative function can be presumed for some adrenergic neurons; smaller 5-hydroxytryptaminergic neurons might have a motor (perhaps inhibitor) function.Adrenergic sensory cells are found in the body integument, most frequently in the clitellum segments, in the prostomium, and in the roof of the buccal cavity. These cells give off varicose fibres that form a basi-epithelial network which is in communication with the green fluorescent sensory fascicles in the ventral nerve cord via the epidermal nerves, the ring nerves, and the segmental nerves. No direct adrenergic sensory-effector innervation of either circular and/or longitudinal musculature or gland cells seems to exist. No adrenergic free nerve endings in the body integument have been observed. Instead, there must be a synaptic contact with the motoneurons, either directly in the neuropile or via an interjacent neuron.No synaptic contacts have been observed in the ventral nerve cord between adrenergic or 5-hydroxytryptaminergic fibres and either the giant fibres or fluorescent or nonfluorescent perikarya.An adrenergic innervation of the pharynx musculature has been found, and sensory cells of a different type are present in and below the epithelium; here, a direct senso-motoric innervation of the pharyngeal musculature cannot be excluded. It is established that the adrenergic neurons in the stomatogastric nervous system have an exciting function on the pharynx, whereas a direct monoaminergic influence of the muscular movements of the intestine probably does not exist.Abbreviations Used A adrenaline - CA catecholamine - DA dopamine - 5-HT 5-hydroxytryptamine - MA monoamine - NA noradrenaline The research reported in this document has been sponsored by the Air Force Office of Scientific Research under Grant AF EOAR 67-15 through the European Office of Aerospace Research (OAR), United States Air Force, by the Swedish Natural Science Research Council (99-34, 6627), and by the Swedish Medical Research Council (B67-12X-712-02A).  相似文献   

15.
Summary The peripheral nervous system of embryos homozygous for prd, ftz, en and bxd was examined for defects and transformations in the segment-specific pattern of sensilla and peripheral nerves. This analysis permitted me to assign a distinct subset of sensilla to any of the three genetically and morphologically defined compartments s, a and p of each segment. In the wild-type embryonic segments, sensory axons deriving from sensilla of different compartments form a part of the common peripheral nerves. In the composite segments of prd and ftz mutant embryos, subsets of sensilla of two neighbouring segments are combined. Nevertheless, the axons of sensilla of different segmental identity are able to fasciculate and to form afferent nerves, which connect in an apparently normal fashion to the central nervous system. It is concluded that in the Drosophila embryo compartmental and segmental identity of sensory organs has no influence on the trajectories of sensory axons.  相似文献   

16.
The present study evaluated the contribution of the sympathetic nervous system to the adverse hemodynamic action of ethanol on hypotensive responses in conscious unrestrained spontaneously hypertensive rats. Ethanol caused a dose-related attenuation of the hypotensive effect of guanabenz. An equivalent hypotensive response to sodium nitroprusside was not influenced by ethanol, which indicates a potential specific interaction between ethanol and guanabenz. Alternatively, it is possible that a preexisting high sympathetic nervous system activity, which occurred during nitroprusside infusion, may mask a sympathoexcitatory action of ethanol. Further, ethanol (1 g/kg) failed to reverse the hypotensive effect of the ganglionic blocker hexamethonium. This suggests that a centrally mediated sympathoexcitatory action of ethanol is involved, at least partly, in the reversal of hypotension. In addition, the antagonistic interaction between ethanol and guanabenz seems to take place within the central nervous system and involves opposite effects on central sympathetic tone. Finally, changes in plasma catecholamines provide supportive evidence for the involvement of the sympathetic nervous system in this interaction. In a separate group of conscious spontaneously hypertensive rats, ethanol (1 g/kg) reversed the guanabenz-evoked decreases in blood pressure and plasma catecholamine levels. It is concluded that (i) ethanol adversely interacts with centrally acting antihypertensive drugs through a mechanism that involves a directionally opposite effect on sympathetic activity, and (ii) a sympathetically mediated pressor effect of ethanol is enhanced in the presence of an inhibited central sympathetic tone.  相似文献   

17.
The central nervous system of the sessile barnacle, Semibalanus cariosus (Pallas), has been studied with the particular aim of determining the locations of neuron somata in relation to peripheral nerves. This was accomplished by tracing peripheral nerves using dissection and methylene blue staining techniques, histological methods, and by permitting cobaltous chloride to diffuse via axons into ganglia (“backfilling”). The neuron maps resulting from the study reveal some well-defined sub-systems, a considerable degree of functional clumping of neuron somata, and some unexpected projections of neurons in the CNS. Neurophysiological studies based on these findings are in progress.  相似文献   

18.
The distribution and characterization of dopamine-containing neurons are described in the different ganglia of the central nervous system of Helix on the basis of the distribution of tyrosine hydroxylase immunoreactive (TH-ir) and dopamine immunoreactive (DA-ir) neurons. Both TH-ir and DA-ir cell bodies of small diameter (10–25 m) can be observed in the buccal, cerebral and pedal ganglia, dominantly on their ventral surface, and concentrated in small groups close to the origin of the peripheral nerves. The viscero-parietal-pleural ganglion complex is free of immunoreactive cell bodies but contains a dense fiber system. The largest number of TH-ir and DA-ir neurons can be detected in the pedal, and cerebral ganglia. The average number of TH-ir and DA-ir neurons significantly differs but all the identifiable groups of TH-ir neurons also show DA-immunoreactivity. Therefore, we consider the TH-ir neurons in those groups as being DA-containing neurons. The amounts of DA in the different ganglia assayed by high performance liquid chromatography correspond to the distribution and number of TH-ir and DA-ir neurons in the different ganglia. The axon processes of the labeled small-diameter neurons send thin proximal branches toward the cell body layer but only rarely surround cell bodics, whereas distally they give off numerous branches in the neuropil and then leave the ganglion through the peripheral nerves. In the cerebral ganglia, the analysis of the TH-ir pathways indicates that the largest groups of labeled neurons send their processes through the peripheral nerves in a topographic order. These results furnish morphological evidence that DA-containing neurons of Helix pomatia have both central and peripheral roles in neuronal regulation.  相似文献   

19.
Gamma-aminobutyric acid (GABA)-like immunoreactive neurons were studied in the central and peripheral nervous system of Helix pomatia by applying immunocytochemistry on whole-mount preparations and serial paraffin sections. GABA-immunoreactive cell bodies were found in the buccal, cerebral and pedal ganglia, but only GABA-immunoreactive fibers were found in the viscero-parietal-pleural ganglion complex. The majority of GABA-immunoreactive cell bodies were located in the pedal ganglia but a few could be found in the buccal ganglia. Varicose GABA-ir fibers could be seen in the neuropil areas and in distinct areas of the cell body layer of the ganglia. The majority of GABA-ir axonal processes run into the connectives and commissures of the ganglia, indicating an important central integrative role of GABA-immunoreactive neurons. GABA may also have a peripheral role, since GABA-immunoreactive fibers could be demonstrated in peripheral nerves and the lips. Glutamate injection did not change the number or distribution of GABA-immunoreactive neurons, but induced GABA immunoreactivity in elements of the connective tissue ensheathing the muscle cells and fibers of the buccal musculature. This shows that GABA may be present in different non-neural tissues as a product of general metabolic pathways.  相似文献   

20.
The enteric nervous system (ENS) of the moth Manduca sexta is organized into two distinct cellular domains: an anterior domain that includes several small ganglia on the surface of the foregut, and a more posterior domain consisting of a branching nerve plexus (the enteric plexus) that spans the foregut-midgut boundary. Previously, we showed that the neurons of the posterior domain, the enteric plexus, are generated from a large placode that invaginates from the caudal lip of the foregut; subsequently, the cells become distributed throughout the enteric plexus by a sequence of active migration. We now demonstrate that the neurons of the anterior domain, the cells of the enteric ganglia, arise via a distinct developmental sequence. Shortly after the foregut has begun to form, three neurogenic zones differentiate within the foregut epithelium and give rise to chains of cells that emerge onto the foregut surface. The three zones are not sites of active mitosis, as indicated by the absence of labelling with a thymidine analogue and by clonal analyses using intracellularly injected dyes. Rather, the zones serve as loci through which epithelial cells are recruited into a sequence of delamination and neuronal differentiation. As they emerge from the epithelium, the cells briefly become mitotically active, each cell dividing once or twice. In this manner, they resemble the midline precursor class of neural progenitors in the insect central nervous system more than neuroblast stem cells. The progeny of these zone-derived precursors then gradually coalesce into the ganglia and nerves of the anterior ENS. Although this reorganization results in some variability in the precise configuration of neurons within the ganglia, the overall morphology of the ganglia is highly stereotyped, consisting of cortical layers of cells that surround a ventral neuropil. In addition, a number of the neurons within the frontal and hypocerebral ganglia express identifiable phenotypes in a manner that is similar to many cells of the insect central nervous system. These observations indicate that the differentiation of the enteric ganglia in Manduca involves an unusual combination of features seen during the formation of other regions of the nervous system and, as such, constitutes a distinct program of neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号