首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The integration of signals received by a cell, and their transduction to targets, is essential for all cellular responses. The cytoskeleton has been identified as a major target of signalling cascades in both animal and plant cells. Self-incompatibility (SI) in Papaver rhoeas involves an allele-specific recognition between stigmatic S-proteins and pollen, resulting in the inhibition of incompatible pollen. This highly specific response triggers a Ca(2+)-dependent signalling cascade in incompatible pollen when a stigmatic S-protein interacts with it. It has been demonstrated recently that SI induces dramatic alterations in the organization of the pollen actin cytoskeleton. This implicates the actin cytoskeleton as a key target for the SI-stimulated signals. The cytological alterations to the actin cytoskeleton that are triggered in response to SI are described here and there seem to be several stages that are distinguishable temporally. Evidence was obtained that F-actin depolymerization is also stimulated. The current understanding that the actin cytoskeleton is a target for the signals triggered by the SI response is discussed. It is suggested that these F-actin alterations may be Ca(2+)-mediated and that this could be a mechanism whereby SI-induced tip growth inhibition is achieved. The potential for actin-binding proteins to act as key mediators of this response is discussed and the mechanisms that may be responsible for effecting these changes are described. In particular, the parallels between sustained actin rearrangements during SI and in apoptosis of animal cells are considered.  相似文献   

2.
Perception and integration of signals into responses is of crucial importance to cells. Both the actin and microtubule cytoskeleton are known to play a role in mediating diverse stimulus responses. Self-incompatibility (SI) is an important mechanism to prevent self-fertilization. SI in Papaver rhoeas triggers a Ca(2+)-dependent signaling network to trigger programmed cell death (PCD), providing a neat way to inhibit and destroy incompatible pollen. We previously established that SI stimulates F-actin depolymerization and that altering actin dynamics can push pollen tubes into PCD. Very little is known about the role of microtubules in pollen tubes. Here, we investigated whether the pollen tube microtubule cytoskeleton is a target for the SI signals. We show that SI triggers very rapid apparent depolymerization of cortical microtubules, which, unlike actin, does not reorganize later. Actin depolymerization can trigger microtubule depolymerization but not vice versa. Moreover, although disruption of microtubule dynamics alone does not trigger PCD, alleviation of SI-induced PCD by taxol implicates a role for microtubule depolymerization in mediating PCD. Together, our data provide good evidence that SI signals target the microtubule cytoskeleton and suggest that signal integration between microfilaments and microtubules is required for triggering of PCD.  相似文献   

3.
The cytoskeleton is a key regulator of plant morphogenesis, sexual reproduction, and cellular responses to extracellular stimuli. During the self-incompatibility response of Papaver rhoeas L. (field poppy) pollen, the actin filament network is rapidly depolymerized by a flood of cytosolic free Ca2+ that results in cessation of tip growth and prevention of fertilization. Attempts to model this dramatic cytoskeletal response with known pollen actin-binding proteins (ABPs) revealed that the major G-actin-binding protein profilin can account for only a small percentage of the measured depolymerization. We have identified an 80-kDa, Ca(2+)-regulated ABP from poppy pollen (PrABP80) and characterized its biochemical properties in vitro. Sequence determination by mass spectrometry revealed that PrABP80 is related to gelsolin and villin. The molecular weight, lack of filament cross-linking activity, and a potent severing activity are all consistent with PrABP80 being a plant gelsolin. Kinetic analysis of actin assembly/disassembly reactions revealed that substoichiometric amounts of PrABP80 can nucleate actin polymerization from monomers, block the assembly of profilin-actin complex onto actin filament ends, and enhance profilin-mediated actin depolymerization. Fluorescence microscopy of individual actin filaments provided compelling, direct evidence for filament severing and confirmed the actin nucleation and barbed end capping properties. This is the first direct evidence for a plant gelsolin and the first example of efficient severing by a plant ABP. We propose that PrABP80 functions at the center of the self-incompatibility response by creating new filament pointed ends for disassembly and by blocking barbed ends from profilin-actin assembly.  相似文献   

4.
From germinating pollen of lily, two types of villins, P-115-ABP and P-135-ABP, have been identified biochemically. Ca(2+)-CaM-dependent actin-filament binding and bundling activities have been demonstrated for both villins previously. Here, we examined the effects of lily villins on the polymerization and depolymerization of actin. P-115-ABP and P-135-ABP present in a crude protein extract prepared from germinating pollen bound to a DNase I affinity column in a Ca(2+)-dependent manner. Purified P-135-ABP reduced the lag period that precedes actin filament polymerization from monomers in the presence of either Ca(2+) or Ca(2+)-CaM. These results indicated that P-135-ABP can form a complex with G-actin in the presence of Ca(2+) and this complex acts as a nucleus for polymerization of actin filaments. However, the nucleation activity of P-135-ABP is probably not relevant in vivo because the assembly of G-actin saturated with profilin, a situation that mimics conditions found in pollen, was not accelerated in the presence of P-135-ABP. P-135-ABP also enhanced the depolymerization of actin filaments during dilution-mediated disassembly. Growth from filament barbed ends in the presence of Ca(2+)-CaM was also prevented, consistent with filament capping activity. These results suggested that lily villin is involved not only in the arrangement of actin filaments into bundles in the basal and shank region of the pollen tube, but also in regulating and modulating actin dynamics through its capping and depolymerization (or fragmentation) activities in the apical region of the pollen tube, where there is a relatively high concentration of Ca(2+).  相似文献   

5.
Self-incompatibility (SI) is a genetically controlled process used to prevent self-pollination. In Papaver rhoeas, the induction of SI is triggered by a Ca(2)+-dependent signaling pathway that results in the rapid and S allele-specific inhibition of pollen tube tip growth. Tip growth of cells is dependent on a functioning actin cytoskeleton. We have investigated the effect of self-incompatibility (S) proteins on the actin cytoskeleton in poppy pollen tubes. Here, we report that the actin cytoskeleton of incompatible pollen tubes is rapidly and dramatically rearranged during the SI response, not only in our in vitro SI system but also in vivo. We demonstrate that nonspecific inhibition of growth does not result in similar actin rearrangements. Because the SI-induced alterations are not observed if growth stops, this clearly demonstrates that these alterations are triggered by the SI signaling cascade rather than merely resulting from the consequent inhibition of growth. We establish a detailed time course of events and discuss the mechanisms that might be involved. Our data strongly implicate a role for the actin cytoskeleton as a target for signaling pathways involved in the SI response of P. rhoeas.  相似文献   

6.
Sexual reproduction in higher plants uses pollination, involving interactions between pollen and pistil. Self-incompatibility (SI) prevents self-fertilization, providing an important mechanism to promote outbreeding. SI is controlled by the S-locus; discrimination occurs between incompatible pollen, which is rejected, while compatible pollen can achieve fertilization. In Papaver rhoeas, S proteins encoded by the pistil part of the S-locus interact with incompatible pollen to effect rapid inhibition of tip growth. This self-incompatible interaction triggers a Ca(2+)-dependent signalling cascade. SI-specific events triggered in incompatible pollen include rapid depolymerization of the actin cytoskeleton; phosphorylation of soluble inorganic pyrophosphatases, and activation of a MAPK. It has recently been shown that programmed cell death (PCD) is triggered by SI. This provides a precise mechanism for the specific destruction of 'self' pollen. Recent data providing evidence for SI-induced caspase-3-like protease activity, and the involvement of actin depolymerization and MAPK activation in SI-mediated PCD will be discussed. These studies not only significantly advance our understanding of the mechanisms involved in SI, but also contribute to our understanding of functional links between signalling components and initiation of PCD in a plant cell. Recent data demonstrating SI-mediated modification of soluble inorganic pyrophosphatases are also described.  相似文献   

7.
Self-incompatibility (SI) in Papaver rhoeas involves an allele-specific recognition between stigmatic S-proteins and pollen, resulting in inhibition of incompatible pollen. A picture of some of the signalling events and mechanisms involved in this specific inhibition of pollen tube growth is beginning to be built up. This highly specific response triggers a Ca(2+)-dependent signalling cascade in incompatible pollen when a stigmatic S-protein interacts with it. Rapid increases in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) can now be attributed (at least in part) to Ca(2+) influx. The rapid loss of the pollen apical Ca(2+) gradient within approximately 1-2 min is accompanied by the inhibition of pollen tube tip growth. Concomitant with this time-frame, hyper-phosphorylation of p26, a soluble pollen phosphoprotein is detected. Characterization of p26 reveals that it is a soluble inorganic pyrophosphatase, which suggests a possible direct functional role in pollen tube growth. Slightly later, a putative MAP kinase (p52) is thought to be activated. Finally, preliminary evidence that programmed cell death (PCD) may be triggered in this response is described. A key target for these signals, the actin cytoskeleton, has also been identified. In this article the current understanding of some of the components of this signalling cascade and how they are beginning to throw some light on possible mechanisms involved in this SI-induced inhibition of pollen tube growth, is discussed.  相似文献   

8.
Sexual reproduction in flowering plants is controlled by recognition mechanisms involving the male gametophyte (the pollen) and the female sporophyte (the pistil). Self-incompatibility (SI) involves the recognition and rejection of self- or incompatible pollen by the pistil. In Papaver rhoeas, SI uses a Ca(2+)-based signalling cascade triggered by the S-protein, which is encoded by the stigmatic component of the S-locus. This results in the rapid inhibition of incompatible pollen tube growth. We have identified several targets of the SI signalling cascade, including protein kinases, the actin cytoskeleton and nuclear DNA. Here, we summarize progress made on currently funded projects in our laboratory investigating some of the components targeted by SI, comprising (i) the characterization of a pollen phosphoprotein (p26) that is rapidly phosphorylated upon an incompatible SI response; (ii) the identification and characterization of a pollen mitogen-activated protein kinase (p56), which exhibits enhanced activation during SI; (iii) characterizing components involved in the reorganization and depolymerization of the actin cytoskeleton during the SI response; and (iv) investigating whether the SI response involves a programmed cell death signalling cascade.  相似文献   

9.
Self-incompatibility (SI) in higher plants is an important mechanism to prevent inbreeding and involves specific rejection of incompatible ("self") pollen. In field poppy (Papaver rhoeas), S proteins encoded by the stigma component of the S-locus interact with incompatible pollen, resulting in cessation of tip growth. This "self" interaction triggers a Ca(2+)-dependent signaling network, involving programmed cell death (PCD). We previously identified p56, a mitogen-activated protein kinase (MAPK) that is activated during the SI response in incompatible pollen. Here, we show that p56 cross-reacts with AtMPK3, but not with AtMPK4 or salicylic acid-induced protein kinase antibodies. We provide good evidence that a MAPK is involved in initiation of SI-induced PCD in incompatible pollen. SI rapidly reduces pollen viability and the MAPK cascade inhibitor U0126, which prevents the SI-induced activation of p56 in incompatible pollen, "rescues" incompatible pollen, while its negative analog, U0124, does not. This strongly implicates the involvement of a MAPK in SI-mediated loss of pollen viability and cell death. SI also stimulates caspase-3-like (DEVDase) activity and later DNA fragmentation. Both these markers of PCD are significantly reduced by pretreatment with U0126, implicating the involvement of a MAPK in signaling during early PCD. As p56 appears to be the only MAPK activated by SI, our studies imply that p56 could be the MAPK involved in mediating SI-induced PCD.  相似文献   

10.
Wang HJ  Wan AR  Jauh GY 《Plant physiology》2008,147(4):1619-1636
Actin microfilaments are crucial for polar cell tip growth, and their configurations and dynamics are regulated by the actions of various actin-binding proteins (ABPs). We explored the function of a lily (Lilium longiflorum) pollen-enriched LIM domain-containing protein, LlLIM1, in regulating the actin dynamics in elongating pollen tube. Cytological and biochemical assays verified LlLIM1 functioning as an ABP, promoting filamentous actin (F-actin) bundle assembly and protecting F-actin against latrunculin B-mediated depolymerization. Overexpressed LlLIM1 significantly disturbed pollen tube growth and morphology, with multiple tubes protruding from one pollen grain and coaggregation of FM4-64-labeled vesicles and Golgi apparatuses at the subapex of the tube tip. Moderate expression of LlLIM1 induced an oscillatory formation of asterisk-shaped F-actin aggregates that oscillated with growth period but in different phases at the subapical region. These results suggest that the formation of LlLIM1-mediated overstabilized F-actin bundles interfered with endomembrane trafficking to result in growth retardation. Cosedimentation assays revealed that the binding affinity of LlLIM1 to F-actin was simultaneously regulated by both pH and Ca(2+): LlLIM1 showed a preference for F-actin binding under low pH and low Ca(2+) concentration. The potential functions of LlLIM1 as an ABP sensitive to pH and calcium in integrating endomembrane trafficking, oscillatory pH, and calcium circumstances to regulate tip-focused pollen tube growth are discussed.  相似文献   

11.
We have previously demonstrated that increases in cytosolic free Ca2+ are triggered by the self-incompatibility (SI) response in incompatible Papaver rhoeas (the field poppy) pollen. However, one key question that has not been answered is whether extracellular Ca2+ may be involved. To address this question, we have used an ion-selective vibrating probe to measure changes in extracellular Ca2+ fluxes around poppy pollen tubes. Our data reveal several findings. First, we confirm that there is an oscillating Ca2+ influx directed at the apex of the pollen tube; we also provide evidence that Ca2+ influx also occurs at the shanks of pollen tubes. Second, upon challenge with self-incompatibility (S) proteins, there is a stimulation of Ca2+ influx along the shank of incompatible pollen tubes, approximately 50 microm behind the pollen tube tip. This demonstration of SI-induced Ca2+ influx suggests a role for influx of extracellular Ca2+ in the SI response.  相似文献   

12.
Schroeter M  Chalovich JM 《Biochemistry》2004,43(43):13875-13882
Fesselin is a proline-rich actin-binding protein that was isolated from avian smooth muscle. Fesselin bundles actin and accelerates actin polymerization by facilitating nucleation. We now show that this polymerization of actin can be regulated by Ca(2+)-calmodulin. Fesselin was shown to bind to immobilized calmodulin in the presence of Ca(2+). The fesselin-calmodulin interaction was confirmed by a Ca(2+)-dependent increase in 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid (MIANS) fluorescence upon addition of fesselin to MIANS-labeled wheat germ calmodulin. The affinity was estimated to be approximately 10(9) M(-1). The affinity of Ca(2+)-calmodulin to the fesselin F-actin complex was approximately 10(8) M(-1). Calmodulin binding to fesselin appeared to be functionally significant. In the presence of fesselin and calmodulin, the polymerization of actin was Ca(2+)-dependent. Ca(2+)-free calmodulin either had no effect or enhanced the ability of fesselin to accelerate actin polymerization. Ca(2+)-calmodulin not only reversed the stimulatory effect of fesselin but reduced the rate of polymerization below that observed in the absence of fesselin. While Ca(2+)-calmodulin had a large effect on the interaction of fesselin with G-actin, the effect on F-actin was small. Neither the binding of fesselin to F-actin nor the subsequent bundling of F-actin was greatly affected by Ca(2+)-calmodulin. Fesselin may function as an actin-polymerizing factor that is regulated by Ca(2+) levels.  相似文献   

13.
Yokota E  Muto S  Shimmen T 《Plant physiology》2000,123(2):645-654
We have isolated a 135-kD actin-bundling protein (P-135-ABP) from lily (Lilium longiflorum) pollen tubes and have shown that this protein is responsible for bundling actin filaments in lily pollen tubes (E. Yokota, K. Takahara, T. Shimmen [1998] Plant Physiol 116: 1421-1429). However, only a few thin actin-filament bundles are present in random orientation in the tip region of pollen tubes, where high concentrations of Ca(2+) have also been found. To elucidate the molecular mechanism for the temporal and spatial regulation of actin-filament organization in the tip region of pollen tubes, we explored the possible presence of factors modulating the filamentous actin (F-actin)-binding activity of P-135-ABP. The F-actin-binding activity of P-135-ABP in vitro was appreciably reduced by Ca(2+) and calmodulin (CaM), although neither Ca(2+) alone nor CaM in the presence of low concentrations of Ca(2+) affects the activity of P-135-ABP. A micromolar order of Ca(2+) and CaM were needed to induce the inhibition of the binding activity of P-135-ABP to F-actin. An antagonist for CaM, W-7, cancelled this inhibition. W-5 also alleviated the inhibition effect of Ca(2+)-CaM, however, more weakly than W-7. These results suggest the specific interaction of P-135-ABP with Ca(2+)-CaM. In the presence of both Ca(2+) and CaM, P-135-ABP organized F-actin into thin bundles, instead of the thick bundles observed in the absence of CaM. These results suggest that the inhibition of the P-135-ABP activity by Ca(2+)-CaM is an important regulatory mechanism for organizing actin filaments in the tip region of lily pollen tubes.  相似文献   

14.
ATFIM1 is a widely expressed gene in Arabidopsis thaliana that encodes a putative actin filament-crosslinking protein, AtFim1, belonging to the fimbrin/plastin class of actin-binding proteins. In this report we have used bacterially expressed AtFim1 and actin isolated from Zea mays pollen to demonstrate that AtFim1 functions as an actin filament-crosslinking protein. AtFim1 binds pollen actin filaments (F-actin) in a calcium-independent manner, with an average dissociation constant (Kd) of 0.55+/-0.21 microM and with a stoichiometry at saturation of 1:4 (mol AtFim1 : mol actin monomer). AtFim1 also crosslinks pollen F-actin by a calcium-independent mechanism, in contrast to crosslinking of plant actin by human T-plastin, a known calcium-sensitive actin-crosslinking protein. When micro-injected at high concentration into living Tradescantia virginiana stamen hair cells, AtFim1 caused cessation of both cytoplasmic streaming and transvacuolar strand dynamics within 2-4 min. Using the 'nuclear displacement assay' as a measure of the integrity of the actin cytoskeleton in living stamen hair cells, we demonstrated that AtFim1 protects actin filaments in these cells from Z. mays profilin (ZmPRO5)-induced depolymerization, in a dose-dependent manner. The apparent ability of AtFim1 to protect actin filaments in vivo from profilin-mediated depolymerization was confirmed by in vitro sedimentation assays. Our results indicate that AtFim1 is a calcium-independent, actin filament-crosslinking protein that interacts with the actin cytoskeleton in living plant cells.  相似文献   

15.
Cellular responses rely on signaling. In plant cells, cytosolic free calcium is a major second messenger, and ion channels play a key role in mediating physiological responses. Self-incompatibility (SI) is an important genetically controlled mechanism to prevent self-fertilization. It uses interaction of matching S-determinants from the pistil and pollen to allow "self" recognition, which triggers rejection of incompatible pollen. In Papaver rhoeas, the S-determinants are PrsS and PrpS. PrsS is a small novel cysteine-rich protein; PrpS is a small novel transmembrane protein. Interaction of PrsS with incompatible pollen stimulates S-specific increases in cytosolic free calcium and alterations in the actin cytoskeleton, resulting in programmed cell death in incompatible but not compatible pollen. Here, we have used whole-cell patch clamping of pollen protoplasts to show that PrsS stimulates SI-specific activation of pollen grain plasma membrane conductance in incompatible but not compatible pollen grain protoplasts. The SI-activated conductance does not require voltage activation, but it is voltage sensitive. It is permeable to divalent cations (Ba(2+) ≥ Ca(2+) > Mg(2+)) and the monovalent ions K(+) and NH(4)(+) and is enhanced at voltages negative to -100 mV. The Ca(2+) conductance is blocked by La(3+) but not by verapamil; the K(+) currents are tetraethylammonium chloride insensitive and do not require Ca(2+). We propose that the SI-stimulated conductance may represent a nonspecific cation channel or possibly two conductances, permeable to monovalent and divalent cations. Our data provide insights into signal-response coupling involving a biologically important response. PrsS provides a rare example of a protein triggering alterations in ion channel activity.  相似文献   

16.
Wang YF  Fan LM  Zhang WZ  Zhang W  Wu WH 《Plant physiology》2004,136(4):3892-3904
Cytosolic free Ca2+ and actin microfilaments play crucial roles in regulation of pollen germination and tube growth. The focus of this study is to test the hypothesis that Ca2+ channels, as well as channel-mediated Ca2+ influxes across the plasma membrane (PM) of pollen and pollen tubes, are regulated by actin microfilaments and that cytoplasmic Ca2+ in pollen and pollen tubes is consequently regulated. In vitro Arabidopsis (Arabidopsis thaliana) pollen germination and tube growth were significantly inhibited by Ca2+ channel blockers La3+ or Gd3+ and F-actin depolymerization regents. The inhibitory effect of cytochalasin D (CD) or cytochalasin B (CB) on pollen germination and tube growth was enhanced by increasing external Ca2+. Ca2+ fluorescence imaging showed that addition of actin depolymerization reagents significantly increased cytoplasmic Ca2+ levels in pollen protoplasts and pollen tubes, and that cytoplasmic Ca2+ increase induced by CD or CB was abolished by addition of Ca2+ channel blockers. By using patch-clamp techniques, we identified the hyperpolarization-activated inward Ca2+ currents across the PM of Arabidopsis pollen protoplasts. The activity of Ca2+-permeable channels was stimulated by CB or CD, but not by phalloidin. However, preincubation of the pollen protoplasts with phalloidin abolished the effects of CD or CB on the channel activity. The presented results demonstrate that the Ca2+-permeable channels exist in Arabidopsis pollen and pollen tube PMs, and that dynamic actin microfilaments regulate Ca2+ channel activity and may consequently regulate cytoplasmic Ca2+.  相似文献   

17.
Profilin inhibits the rate of nucleation of actin polymerization and the rate of filament elongation and also reduces the concentration of F-actin at steady state. Addition of profilin to solutions of F-actin causes depolymerization. The same steady state concentrations of polymerized and nonpolymerized actin are reached whether profilin is added before initiation of polymerization or after polymerization is complete. The KD for formation of the 1:1 complex between Acanthamoeba profilin and Acanthamoeba actin is in the range of 4 to 11 microM; the KD for the reaction between Acanthamoeba profilin and rabbit skeletal muscle actin is about 60 to 80 microM, irrespective of the concentrations of KCl or MgCl2. The critical concentration of actin for polymerization and the KD for the actin-profilin interaction are independent of each other; therefore, a change in the critical concentration of actin alters the amount of actin bound to profilin at steady state. As a consequence, the presence of profilin greatly amplifies the effects of small changes in the actin critical concentration on the concentration of F-actin. Profilin also inhibits the ATPase activity of monomeric actin, the profilin-actin complex being entirely inactive.  相似文献   

18.
Pharmacological agents were used to investigate the possible involvement of actin in signalling chains associated with abscisic acid (ABA)-induced ion release from the guard cell vacuole, a process which is absolutely essential for stomatal closure. Effects on the ABA-induced transient stimulation of tonoplast efflux were measured, using (86)Rb in isolated guard cells of Commelina communis, together with effects on stomatal apertures. In the response to 10 microm ABA (triggered by Ca(2+) influx rather than internal Ca(2+) release), jasplakinolide (stabilizing actin filaments) and latrunculin B (depolymerizing actin filaments) had opposite effects. Both closure and the vacuolar efflux transient were inhibited by jasplakinolide but enhanced by latrunculin B. At 10 microm ABA prevention of mitogen-activated protein (MAP) kinase activation by PD98059 partially inhibited closure and reduced the efflux transient. By contrast, latrunculin B inhibited the efflux transient at 0.1 microm ABA (involving internal Ca(2+) release rather than Ca(2+) influx). The results suggest that 10 microm ABA activates Ca(2+)-dependent vacuolar ion efflux via a Ca(2+)-permeable influx channel which is maintained closed by interaction with F-actin. A MAP kinase is also involved, in a chain similar to that postulated for Ca(2+)-dependent gene expression in cold acclimation.  相似文献   

19.
Villin is an actin-binding protein localized in intestinal and kidney brush borders. In vitro, villin has been demonstrated to bundle and sever F-actin in a Ca(2+)-dependent manner. We generated knockout mice to study the role of villin in vivo. In villin-null mice, no noticeable changes were observed in the ultrastructure of the microvilli or in the localization and expression of the actin-binding and membrane proteins of the intestine. Interestingly, the response to elevated intracellular Ca(2+) differed significantly between mutant and normal mice. In wild-type animals, isolated brush borders were disrupted by the addition of Ca(2+), whereas Ca(2+) had no effect in villin-null isolates. Moreover, increase in intracellular Ca(2+) by serosal carbachol or mucosal Ca(2+) ionophore A23187 application abolished the F-actin labeling only in the brush border of wild-type animals. This F-actin disruption was also observed in physiological fasting/refeeding experiments. Oral administration of dextran sulfate sodium, an agent that causes colonic epithelial injury, induced large mucosal lesions resulting in a higher death probability in mice lacking villin, 36 +/- 9.6%, compared with wild-type mice, 70 +/- 8.8%, at day 13. These results suggest that in vivo, villin is not necessary for the bundling of F-actin microfilaments, whereas it is necessary for the reorganization elicited by various signals. We postulate that this property might be involved in cellular plasticity related to cell injury.  相似文献   

20.
Annexins belong to a family of lipid-binding proteins that are implicated in membrane organization. Several members are capable of binding to actin and, in smooth muscle cells, annexin 6 is known to form a Ca(2+)-dependent, plasmalemmal complex with actin filaments. Annexins can also associate with F-actin containing stress fibres within cultured smooth muscle cells or fibroblasts in a Ca(2+)-independent manner. Depolymerization of stress-fibre systems with cytochalasin D leads to the translocation of actin-bound annexin 2 from the cytoplasm to the plasma membrane at high intracellular levels of Ca(2+). This type of Ca(2+)-dependent annexin mobility is observed only in cells of mesenchymal phenotype, which have a well-developed stress-fibre system; not in epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号