首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The main objective of this study was to test the hypothesis that the chronic administration of choline supplements a bound pool of choline from which free choline can be mobilized and used to support acetylcholine synthesis when the demand for precursor is increased. For these experiments, brain slices from rats fed diets containing different amounts of choline were incubated in a choline-free buffer and acetylcholine synthesis was measured under resting conditions and in the presence of K+-induced increases in acetylcholine synthesis and release. Rats fed the choline-supplemented diet had circulating choline levels that were 52% greater than the controls, and striatal and cerebral cortical slices from this group produced significantly more free choline during the incubation than slices from the controls. However, the synthesis and release of acetylcholine by these tissues did not differ from those by controls, during either resting or K+-evoked conditions. In contrast, acetylcholine synthesis and release by striatal and hippocampal slices from choline-deficient rats, animals that had circulating choline levels that were 80% of control values, decreased significantly; the production of free choline by these tissues was also depressed. Results indicate that, despite an increased production of free choline by brain slices from choline-supplemented rats, the synthesis of acetylcholine was unaltered, even in the presence of an increased neuronal demand. In contrast, the choline-deficient diet led to a decreased release of free choline from bound stores and an impaired ability of brain to synthesize acetylcholine.  相似文献   

2.
The effects of status epilepticus on the concentration, synthesis, release, and subcellular localization of acetylcholine, the concentration of choline, and the activity of acetylcholinesterase in rat brain regions were studied. Generalized convulsive status epilepticus was induced by the administration of pilocarpine to lithium-treated rats. The concentration of acetylcholine in the cortex, hippocampus, and striatum decreased prior to the onset of spike activity or status epilepticus. Once status epilepticus began, the concentration of acetylcholine increased over time in the cortex and hippocampus, reaching peak levels that were 461% and 304% of control levels, respectively, after 2 h of seizures. Such high in vivo levels of acetylcholine had not been reported previously following any treatment. During status epilepticus, the concentration of acetylcholine in the striatum returned to control levels after the initial depression, but did not accumulate to high levels as it did in the other two regions. The in vivo cortical efflux of acetylcholine was also increased during the seizures. Choline levels were increased by status epilepticus in all three brain regions. Inhibition of seizures by pretreatment with atropine blocked the increases of acetylcholine and choline. Synaptosomes prepared from the cortex and from the hippocampus of rats with status epilepticus had elevated concentrations of acetylcholine: in the hippocampus the acetylcholine was principally in the cytoplasmic fraction, whereas in the cortex the acetylcholine was elevated in both the cytoplasmic and the vesicular fractions. The extra acetylcholine was in a releasable compartment, since increased K+ in the media or ouabain increased the release of acetylcholine from cortical slices to a greater extent in tissue from seized rats than from controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The present study is concerned with the uptake and metabolism of choline by the rat brain. Intraperitoneal administration of choline chloride (4-60 mg/kg) caused a dose-dependent elevation of the plasma choline concentration from 11.8 to up to 165.2 microM within 10 min and the reversal of the negative arteriovenous difference (AVD) of choline across the brain to positive values at plasma choline levels of greater than 23 microM. Net choline release and uptake were linearly dependent on the plasma choline level in the physiological range of 10-50 microM, whereas the CSF choline level was significantly increased only at plasma choline levels of greater than 50 microM. The bolus injection of 60 mg/kg of [3H]choline chloride caused the net uptake of greater than 500 nmol/g of choline by the brain as calculated from the AVD, which was reflected in a minor increase of free choline level and a long-lasting increase of brain phosphorylcholine content, which paralleled the uptake curve. Loss of label from phosphorylcholine 30 min to 24 h after choline administration was accompanied by an increase of label in phosphatidylcholine, an indication of a delayed transfer of newly taken-up choline into membrane choline pools. In conclusion, homeostasis of brain choline is maintained by a complex system that interrelates choline net movements into and out of the brain and choline incorporation into and release from phospholipids.  相似文献   

4.
The main objective of these studies was to determine whether the acute administration of choline to rats provides supplemental precursor that can be used to support acetylcholine synthesis when the demand for choline is increased by increasing neurotransmitter release. For these experiments, hippocampal and striatal slices were prepared form rats that had received saline or an acute injection of choline. Slices were incubated in a choline-free buffer containing 4.74-35 mM KCl, and acetylcholine synthesis and release and choline production were measured. The initial tissue contents of acetylcholine and choline did not differ between experimental groups for either brain region. When hippocampal slices from the controls were incubated for 10 min with depolarizing concentrations of KCl, acetylcholine release increased and the tissue content decreased in a concentration-dependent fashion; no net synthesis of acetylcholine occurred. In contrast, hippocampal slices from the choline-injected animals maintained their tissue content in the presence of high concentrations of KCl, despite an increase in acetylcholine release that was similar in magnitude to that of the controls; positive net synthesis of acetylcholine resulted. Although the molar concentration of choline achieved in the incubation media at the end of the 10-min period did not differ between groups, the mobilization of free choline from bound stores was significantly greater in hippocampal slices from the choline-injected group than the controls. In addition, the synthesis of acetylcholine by hippocampal slices from the choline-injected group was prevented by the presence of hemicholinium-3 (1 microM) in the media.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Piribedil, (1–2″-pyrimidyl)-4-piperonyl piperazine), an agent proposed for the treatment of Parkinson's disease, was found to increase acetylcholine levels in the rat striatum and diencephalon but not in the mesencephalon, cerebellum or hemispheres. The effect was most marked in the striatum (greater than 100%) and long-lasting (at least 8 hours after a single administration of 60 mg/kg i.p.). Striatal choline levels were also increased by piribedil but did not parallel at all times and doses the effect on acetylcholine. Furthermore, choline levels were increased in all brain regions except the hemispheres. Striatal choline acetyltransferase and acetylcholinesterase were not affected by in vitro or in vivo treatment with even high doses of piribedil. α-Methyl-p-tyrosine was ineffective in blocking piribedil while pimozide, a blocker of dopamine receptors, completely antagonized the action of piribedil on striatal acetylcholine. It is concluded that piribedil produced the increase in striatal acetylcholine by directly stimulating dopamine receptors.  相似文献   

6.
The main objective of these studies was to determine whether adenosine inhibits choline kinase in rat striata, leading to a decreased incorporation of choline into phosphorylcholine, a mechanism that may mediate seizure-induced increases in the levels of free choline in brain. Incubation of particulate and soluble fractions of striatal synaptosomes with adenosine or its metabolically stable analogues significantly inhibited enzyme activity. The inhibition was noncompetitive versus choline and competitive versus MgATP. Inhibitor constants for adenosine, 2-chloroadenosine, and 2',5'-dideoxyadenosine at the MgATP site were 94, 49, and 207 microM, respectively; these values were less than the Michaelis constant for MgATP (340 microM). To determine whether adenosine altered the phosphorylation of choline in an intact preparation, synaptosomes were incubated with [3H]choline in the presence or absence of adenosine or its analogues and the amount of [3H]-phosphorylcholine formed from the [3H]choline taken up was measured. All compounds tested significantly reduced the synthesis of [3H]phosphorylcholine. Results suggest that following seizures or hypoxia, when levels of adenosine increase and the concentration of ATP decreases, inhibition of choline phosphorylation may be manifest, resulting in increased levels of free choline in brain.  相似文献   

7.
CHOLINE AND ACETYLCHOLINE IN RATS: EFFECT OF DIETARY CHOLINE   总被引:8,自引:7,他引:1  
Abstract– The concentration of free choline in peripheral tissues (duodenum, heart, kidney, liver, stomach and plasma) of rats was found to be related to the amount of free choline in the diet. Under steady-state conditions, the concentration of free choline in plasma varied from a minimum of approx 6 nmol/ml (in rats fed a choline-deficient diet) to a maximum value not exceeding 21 nmol/ml. The concentration of plasma choline was elevated above 21 nmol/ml for a short time after parenteral administration of choline chloride or one of its precursors (CDP choline or phosphorylcholine), but was not affected by stress, endocrine manipulations, drug treatments or the time of day when rats were killed. The metabolism of intravenously administered [methyl-3H] choline was accelerated in peripheral tissues (except plasma) of choline-deficient rats, indicating that free choline is not preserved during choline deficiency by a reduction in its rate of turnover. Furthermore, the decrease in concentration of plasma choline that occurred in rats fed a choline-deficient diet was prevented by addition of deanol (dimethylaminoethanol) to the diet. These results indicate that free choline in peripheral tissues of rats is derived from both free choline in the diet, and from precursors of choline present within the diet. In contrast to the effects in peripheral tissues, the concentration of free choline in brain was not reduced by dietary deprivation of free choline; however, the increase in free choline that occurred when rats were decapitated was reduced in brains by deficiency of choline, suggesting a decrease in the concentration of esterified forms of cerebral choline. The concentration of acetylcholine was not reduced in the brain, duodenum, heart, kidney or stomach of 21-week old rats raised from birth on a choline-deficient diet, in the duodenum of rats given a choline-deficient diet for 1, 5 or 11 days, or in brains of rats deprived of free choline for 1 or 11 days. However, the rate of in vivo synthesis of ACh from [methyl-3H]choline was accelerated in cholinergic tissues that were depleted of free choline (i.e. duodenum, heart and stomach).  相似文献   

8.
A sensitive procedure consisting of a pre- and post-microbore column reactor sequence of a LC-electrochemical detection system coupled with on-line microdialysis system is described in the present study to measure endogenous acetylcholine concentration in freely moving rats. The pre-column packed, with immobilized choline oxidase and catalase, was used to remove choline, whereas the post-column, packed with immobilized acetylcholine oxidase and choline oxidase, was used to measure acetylcholine selectively. The detection limit of acetylcholine was found to be 5 fmol/μl (50 fmol/10 μl). The usefulness of the described methodology was evaluated by examining the change in the striatal acetylcholine concentration of freely moving rats after physostigmine (0.5 mg/kg, s.c.) administration.  相似文献   

9.
Canine spinal cord energy state after in situ freezing   总被引:1,自引:1,他引:0  
[Methyl-3H]choline has been injected intraventricularly into adult rabbits, and the rate of synthesis of phosphatidylcholine, choline plasmalogen and sphingomyelin (and their hydrosoluble precursors) in isolated neuronal and glial cells has been investigated. At all time intervals examined, the injected radioactivity was incorporated only into the base moiety of the choline lipids in both cell types. Maximum labelling of the two choline phosphoglycerides occurred in neurons 150 min after administration, whereas the highest specific radioactivity for glial phosphatidylcholine and choline plasmalogen was reached at 6 and 10 h, respectively. At any time interval examined, the neuronal and glial choline plasmalogen displayed a higher specific radioactivity than the corresponding diacyl-derivative. The two phosphoglycerides incorporated the base in both cell populations at a faster rate than did whole brain tissue. Sphingomyelin was labelled in both cells at a low rate and acquired measurable radioactivity levels only after 2 h from isotope administration. Highest levels of radioactivity for phosphorylcholine and cytidine-5′-diphosphocholine were reached in both neurons and glia 1-2 h after administration, but these levels per unit protein were higher in glial than in neuronal cells.  相似文献   

10.
The contents of acetylcholine and choline were determined in rat cortex, striatum, and hippocampus following intraventricular injection of β-endorphin or D-Ala2-enkephalinamide, a synthetic enkephalin analog, in doses known to produce analgesia in experimental animals. These opiate polypeptides produced significant increases in acetylcholine levels in the hippocampus, a subcortical structure rich in cholinergic terminals. The acetylcholine content of the hippocampus (but not the cortex or striatum) was significantly elevated 15, 30, and 60 minutes after a single intraventricular injection of β-endorphin (10 μg/brain) or D-Ala2-enkephalinamide (10 μg/brain). Peak alterations in regional acetylcholine concentrations and in analgetic effectiveness both occurred 30 minutes after peptide administration. Choline concentrations were unchanged by any of the experimental treatments. Naloxone hydrochloride (1 mg/kg, subcutaneously) affected neither brain acetylcholine concentrations, nor the response latencies of rats placed on a hot-plate; it did, however, antagonize the changes in these parameters caused by β-endorphin or D-Ala2-enkephalinamide. These data suggest that endorphins may normally regulate the physiologic activity of some cholinergic neurons.  相似文献   

11.
Abstract— The relationship between choline availability and the synthesis of acetylcholine in discrete brain regions was studied in animals treated with the organophosphorus cholinesterase inhibitor paraoxon. Administration of paraoxon (0.23 mg/kg) inhibited acetylcholinesterase activity by approx 90% in the striatum, hippocampus and cerebral cortex and increased acetylcholine levels to 149%, 124% and 152% of control values, respectively. Free choline levels were unaltered by paraoxon in the hippocampus and cerebral cortex, but were significantly decreased in the striatum to 74% of control. When animals were injected with choline chloride (60 mg/kg), 60 min prior to the administration of paraoxon, the paraoxon-induced choline depletion in the striatum was prevented and the paraoxon-induced acetylcholine increase was potentiated from 149% to 177% of control values. Choline pretreatment had no significant effect in either the hippocampus or cerebral cortex, brain regions that did not exhibit a decrease in free choline levels after paraoxon administration. Results indicate that choline administration, which had no significant effect on acetylcholine levels by itself, increased acetylcholine synthesis in the striatum in the presence of acetylcholinesterase inhibition. However, this effect was not apparent in either the hippocampus or the cerebral cortex at similar levels of enzyme inhibition. It appears that choline generated from the hydrolysis of acetylcholine may play a significant role in the regulation of neurotransmitter synthesis in the striatum, but not in the other brain areas studied. The evidence supports the concept that the regulatory mechanisms controlling the synthesis of acetylcholine in striatal interneurons may differ from those in other brain regions.  相似文献   

12.
The inhibition of high-affinity choline transport by hemicholinium mustard (HCM), an alkylating analogue of hemicholinium-3, was examined in rat brain synaptosomes and guinea pig myenteric plexus. In synaptosomes, 50% high-affinity choline transport inhibition occurs with an HCM concentration of 104 nM (4-min incubation). A 10-min preincubation with 10 microM HCM results in essentially complete (greater than 95%) inactivation that persists after washing. Low-affinity choline transport in synaptosomes is unaffected by HCM inhibition at all concentrations examined (1-50 microM). Time course experiments indicate that the maximum irreversible inhibition (58%) seen after a 1-min preincubation with 500 nM HCM decreases to 46% inhibition after a 15-min preincubation; however, analysis of variance reveals that this difference is not significant. HCM inhibition of acetylcholine release from myenteric plexus-longitudinal muscle preparations persists for at least 2 h after removal of drug from the incubation bath; this inactivation can be prevented by coincubation with a high choline concentration during treatment with the mustard. In contrast, inhibition produced by the parent compound hemicholinium-3 is largely reversed by washing in both preparations examined. The observed potency and selectivity of HCM suggest its usefulness as a covalent probe for high-affinity choline transport.  相似文献   

13.
Summary Aims: Treatments that increase acetylcholine release from brain slices decrease the synthesis of phosphatidylcholine by, and its levels in, the slices. We examined whether adding cytidine or uridine to the slice medium, which increases the utilization of choline to form phospholipids, also decreases acetylcholine levels and release. Methods: We incubated rat brain slices with or without cytidine or uridine (both 25–400 μM), and with or without choline (20–40 μM), and measured the spontaneous and potassium-evoked release of acetylcholine. Results: Striatal slices stimulated for 2 h released 2650±365 pmol of acetylcholine per mg protein when incubated without choline, or 4600±450 pmol/mg protein acetylcholine when incubated with choline (20 μM). Adding cytidine or uridine (both 25–400 μM) to the media failed to affect acetylcholine release whether or not choline was also added, even though the pyrimidines (400 μM) did enhance choline`s utilization to form CDP-choline by 89 or 61%, respectively. The pyrimidines also had no effect on acetylcholine release from hippocampal and cortical slices. Cytidine or uridine also failed to affect acetylcholine levels in striatal slices, nor choline transport into striatal synaptosomes. Conclusion: These data show that cytidine and uridine can stimulate brain phosphatide synthesis without diminishing acetylcholine synthesis or release.  相似文献   

14.
1. The labelling of phosphorylcholine and choline-containing phospholipids in the subcellular fractions of guinea-pig cerebral cortex after the intraventricular injection of [N-Me-(3)H]choline into conscious animals has been studied. Special emphasis was placed upon the synaptosome fraction and early time-periods after administration. 2. The labelling of phosphorylcholine was rapid compared with that of phospholipid and was confined to two distinct subcellular fractions: the soluble cytoplasmic fraction and the synaptosome fraction. Most of the labelled phosphorylcholine of the synaptosome fraction was readily released by osmotic rupture indicating location in the nerve-ending cytoplasm. The two pools of phosphorylcholine had similar specific radioactivities at all observed times. 3. (3)H-labelled phospholipid was found in all membranous fractions. The labelling was confined to choline-containing phospholipids, notably phosphatidylcholine. 4. The labelling of the different membranous fractions was similar. 5. The half-life of the choline-containing phospholipids in the synaptic vesicle fraction was very much greater than the acetylcholine in this fraction. 6. Evidence is presented that synthesis de novo of phosphatidylcholine at nerve terminals occurs in vivo.  相似文献   

15.
《Life sciences》1996,58(22):1995-2002
Nicotinamide administration can elevate plasma and brain choline levels and produce a marginal increase in striatal acetylcholine levels in the rat. We now report that subcutaneous nicotinamide produces a substantial and long-lasting rise in asternal cerebrospinal fluid (CSF) levels of choline in free-moving rats, possibly through the enzymatic formation of N1-methylnicotinamide (NMN) in brain. CSF choline levels peaked 2 hours after nicotinamide administration and were accompanied by increases in striatal, cortical, hippocampal and plasma choline levels. The enzymatic formation of [3H]NMN in rat brain was evaluated by incubating aliquots of rat brain cytosol with unlabelled nicotinamide and the methyl donor [3H]S-adenosylmethionine. High performance liquid chromatography and radiochemical detection demonstrated that [3H]NMN was specifically formed by a brain cytosolic enzyme. The production of [3H]NMN was dependent on exogenous nicotinamide and could be prevented by denaturing the cytosol. The metabolism of nicotinamide to NMN in rat brain may explain the rise in CSF choline levels since NMN, a quaternary amine, can inhibit choline transport at the choroid villus and reduce choline clearance.  相似文献   

16.
R Chen  S E Robinson 《Life sciences》1992,51(13):1013-1019
By using multiple time-point constant-rate infusions of deuterium-labeled phosphorylcholine, appropriate kinetic parameters were obtained for use in the calculation of the turnover rate of acetylcholine (TRACh) in selected mouse brain regions. After obtaining these data, the relationship between the analgesic agent cobrotoxin (CT) and the activity of central cholinergic neurons was investigated by determination of TRACh in selected mouse brain regions 3 hours following intracerebroventricular (i.c.v.) injection of CT. There were no obvious changes in the concentrations of ACh and choline (Ch) in the cortex, hippocampus, hypothalamus, midbrain, striatum, or thalamus of the mouse after injection of an analgesic dose of CT (2 micrograms, i.c.v.). TRACh in the thalamus and the striatum were significantly increased, as compared to controls. On the other hand, i.c.v. injection of CT was found to significantly reduce TRACh in the hippocampus and midbrain. These results suggest that the activity of hippocampal and midbrain cholinergic neurons is suppressed by CT, whereas the activity of striatal and thalamic cholinergic neurons is increased by CT at a time when a maximum analgesic response to CT is expressed.  相似文献   

17.
Abstract— The effects of LiCl on cholinergic function in rat brain in vitro and in vivo have been investigated. The high affinity transport of choline and the synthesis of acetylcholine in synaptosomes were reduced when part (25-75%) of the NaCl in the buffer was replaced with LiCl or sucrose. This appeared to be due to lack of Na+ rather than to Li+, as addition of LiCl to normal buffer had little effect. Following an injection of LiCl (10mmol/kg, i.p.) into rats the concentration of a pulsed dose of [2H4]choline (20 μmol/kg, i.v., 1 min) and its conversion to [2H4]acetylcholine, and the concentrations of [2H2]acetylcholine and [2H0]choline were measured in the striatum, cortex, hippocampus and cerebellum. The [2H4]choline and [2H4]acetylcholine were initially (15 min after LiCl) reduced (to ?30% in the cortex) and later (24 h after LiCl) increased (to + 50% in the striatum). There was a corresponding initial increase (to +50% in the cerebellum) and later decrease (to ?30% in the hippocampus) of the endogenous acetylcholine and choline. These results indicate an initial decrease and later increase in the utilization of acetylcholine after acute treatment with LiCl. Following 10 days of treatment with LiCl there was an increased rate of synthesis of [2H4]acetylcholine from pulsed [2H4]choline in the striatum, hippocampus and cortex (P < 0.05). The high affinity transport of [2H4]choline and its conversion to [2H4]acetylcholine was activated (131% of control; P < 0.01) in synaptosomes isolated from brains of 10-day treated rats. Investigation of synaptosomes isolated from striatum, hippocampus and cortex revealed that only striatal [2H4]acetylcholine synthesis was significantly stimulated. Kinetic analysis demonstrated that the apparent KT for choline was decreased by 30% in striatal synaptosomes isolated from rats treated for 10 days with LiCl. Striatal synaptosomes from 10-day treated rats compared to striatal synaptosomes from untreated rats also released acetylcholine at a stimulated rate in a medium containing 35 mM-KCl. These results indicate that LiCl treatment stimulates cholinergic activity in certain brain regions and this may play a significant role in the therapeutic effect of LiCl in neuropsychiatric disorders.  相似文献   

18.
The purpose of the present study is to clarify the effects of the administration of choline on the in vivo release and biosynthesis of acetylcholine (ACh) in the brain. For this purpose, the changes in the extracellular concentration of choline and ACh in the rat striatum following intracerebroventricular administration of choline were determined using brain microdialysis. We also determined changes in the tissue content of choline and ACh. When the striatum was dialyzed with Ringer solution containing 10 microM physostigmine, ACh levels in dialysates rapidly and dose dependently increased following administration of various doses of choline and reached a maximum within 20 min. In contrast, choline levels in dialysates increased after a lag period of 20 min following the administration. When the striatum was dialyzed with physostigmine-free Ringer solution, ACh could not be detected in dialysates both before and even after choline administration. After addition of hemicholinium-3 to the perfusion fluid, the choline-induced increase in ACh levels in dialysates was abolished. Following administration of choline, the tissue content of choline and ACh increased within 20 min. These results suggest that administered choline is rapidly taken up into the intracellular compartment of the cholinergic neurons, where it enhances both the release and the biosynthesis of ACh.  相似文献   

19.
Enhancement of cellular phospholipase D (PLD)-1 and phospholipase C (PLC)-mediated hydrolysis of endogenous phosphatidylcholine (PC) during receptor-mediated cell activation has received increasing attention inasmuch as both enzymes can result in the formation of 1,2-diacylglycerol (DAG). The activities of PLD and PLC were examined in purified mast cells by quantitating the mass of the water-soluble hydrolysis products choline and phosphorylcholine, respectively. Using an assay based on choline kinase-mediated phosphorylation of choline that is capable of measuring choline and phosphorylcholine in the low picomole range, we quantitated the masses of both cell-associated and extracellular choline and phosphorylcholine. Activating mast cells by crosslinking its immunoglobulin E receptor (Fc epsilon-RI) resulted in an increase in cellular choline from 13.1 +/- 1.2 pmol/10(6) mast cells (mean +/- SE in unstimulated cells) to levels 5- to 10-fold higher, peaking 20 s after stimulation and rapidly returning toward baseline. The increase in cellular choline mass paralleled the increase in labeled phosphatidic acid accumulation detected in stimulated cells prelabeled with [3H]palmitic acid and preceded the increase in labeled DAG. Although intracellular phosphorylcholine levels were approximately 15-fold greater than choline in unstimulated cells (182 +/- 19 pmol/10(6) mast cells), stimulation resulted in a significant fall in phosphorylcholine levels shortly after stimulation. Pulse chase experiments demonstrated that the receptor-dependent increase in intracellular choline and the fall in phosphorylcholine were not due to hydrolysis of intracellular phosphorylcholine and suggested a receptor-dependent increase in PC resynthesis. When the extracellular medium was examined for the presence of water-soluble products of PC hydrolysis, receptor-dependent increases in the mass of both choline and phosphorylcholine were observed. Labeling studies demonstrated that these extracellular increases were not the result of leakage of these compounds from the cytosol. Taken together, these data lend support for a quantitatively greater role for receptor-mediated PC-PLD compared with PC-PLC during activation of mast cells.  相似文献   

20.
The concentrations of free choline in blood plasma from a peripheral artery and from the transverse sinus, in the CSF, and in total brain homogenate, have been measured in untreated rats and in rats after acute intraperitoneal administration of choline chloride. In untreated rats, the arteriovenous difference of brain choline was related to the arterial choline level. At low arterial blood levels (less than 10 microM) as observed under fasting conditions, the arteriovenous difference was negative (about -2 microM), indicating a net release of choline from the brain of about 1.6 nmol/g/min. In rats with spontaneously high arterial blood levels (greater than 15 microM), the arteriovenous difference was positive, implying a marked net uptake of choline by the brain (3.1 nmol/g/min). The CSF choline concentration, which reflects changes in the extracellular choline concentration, also increased with increasing plasma levels and closely paralleled the gradually rising net uptake. Acute administration of 6, 20, or 60 mg of choline chloride/kg caused, in a dose-dependent manner, a sharp rise of the arterial blood levels and the CSF choline, and reversed the arteriovenous difference of choline to markedly positive values. The total free choline in the brain rose only initially and to a quantitatively negligible extent. Thus, the amount of choline taken up by the brain within 30 min was stored almost completely in a metabolized form and was sufficient to sustain the release of choline from the brain as long as the plasma level remained low. We conclude that the extracellular choline concentration of the brain closely parallels fluctuations in the plasma level of choline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号