首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biomimetic pathways for the oxidation of [Au(CN)(2)](-), a gold metabolite, and further cyanation of the gold(III) products to form Au(CN)(4)(-) were investigated using 13C NMR and UV-Visible spectroscopic methods. Hypochlorite ion, an oxidant released during the oxidative burst of immune cells, was employed. The reaction generates mixed dicyanoaurate(III) complexes, trans-[Au(CN)(2)X(2)](-), where X(-) represents equilibrating hydroxide and chloride ligands, and establishes the chemical feasibility of dicyanoaurate oxidation by OCl(-) to gold(III) species. This oxidation reaction suggests a new procedure for synthesis of H[Au(CN)(2)Cl(2)]. Reaction of trans-[Au(CN)(2)X(2)](-) (X(-)=Cl(-) and Br(-)) or [AuCl(4)](-) with HCN in aqueous solution at pH 7.4 leads directly to [Au(CN)(4)](-) without detection of the anticipated [Au(CN)(x)X(4-x)](-)intermediates, which is attributed to the cis- and trans-accelerating effects of the cyanides. The reduction of [Au(CN)(4)](-) by glutathione and other thiols is a complex, pH-dependent process that proceeds through two intermediates and ultimately generates [Au(CN)(2)](-). These studies provide further insight into the possible mechanisms of an immunogenically generated gold(I)/gold(III) redox cycle in vivo.  相似文献   

2.
The reduction of auricyanide ([Au(CN)(4)](-), a potential gold(III) metabolite of antiarthritic gold(I) compounds), by glutathione (G(-)SH, an anionic biological reductant) proceeds through two intermediates (I(230) and I(290)) which have previously been identified by their UV-vis spectra, but not isolated. Negative-ion electrospray ionization-mass spectroscopy (ESI-MS) has unambiguously identified them as [Au(CN)(3)(SG)](2-) and [Au(CN)(2)(SG)(2)](3-), respectively, and allowed their formation and decay to be monitored. The spectra also confirm that the products are aurocyanide ([Au(CN)(2)](-), a known metabolite of chrysotherapy agents) and oxidized glutathione (GSSG(2-)). The reactions are dependent on the presence or absence of buffering agents and the pH of the reaction media. The reaction can be driven to the first intermediate by using an excess of auricyanide or by running the reaction at low pH which prevents further reaction. At neutral pH and/or with excess of glutathione present, the reaction proceeds to the second intermediate, which is then reduced to aurocyanide. The monoanions, [Au(CN)(3)(SGH)](-) at m/z=581.2 and [Au(CN)(2)(SGH)(2)](-) at m/z=861.5 generate more intense signals than their respective dianions, [Au(CN)(3)(SG)](2-) at m/2=290.2 and [Au(CN)(2)(SG)(SGH)](2-)m/2=430.9, respectively, whereas the trianion [Au(CN)(2)(SG)(2)](3-) (m/3=281.2) was not observed. These studies demonstrate the value of ESI-MS methods for characterizing reactions of metallopharmaceuticals under biomimetic conditions and suggest that they will be useful for other systems which give strong ESI-MS signals.  相似文献   

3.
The reactions of a few representative gold(III) complexes -[Au(ethylenediamine)2]Cl3, [Au(diethylentriamine)Cl]Cl2, [Au(1,4,8,11-tetraazacyclotetradecane)](ClO4)2Cl, [Au(2,2',2'-terpyridine)Cl]Cl2, [Au(2,2'-bipyridine)(OH)2][PF6] and the organometallic compound [Au(6-(1,1-dimethylbenzyl)-2,2'-bipyridine-H)(OH)][PF6]- with BSA were investigated by the joint use of various spectroscopic methods and separation techniques. Weak metal-protein interactions were revealed for the [Au(ethylenediamine)2]3+ and [Au(1,4,8,11-tetraazacyclotetradecane)]3+ species, whereas progressive reduction of the gold(III) centre was observed in the cases of [Au(2,2'-bipyridine)(OH)2]+ and [Au(2,2',2'-terpyridine)Cl]2+. In contrast, tight metal-protein adducts are formed when BSA is reacted with either [Au(diethylentriamine)Cl]2+ and [Au(6-(1,1-dimethylbenzyl)-2,2'-bipyridine-H)(OH)]+. Notably, binding of the latter complex to serum albumin results in the appearance of characteristic CD bands in the visible spectrum. It is suggested that adduct formation for both of these gold(III) complexes occurs through coordination at the level of surface histidines. Stability of these gold(III) complexes/serum albumin adducts was tested under physiologically relevant conditions and found to be appreciable. Metal binding to the protein is tight; complete detachment of the metal from the protein has been achieved only after the addition of excess potassium cyanide. The implications of the present results for the pharmacological activity of these novel cytotoxic agents are discussed.  相似文献   

4.
The human calcitonin peptide chain was assembled using Fmoc solid-phase peptide synthesis chemistry. The combinations of cleavage Reagent H with trans-[Pt(en)(2)Cl(2)](2+) and Reagents B, K, and R with trans-[Pt(CN)(4)Cl(2)](2-) provide convenient methods for the synthesis of human calcitonin and its methionine sulfoxide derivative; the formation of intramolecular disulfide bonds by the above Pt(IV) oxidants is essentially quantitative.  相似文献   

5.
The effects of gold(I) complexes (auranofin, triethylphosphine gold and aurothiomalate), gold(III) complexes ([Au(2,2'-diethylendiamine)Cl]Cl(2), [(Au(2-(1,1-dimethylbenzyl)-pyridine) (CH(3)COO)(2)], [Au(6-(1,1-dimethylbenzyl)-2,2'-bipyridine)(OH)](PF(6)), [Au(bipy(dmb)-H)(2,6-xylidine)](PF(6))), metal ions (zinc and cadmium acetate) and metal complexes (cisplatin, zinc pyrithione and tributyltin) on mitochondrial thioredoxin reductase and mitochondrial functions have been examined. Both gold(I) and gold(III) complexes are extremely efficient inhibitors of thioredoxin reductase showing IC(50) ranging from 0.020 to 1.42 microM while metal ions and complexes not containing gold are less effective, exhibiting IC(50) going from 11.8 to 76.0 microM. At variance with thioredoxin reductase, auranofin is completely ineffective in inhibiting glutathione peroxidase and glutathione reductase, while gold(III) compounds show some effect on glutathione peroxidase. The mitochondrial respiratory chain is scarcely affected by gold compounds while the other metal complexes and metal ions, in particular zinc ion and zinc pyrithione, show a more marked inhibitory effect that is reflected on a rapid induction of membrane potential decrease that precedes swelling. Therefore, differently from gold compounds, the various metal ions and metal complexes exert their effect on different targets indicating a lower specificity. It is concluded that gold compounds are highly specific inhibitors of mitochondrial thioredoxin reductase and this action influences other functions such as membrane permeability properties. Metal ions and metal complexes markedly inhibit the activity of thioredoxin reductase although to an extent lower than that of gold compounds. They also inhibit mitochondrial respiration, decrease membrane potential and, finally, induce swelling.  相似文献   

6.
DNA represents the primary target for platinum antitumor metal complexes and is the probable target for newly developed cytotoxic gold(III) complexes. To test this hypothesis the reactions with calf thymus DNA of five representative gold(III) complexes--namely [Au(en)(2)]Cl(3), [Au(dien)Cl]Cl(2), [Au(cyclam)](ClO(4))(2)Cl, [Au(terpy)Cl]Cl(2) and [Au(phen)Cl(2)]Cl--were analyzed in vitro through various physicochemical techniques including circular dichroism, absorption spectroscopy, DNA melting, and ultradialysis. It is shown that all tested complexes interact with DNA and modify significantly its solution behavior. The solution conformation of DNA is affected to variable extents by the individual complexes as shown by CD titration experiments. Notably, in all cases, the gold(III) chromophore is not largely perturbed by addition of calf thymus DNA ruling out occurrence of gold(III) reduction. Ultradialysis experiments point out that the binding affinity of the various complexes for the DNA double helix is relatively low; in most cases the gold(III)/DNA interaction is electrostatic in nature and reversible. The implications of these findings for the mechanism of action of antitumor gold(III) complexes are discussed.  相似文献   

7.
Electrospray ionisation (ESI) mass spectrometry was used to examine the reactions of the clinically used antiarthritic agent [Au(S2O3)2]3−, and AuPEt3Cl, a derivative of another clinically used agent auranofin, with human serum albumin (HSA) obtained from a human volunteer. Both compounds reacted readily with HSA to form complexes containing one or more covalently attached gold fragments. In the case of AuPEt3Cl, binding was accompanied by the loss of the chloride ligand, while for [Au(S2O3)2]3− the mass spectral data indicated binding of Au(S2O3) groups. Experiments performed using HSA with Cys34 blocked by reaction with iodoacetamide were consistent with reaction of both gold compounds with this amino acid. Separate blocking experiments using diethylpyrocarbonate and AuPEt3Cl also provided evidence for histidine residues acting as lower-affinity binding sites for this gold compound. ESI mass spectra of solutions containing [Au(S2O3)2]3− or [Au(CN)2], and HSA, provided evidence for the formation of protein complexes in which intact gold molecules were non-covalently bound. In the case of [Au(S2O3)2]3−, these non-covalent complexes proved to be transitory in nature. However, for [Au(CN)2] a non-covalent complex containing a single gold molecule bound to HSA was found to be stable, and constituted the main adduct formed in solutions containing low-to-medium Au-to-HSA ratios. Evidence was also obtained for the formation of a covalent adduct in which a single Au(CN) moiety was bonded to Cys34 of the protein. AuPEt3Cl reacted to a much lower extent with HSA that had Cys34 modified by formation of a disulfide bond to added cysteine, than with unmodified HSA. This suggests that the extent of modification of the protein in vivo may have an important influence on the transport and bioavailability of gold antiarthritic drugs.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

8.
Complexes [Au(2)(H(2)Gy3DH)(2)]Cl(2) (1), [Au(H(2)Gy3Me)]Cl(3) (2) and [Au(H(2)Gy3Et)]Cl(3) (3) were obtained with glyoxaldehyde bis(thiosemicarbazone) (H(2)Gy3DH) and its N(3)-methyl (H(2)Gy3Me) and N(3)-ethyl (H(2)Gy3Et) derivatives. The bis(thiosemicarbazones) and their gold(I) and gold(III) complexes exhibited anti-proliferative activity against HL-60, Jurkat (leukemia) and MCF-7 (breast cancer) cells at 10 μmol L(-1). Complex (2) was able to in vitro inhibit thioredoxin reductase (TrxR) activity, which suggests that inhibition of TrxR could be part of its mechanism of action.  相似文献   

9.
The digold complex [Au(2)(micro-G)(micro-dmpe)](KBr)(0.75) x 2H(2)O (dmpe=1,2-bis(dimethylphosphino)ethane (1)) has been prepared by nucleophilic attack of the guaninate dianion on the gold(I) atoms of [(AuBr)(2)(micro-dmpe)] and has been characterised by X-ray crystallography and spectroscopic studies. The structure of 1 consists of dinuclear nine-membered ring molecules, K(+) cations, Br(-) anions and water molecules, all of them involved in either weak K....O or hydrogen bonding interactions. Within the cyclic dinuclear molecules, gold(I) atoms are bridged on one side by the diphosphine ligand and on the other side by a doubly deprotonated guaninate anion coordinated through neighbouring N3 and N9 nitrogen atoms, with gold(I)....gold(I) interactions of 3.030(2) A. This is the first X-ray example showing an N3,N9-bridging mode for guanine. There are two types of K(+) cations in the structure, K1 and K2. The former interacts with water molecules to form a unique [K(H(2)O)(3)(micro-H(2)O)(2)K(H(2)O)(3)](2+) dipotassium unit whereas K2 interact with the O6 atom of the guaninate ligands and oxygen atoms of the dipotassium unit leading to a chain running along the c-axis. Each chain is interdigitated with four neighbouring ones to give rise to an intricate network in which Br1, Br2 and [K(H(2)O)(3)(micro-H(2)O)(2)K(H(2)O)(3)](2+) fit snugly into cavities defined by digold molecules. Complex 1 luminescence at room temperature and 77 K in the solid state with excitation maxima at 385 nm and emission maxima at 451.8 and 448.7 nm, respectively. The emission spectrum of a saturated solution of 1 in DMSO (dimethyl sulfoxide) shows the maximum at about 440 nm.  相似文献   

10.
Irradiation of trans-[RuCl(cyclam)(NO)](2+), cyclam is 1,4,8,11-tetraazacyclotetradecane, at pHs 1-7.4, with near UV light results in the release of NO and formation of trans-[Ru(III)Cl(OH)(cyclam)](+) with pH dependent quantum yields (from approximately 0.01 to 0.16 mol Einstein(-1)) lower than that for trans-[RuCl([15]aneN(4))(NO)](2+), [15]aneN(4) is 1,4,8,12-tetaazacyclopentadecane, (0.61 mol Einstein(-1)). After irradiation with 355 nm light, the trans-[RuCl([15]aneN(4))(NO)](2+) induces relaxation of the aortic ring, whereas the trans-[RuCl(cyclam)(NO)](2+) complex does not. The relaxation observed with trans-[RuCl([15]aneN(4))(NO)](2+) is consistent with a larger quantum yield of release of NO from this complex.  相似文献   

11.
A new series of complexes of the type [Cu(dien)(2a-2tzn)Y(2)] and [Cu(dienXX)(2a-2tzn)Y(2)], where dien=diethylenetriamine and dienXX=Schiff dibase of diethylenetriamine formed with 2-furaldehyde (dienOO), 2-thiophenecarboxaldehyde (dienSS), or pyrrol-2-carboxaldehyde (dienNN); Y=Cl, Br or NO(3); and 2a-2tzn=2-amino-2-thiazoline, were synthesized and their structure established by C, H, N and Cu analysis; IR and electronic spectra; magnetic susceptibility; and molar conductivity. The isolated complexes are monomers, paramagnetic, and electrolytes of types 1:1 or 1:2. In both types of solid state complexes, [Cu(dien)(2a-2tzn)Y(2)] and [Cu(dienXX)(2a-2tzn)Y(2)], dien and its Schiff dibases are bonded to Cu(II) in a tridentate fashion through 3N atoms. The coordination sphere is completed by the endocyclic nitrogen of the thiazoline moiety and by two Cl, Br, or NO(3) groups with distorted octahedral geometry. The proposed structure of these compounds was supported by X-ray analysis of [Cu(dien)(Br)(2a-2tzn)](Br)(H(2)O). The coordination polyhedron around the copper atom can be described as a distorted square pyramid [Cu(dien)(Br)(2a-2tzn)](+). Its basal plane is occupied by the four nitrogen atoms of the dien and thiazoline ligands with Cu-N distances ranging between 1.996(6) and 2.032(3)A, and the axial position is occupied by one of the two bromine atoms (Br1) with a Cu1-Br1 bond distance of 2.782(1)A. The second bromine atom (Br2) is 4.694(2)A from the copper atom, which exists as a discrete anion and is responsible for the cationic nature of the complex. Results regarding toxicity, antitumor, and anti-inflammatory activities of the investigated compounds are promising and allow the selection of a lead compound for further biological studies.  相似文献   

12.
The stationary photolysis of [PtCl(6)](2-) in aqueous solutions (10(-5)-10(-4) M) at the region of 313 nm leads to its photoaquation with a quantum yield of 0.19. Laser flash photolysis experiments (308 nm) provided evidence of the formation of Pt(iii) intermediates, namely [PtCl(4)(OH)(H(2)O)](2-) and [PtCl(4)](-), and Cl(2) (-) radical anions. The Pt(iii) complexes formed as a result of an intrasphere electron transfer from Cl(-) ligands to the excited Pt(iv) ion. However, the main ( approximately 90%) photolysis channel was not accompanied by the transfer of Cl atoms to the solvent bulk. The photoaquation of [PtCl(6)](2-) results from the back electron transfer in the secondary geminate pair, [PtCl(5)(H(2)O)](2-)-Cl. The relative yield of Pt(iii) intermediates, recorded after the completion of all processes in the geminate pair, was less than 10% of the number of disappearing initial [PtCl(6)](2-) complexes.  相似文献   

13.
Crystallisation of [Co(CN)(6)](3-) or [Cr(CN)(6)](3-) with Ln(iii) salts (Ln = Nd, Gd, Yb) from aqueous dmf afforded the cyanide-bridged d/f systems [Ln(dmf)(4)(H(2)O)(3)(micro-CN)Co(CN)(5)] (-, discrete dinuclear species) and {[Cr(CN)(4)(micro-CN)(2)Ln(H(2)O)(2)(dmf)(4)]}(infinity) (-, infinite cyanide-bridged chains with alternating Cr and Ln centres). With Ln = Gd the characteristic long-lived phosphorescence from d-d excited states of the [M(CN)(6)](3-) units was apparent in the red region of the spectrum, with lifetimes of the order of 1 micros, since the heavy atom effect of the Gd(iii) promotes inter-system crossing at the [M(CN)(6)](3-) units to generate the phosphorescent spin-forbidden excited states. With Ln = Yb or Nd however, the d-block luminescence was completely quenched due to fast (>10(8) s(-1)) energy-transfer to the Ln(iii) centre, resulting in the characteristic sensitised emission from Yb(iii) and Nd(iii) in the near-IR region. For both - and -, calculations based on spectroscopic overlap between emission of the donor (Co) and absorption of the acceptor (Ln) suggest that the Dexter energy-transfer mechanism is responsible for the complete quenching that we observe.  相似文献   

14.
Organic gold complexes have different biological activity, depending on their potential for interactions with key functional molecules.The aim of this study was to investigate potential of several newly synthesized organic gold complexes to influence spontaneous motility of the Fallopian tubes.The effects of [Au(bipy)Cl(2)](+) (dichloride(2,2'-bipyridyl)aurate(III)-ion), aurothiomalate, [Au(DMSO)(2)Cl(2)]Cl and DMSO on spontaneous motility of Fallopian tubes were tested on the isolated tube segments in vitro. Aurothiomalate (from 2.9?×?10(-9) to 4.9?×?10(-4)?M/l), [Au(bipy)Cl(2)]Cl (from 3.3?×?10(-9) to 4.2?×?10(-5)?M/l) and DMSO (from 1.9?×?10(-8) to 1.0?×?10(-5)?M/l) did not affect spontaneous contractions of the isolated Fallopian tube ampulla, while [Au(DMSO)(2)Cl(2)]Cl (from 2.9?×?10(-9) to 4.2?×?10(-5)?M/l) showed concentration-dependent increase (stimulation) of spontaneous contractions of the isolated Fallopian tube isthmus, and remained without effect on the isolated ampulla.The drugs designed as organic gold complexes with weaker bonds between the gold itself and organic part of a molecule could adversely affect motility of the Fallopian tubes, and theoretically fertility of women taking such drugs in their reproductive age.  相似文献   

15.
A series of pentanuclear gold(I)-copper(I) and -silver(I) mixed-metal alkynyl complexes, [(n)Bu(4)N][Au(3)M(2)(C triple bond CC(6)H(4)R-p)(6)] [M = Cu, R = OMe, O(n)Bu, O(n)Hex, Me, Et; M = Ag, R = Et, O(n)Hex] have been synthesized. The complexes were found to be emissive both in the solid state and in fluid solutions. DFT calculations at the B3LYP level of theory were performed on [Au(3)M(2)(C triple bond CC(6)H(4)Me-p)(6)](-) (M = Cu, Ag) to provide an understanding on the electronic structure of the complexes.  相似文献   

16.
The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in the formation of dinitrosyl iron complexes (DNICs) coordinated by cysteine residues from the peptide backbone or with low molecular weight sulfur-containing molecules like glutathione. Such DNICs are among the modes available in biology to store, transport, and deliver NO to its relevant targets. In order to elucidate the fundamental chemistry underlying the formation of DNICs and to characterize possible intermediates in the process, we have investigated the interaction of NO (g) and NO(+) with iron-sulfur complexes having the formula [Fe(SR)(4)](2-), where R=(t)Bu, Ph, or benzyl, chosen to mimic sulfur-rich iron sites in biology. The reaction of NO (g) with [Fe(S(t)Bu)(4)](2-) or [Fe(SBz)(4)](2-) cleanly affords the mononitrosyl complexes (MNICs), [Fe(S(t)Bu)(3)(NO)](-) (1) and [Fe(SBz)(3)(NO)](-) (3), respectively, by ligand displacement. Mononitrosyl species of this kind were previously unknown. These complexes further react with NO (g) to generate the corresponding DNICs, [Fe(SPh)(2)(NO)(2)](-) (4) and [Fe(SBz)(2)(NO)(2)](-) (5), with concomitant reductive elimination of the coordinated thiolate donors. Reaction of [Fe(SR)(4)](2-) complexes with NO(+) proceeds by a different pathway to yield the corresponding dinitrosyl S-bridged Roussin red ester complexes, [Fe(2)(mu-S(t)Bu)(2)(NO)(4)] (2), [Fe(2)(mu-SPh)(2)(NO)(4)] (7) and [Fe(2)(mu-SBz)(2)(NO)(4)] (8). The NO/NO(+) reactivity of an Fe(II) complex with a mixed nitrogen/sulfur coordination sphere was also investigated. The DNIC and red ester species, [Fe(S-o-NH(2)C(6)H(4))(2)(NO)(2)](-) (6) and [Fe(2)(mu-S-o-NH(2)C(6)H(4))(2)(NO)(4)] (9), were generated. The structures of 8 and 9 were verified by X-ray crystallography. The MNIC complex 1 can efficiently deliver NO to iron-porphyrin complexes like [Fe(TPP)Cl], a reaction that is aided by light. Removal of the coordinated NO ligand of 1 by photolysis and addition of elemental sulfur generates higher nuclearity Fe/S clusters.  相似文献   

17.
In this work we present the synthesis and structural and spectroscopic characterization of Cu(II), Co(II) and Zn(II) coordination compounds with the antibiotic metronidazole ([double bond]emni). Coordination to metal ions is through its imidazolic nitrogen, while the hydroxyethyl and nitro groups act as supramolecular synthons. [Co(emni)(2)Br(2)], and [Zn(emni)(2)X(2)] (X(-)=Cl, Br) stabilize zig-zag chains, and a 2D supramolecular structure is formed by inter-chain contacts through inter-molecular hydrogen-bonding. Pleated sheet or layers are formed by [Co(emni)(2)Cl(2)] and [Cu(emni)(2)Cl(H(2)O)](2)Cl(2), respectively. The dinuclear Cu(II) compound [Cu(emni)mu(O(2)CMe)(2)](2) gives a one-dimensional zig-zag arrangement. The contribution of metal ions in metronidazole coordination compounds is shown in the stabilization of the different aggregate structures.  相似文献   

18.
Three new binary Cu(II) complexes of norfloxacin have been synthesized and characterized. We also report the synthesis, characterization and X-ray crystallographic structures of a new binary compound, [Cu(HNor)(2)]Cl(2).2H(2)O (2) and two new ternary complexes norfloxacin-copper(II)-phen, [Cu(Nor)(phen)(H(2)O)](NO(3)).3H(2)O (4), and [Cu(HNor)(phen)(NO(3))](NO(3)).3H(2)O (5). The structure of 2 consists of two crystallographically independent cationic monomeric units of [Cu(HNor)(2)](2+), chloride anions, and uncoordinated water molecules. The Cu(II) ion is placed at a center of symmetry and is coordinated to two norfloxacin ligands which are related through the inversion center. The structures of 4 and 5 consist of cationic units ([Cu(Nor)(phen)(H(2)O)](+) for 4 and [Cu(HNor)(phen)(NO(3))](+) for 5), nitrate counteranions, and lattice water molecules that provide crystalline stability through a network of hydrogen-bond interactions. The complexes exhibit a five coordinated motif in a square pyramidal environment around the metal center. The ability of compounds 4 and 5 to cleave DNA has also been studied. Mechanistic studies with different inhibiting reagents reveal that hydroxyl radicals, singlet oxygen, and superoxide radicals are all involved in the DNA scission process mediated by these compounds.  相似文献   

19.
The mechanism of activation thioamide-pyridine anti-tuberculosis prodrugs is poorly described in the literature. It has recently been shown that ethionamide, an important component of second-line therapy for the treatment of multi-drug-resistant tuberculosis, is activated through an enzymatic electron transfer (ET) reaction. In an attempt to shed light on the activation of thioamide drugs, we have mimicked a redox process involving the thionicotinamide (thio) ligand, investigating its reactivity through coordination to the redox reversible [Fe(III/II)(CN)(5)(H(2)O)](2-/3-) metal center. The reaction of the Fe(III) complex with thionicotinamide leads to the ligand conversion to the 3-cyanopyridine species coordinated to a Fe(II) metal center. The rate constant, k(et)=10 s(-1), was determined for this intra-molecular ET reaction. A kinetic study for the cross-reaction of thionicotinamide and [Fe(CN)(6)](3-) was also carried out. The oxidation of thionicotinamide by [Fe(CN)(6)](3-) leads to formation of mainly 3-cyanopyridine and [Fe(CN)(6)](4-) with a k(et)=(5.38+/-0.03) M(-1)s(-1) at 25 degrees C, pH 12.0. The rate of this reaction is strongly dependent on pH due to an acid-base equilibrium related to the deprotonation of the R-SH functional group of the imidothiol form of thionicotinamide. The kinetic results reinforced the assignment of an intra-molecular mechanism for the ET reaction of [Fe(III)(CN)(5)(H(2)O)](2-) and the thioamide ligand. These results can be valuable for the design of new thiocarbonyl-containing drugs against resistant strains of Mycobacterium tuberculosis by a self-activating mechanism.  相似文献   

20.
《Inorganica chimica acta》2005,358(5):1365-1372
We have synthesized a series of dinuclear gold(I) derivatives with the diphosphane bis(diphenylphosphano)acetylene, namely [(AuX)2(μ-dppa)] (X=Cl, C6F5, SC6F5, S2CN(CH2Ph)2). X-ray structure determinations for the first three derivatives reveal a linear geometry for the gold centres. There are no intramolecular gold-gold interactions, although for X=Cl intermolecular gold(I)-gold(I) interactions of 3.0694(4) Å lead to an infinite twisted chain; the further presence of C-H?Cl contacts leads to a more complex three-dimensional structure. All the derivatives are luminescent in the solid state at low temperature in the range 455-593 nm; most of them are emissive at room temperature in the range 470-598 nm. We have also prepared the dinuclear gold(III) derivative [(Au(C6F5)3)2(μ-dppa)]. Finally, we have prepared the derivative [(AuCl)2(μ-dppa)3], which forms a cage with two tetrahedrically coordinated gold(I) centres at the apical positions bridged by three rigid diphosphane ligands, with a helical twist of 26.2°, and a gold-gold distance of 5.769 Å. The gold(III) and the four-coordinate gold(I) derivatives are not luminescent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号