首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reelin is a large secreted signaling protein that binds to two members of the low density lipoprotein receptor family, the apolipoprotein E receptor 2 and the very low density lipoprotein receptor, and regulates neuronal positioning during brain development. Reelin signaling requires activation of Src family kinases as well as tyrosine phosphorylation of the intracellular adaptor protein Disabled-1 (Dab1). This results in activation of phosphatidylinositol 3-kinase (PI3K), the serine/threonine kinase Akt, and the inhibition of glycogen synthase kinase 3beta, a protein that is implicated in the regulation of axonal transport. Here we demonstrate that PI3K activation by Reelin requires Src family kinase activity and depends on the Reelin-triggered interaction of Dab1 with the PI3K regulatory subunit p85alpha. Because the Dab1 phosphotyrosine binding domain can interact simultaneously with membrane lipids and with the intracellular domains of apolipoprotein E receptor 2 and very low density lipoprotein receptor, Dab1 is preferentially recruited to the neuronal plasma membrane, where it is phosphorylated. Efficient Dab1 phosphorylation and activation of the Reelin signaling cascade is impaired by cholesterol depletion of the plasma membrane. Using a neuronal migration assay, we also show that PI3K signaling is required for the formation of a normal cortical plate, a step that is dependent upon Reelin signaling.  相似文献   

2.
The cytoplasmic adaptor protein Disabled-1 (Dab1) is necessary for the regulation of neuronal positioning in the developing brain by the secreted molecule Reelin. Binding of Reelin to the neuronal apolipoprotein E receptors apoER2 and very low density lipoprotein receptor induces tyrosine phosphorylation of Dab1 and the subsequent activation or relocalization of downstream targets like phosphatidylinositol 3 (PI3)-kinase and Nckbeta. Disruption of Reelin signaling leads to the accumulation of Dab1 protein in the brains of genetically modified mice, suggesting that Reelin limits its own action in responsive neurons by down-regulating the levels of Dab1 expression. Here, we use cultured primary embryonic neurons as a model to demonstrate that Reelin treatment targets Dab1 for proteolytic degradation by the ubiquitin-proteasome pathway. We show that tyrosine phosphorylation of Dab1 but not PI3-kinase activation is required for its proteasomal targeting. Genetic deficiency in the Dab1 kinase Fyn prevents Dab1 degradation. The Reelin-induced Dab1 degradation also depends on apoER2 and very low density lipoprotein receptor in a gene-dose dependent manner. Moreover, pharmacological blockade of the proteasome prevents the formation of a proper cortical plate in an in vitro slice culture assay. Our results demonstrate that signaling through neuronal apoE receptors can activate the ubiquitin-proteasome machinery, which might have implications for the role of Reelin during neurodevelopment and in the regulation of synaptic transmission.  相似文献   

3.
Reelin is an extracellular matrix protein with various functions during development and in the mature brain. It activates different signaling cascades in target cells, one of which is the phosphatidylinositol 3-kinase (PI3K) pathway, which we investigated further using pathway inhibitors and in vitro brain slice and neuronal cultures. We show that the mTor (mammalian target of rapamycin)-S6K1 (S6 kinase 1) pathway is activated by Reelin and that this depends on Dab1 (Disabled-1) phosphorylation and activation of PI3K and Akt (protein kinase B). PI3K and Akt are required for the effects of Reelin on the organization of the cortical plate, but their downstream partners mTor and glycogen synthase kinase 3beta (GSK3beta) are not. On the other hand, mTor, but not GSK3beta, mediates the effects of Reelin on the growth and branching of dendrites of hippocampal neurons. In addition, PI3K fosters radial migration of cortical neurons through the intermediate zone, an effect that is independent of Reelin and Akt.  相似文献   

4.
The study of mice with spontaneous and targeted mutations has uncovered a signaling pathway that controls neuronal positioning during mammalian brain development. Mice with disruptions in reelin, dab1, or both vldlr and apoER2 are ataxic, and they exhibit severe lamination defects within several brain structures. Reelin is a secreted extracellular protein that binds to the very low density lipoprotein receptor and the apolipoprotein E receptor 2 on the surface of neurons. Disabled-1 (Dab1), an intracellular adapter protein containing a PTB (phosphotyrosine binding) domain, is tyrosyl-phosphorylated during embryogenesis, but it accumulates in a hypophosphorylated form in mice lacking Reelin or both very low density lipoprotein receptor and apolipoprotein E receptor 2. Dab1 is rapidly phosphorylated when neurons isolated from embryonic brains are stimulated with Reelin, and several tyrosines have been implicated in this response. Mice with phenylalanine substitutions of all five tyrosines (Tyr(185), Tyr(198), Tyr(200), Tyr(220), and Tyr(232)) exhibit a reeler phenotype, implying that tyrosine phosphorylation is critical for Dab1 function. Here we report that, although Src can phosphorylate all five tyrosines in vitro, Tyr(198) and Tyr(220) represent the major sites of Reelin-induced Dab1 phosphorylation in embryonic neurons.  相似文献   

5.
Reelin is a ligand for lipoprotein receptors   总被引:34,自引:0,他引:34  
A signaling pathway involving the extracellular protein Reelin and the intracellular adaptor protein Disabled-1 (Dab1) controls cell positioning during mammalian brain development. Here, we demonstrate that Reelin binds directly to lipoprotein receptors, preferably the very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2). Binding requires calcium, and it is inhibited in the presence of apoE. Furthermore, the CR-50 monoclonal antibody, which inhibits Reelin function, blocks the association of Reelin with VLDLR. After binding to VLDLR on the cell surface, Reelin is internalized into vesicles. In dissociated neurons, apoE reduces the level of Reelin-induced tyrosine phosphorylation of Dab1. These data suggest that Reelin directs neuronal migration by binding to VLDLR and ApoER2.  相似文献   

6.
The Reelin signaling cascade plays a crucial role in the correct positioning of neurons during embryonic brain development. Reelin binding to apolipoprotein E receptor 2 (ApoER2) and very-low-density-lipoprotein receptor (VLDLR) leads to phosphorylation of disabled 1 (Dab1), an adaptor protein which associates with the intracellular domains of both receptors. Coreceptors for Reelin have been postulated to be necessary for Dab1 phosphorylation. We show that bivalent agents specifically binding to ApoER2 or VLDLR are sufficient to mimic the Reelin signal. These agents induce Dab1 phosphorylation, activate members of the Src family of nonreceptor tyrosine kinases, modulate protein kinase B/Akt phosphorylation, and increase long-term potentiation in hippocampal slices. Induced dimerization of Dab1 in HEK293 cells leads to its phosphorylation even in the absence of Reelin receptors. The mechanism for and the sites of these phosphorylations are identical to those effected by Reelin in primary neurons. These results suggest that binding of Reelin, which exists as a homodimer in vivo, to ApoER2 and VLDLR induces clustering of ApoER2 and VLDLR. As a consequence, Dab1 becomes dimerized or oligomerized on the cytosolic side of the plasma membrane, constituting the active substrate for the kinase; this process seems to be sufficient to transmit the signal and does not appear to require any coreceptor.  相似文献   

7.
BACKGROUND: Disabled-1 (Dab1) is an intracellular adaptor protein that regulates migrations of various classes of neurons during mammalian brain development. Dab1 function depends on its tyrosine phosphorylation, which is stimulated by Reelin, an extracellular signaling molecule. Reelin increases the stoichiometry of Dab1 phosphorylation and downregulates Dab1 protein levels. Reelin binds to various cell surface receptors, including two members of the low-density lipoprotein receptor family that also bind to Dab1. Mutations in Dab1, its phosphorylation sites, Reelin, or the Reelin receptors cause a common phenotype. However, the molecular mechanism whereby Reelin regulates Dab1 tyrosine phosphorylation is poorly understood.RESULTS: We found that Reelin-induced Dab1 tyrosine phosphorylation in neuron cultures is inhibited by acute treatment with pharmacological inhibitors of Src family, but not Abl family, kinases. In addition, Reelin stimulates Src family kinases by a mechanism involving Dab1. We analyzed the Dab1 protein level and tyrosine phosphorylation stoichiometry by using brain samples and cultured neurons that were obtained from mouse embryos carrying mutations in Src family tyrosine kinases. We found that fyn is required for proper Dab1 levels and phosphorylation in vivo and in vitro. When fyn copy number is reduced, src, but not yes, becomes important, reflecting a partial redundancy between fyn and src.CONCLUSIONS: Reelin activates Fyn to phosphorylate and downregulate Dab1 during brain development. The results were unexpected because Fyn deficiency does not cause the same developmental phenotype as Dab1 or Reelin deficiency. This suggests additional complexity in the Reelin signaling pathway.  相似文献   

8.
Reelin activates SRC family tyrosine kinases in neurons   总被引:16,自引:0,他引:16  
BACKGROUND: Reelin is a large signaling molecule that regulates the positioning of neurons in the mammalian brain. Transmission of the Reelin signal to migrating embryonic neurons requires binding to the very-low-density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor-2 (apoER2). This induces tyrosine phosphorylation of the adaptor protein Disabled-1 (Dab1), which interacts with a shared sequence motif in the cytoplasmic tails of both receptors. However, the kinases that mediate Dab1 tyrosine phosphorylation and the intracellular pathways that are triggered by this event remain unknown. RESULTS: We show that Reelin activates members of the Src family of non-receptor tyrosine kinases (SFKs) and that this activation is dependent on the Reelin receptors apoER2 and VLDLR and the adaptor protein Dab1. Dab1 is tyrosine phosphorylated by SFKs, and the kinases themselves can be further activated by phosphorylated Dab1. Increased Dab1 protein expression in fyn-deficient mice implies a response to impaired Reelin signaling that is also observed in mice lacking Reelin or its receptors. However, fyn deficiency alone does not compound the neuronal positioning defect of vldlr- or apoer2-deficient mice, and this finding suggests functional compensation by other SFKs. CONCLUSIONS: Our results show that Dab1 is a physiological substrate as well as an activator of SFKs in neurons. Based on genetic evidence gained from multiple strains of mutant mice with defects in Reelin signaling, we conclude that activation of SFKs is a normal part of the cellular Reelin response.  相似文献   

9.
Disabled-1 (Dab1) is a cytoplasmic adaptor protein that regulates neuronal migrations during mammalian brain development. Dab1 function in vivo depends on tyrosine phosphorylation, which is stimulated by extracellular Reelin and requires Src family kinases. Reelin signaling also negatively regulates Dab1 protein levels in vivo, and reduced Dab1 levels may be part of the mechanism that regulates neuronal migration. We have made use of mouse embryo cortical neuron cultures in which Reelin induces Dab1 tyrosine phosphorylation and Src family kinase activation. We have found that Dab1 is normally stable, but in response to Reelin it becomes polyubiquitinated and degraded via the proteasome pathway. We have established that tyrosine phosphorylation of Dab1 is required for its degradation. Dab1 molecules lacking phosphotyrosine are not degraded in neurons in which the Dab1 degradation pathway is active. The requirements for Reelin-induced degradation of Dab1 in vitro correctly predict Dab1 protein levels in vivo in different mutant mice. We also provide evidence that Dab1 serine/threonine phosphorylation may be important for Dab1 tyrosine phosphorylation. Our data provide the first evidence for how Reelin down-regulates Dab1 protein expression in vivo. Dab1 degradation may be important for ensuring a transient Reelin response and may play a role in normal brain development.  相似文献   

10.
Disabled1 regulates the intracellular trafficking of reelin receptors   总被引:8,自引:0,他引:8  
Reelin is a huge secreted protein that controls proper laminar formation in the developing brain. It is generally believed that tyrosine phosphorylation of Disabled1 (Dab1) by Src family tyrosine kinases is the most critical downstream event in Reelin signaling. The receptors for Reelin belong to the low density lipoprotein receptor family, most of whose members undergo regulated intracellular trafficking. In this study, we propose novel roles for Dab1 in Reelin signaling. We first demonstrated that cell surface expression of Reelin receptors was decreased in Dab1-deficient neurons. In heterologous cells, Dab1 enhanced cell surface expression of Reelin receptors, and this effect was mediated by direct interaction with the receptors. Moreover, Dab1 did not stably associate with the receptors at the plasma membrane in the resting state. When Reelin was added to primary cortical neurons, Dab1 was recruited to the receptors, and its tyrosine residues were phosphorylated. Although Reelin and Dab1 colocalized well shortly after the addition of Reelin, Dab1 was no longer associated with internalized Reelin. When Src family tyrosine kinases were inhibited, internalization of Reelin was severely abrogated, and Reelin colocalized with Dab1 near the plasma membrane for a prolonged period. Taken together, these results indicate that Dab1 regulates both cell surface expression and internalization of Reelin receptors, and these regulations may play a role in correct laminar formation in the developing brain.  相似文献   

11.
Disabled-1 (Dab1) is an essential adaptor protein that functions in the Reelin signaling pathway and is required for the regulation of neuronal migration during embryonic development. Dab1 interacts with NPXY motifs in the cytoplasmic tails of the lipoprotein receptors ApoER2 and very low density lipoprotein receptor through an amino-terminal phosphotyrosine binding (PTB) domain. Binding of Reelin to these receptors leads to tyrosine phosphorylation of Dab1 and the initiation of a signaling cascade that results in remodeling of the cytoskeleton. Structural and biochemical studies of the Dab1 PTB domain have demonstrated that this domain binds to both the NPXY peptide motif in the lipoprotein receptor tails as well as to the head group of phosphoinositide 4,5-P2 through energetically independent mechanisms. Here we have investigated how phosphoinositide binding by the Dab1 PTB domain influences Reelin signal transduction. Our findings in cultured primary neurons that have been transduced with lentiviral constructs expressing mutant Dab1 forms reveal that phosphoinositide binding by the Dab1 PTB domain is necessary for proper membrane localization of Dab1 and for effective transduction of a Reelin signal.  相似文献   

12.
Catecholamines, acting through adrenergic receptors, play an important role in modulating the effects of insulin on glucose metabolism. Insulin activation of glycogen synthesis is mediated in part by the inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3). In this study, catecholamine regulation of GSK-3beta was investigated in Rat-1 fibroblasts stably expressing the alpha1A-adrenergic receptor. Treatment of these cells with either insulin or phenylephrine (PE), an alpha1-adrenergic receptor agonist, induced Ser-9 phosphorylation of GSK-3beta and inhibited GSK-3beta activity. Insulin-induced GSK-3beta phosphorylation is mediated by the phosphatidylinositol 3-kinase/Akt signaling pathway. PE treatment does not activate phosphatidylinositol 3-kinase or Akt (Ballou, L. M., Cross, M. E., Huang, S., McReynolds, E. M., Zhang, B. X., and Lin, R. Z. (2000) J. Biol. Chem. 275, 4803-4809), but instead inhibits insulin-induced Akt activation and GSK-3beta phosphorylation. Experiments using protein kinase C (PKC) inhibitors suggest that phorbol ester-sensitive novel PKC and G? 6983-sensitive atypical PKC isoforms are involved in the PE-induced phosphorylation of GSK-3beta. Indeed, PE treatment of Rat-1 cells increased the activity of atypical PKCzeta, and expression of PKCzeta in COS-7 cells stimulated GSK-3beta Ser-9 phosphorylation. In addition, PE-induced GSK-3beta phosphorylation was reduced in Rat-1 cells treated with a cell-permeable PKCzeta pseudosubstrate peptide inhibitor. These results suggest that the alpha1A-adrenergic receptor regulates GSK-3beta through two signaling pathways. One pathway inhibits insulin-induced GSK-3beta phosphorylation by blocking insulin activation of Akt. The second pathway stimulates Ser-9 phosphorylation of GSK-3beta, probably via PKC.  相似文献   

13.
Chicken oocytes develop in follicles and reach an enormous size because of a massive uptake of yolk precursors such as very low density lipoprotein and vitellogenin. Oocyte growth is supported by theca cells and granulosa cells, which establish dynamic and highly organized cell layers surrounding the oocyte. The signaling processes orchestrating the development of these layered structures are largely unknown. Here we demonstrate that the Reelin pathway, which determines the development of layered neuronal structures in the brain, is also active in chicken follicles. Reelin, which is expressed in theca cells, triggers a signal in granulosa cells via apolipoprotein E receptor 2 and the very low density lipoprotein receptor, resulting in the phosphorylation of disabled-1 and consecutive activation of the phosphatidylinositol 3-kinase/Akt pathway. This signaling pathway supports the proliferation of differentiated granulosa cells to keep up with the demand of cells to cover the rapidly increasing surface of the giant germ cell.  相似文献   

14.
BACKGROUND: The extracellular protein Reln controls neuronal migrations in parts of the cortex, hippocampus and cerebellum. In vivo, absence of Reln correlates with up-regulation of the docking protein Dab1 and decreased Dab1 tyrosine phosphorylation. Loss of the Reln receptor proteins, apolipoprotein receptor 2 and very low density lipoprotein receptor, results in a Reln-like phenotype accompanied by increased Dab1 protein expression. Complete loss of Dab1, however, recapitulates the Reln phenotype. RESULTS: To determine whether Dab1 tyrosine phosphorylation affects Dab1 protein expression and positioning of embryonic neurons, we have identified Dab1 tyrosine phosphorylation sites. We then generated mice in which the Dab1 protein had all the potential tyrosine phosphorylation sites mutated. This mutant protein is not tyrosine phosphorylated during brain development and is not upregulated to the extent observed in the Reln or the apoER2 and VLDLR receptor mutants. Animals expressing the non-phosphorylated Dab1 protein have a phenotype similar to the dab1-null mutant. CONCLUSIONS: Dab1 is downregulated by the Reln signal in neurons in the absence of tyrosine phosphorylation. Dab1 tyrosine phosphorylation sites and not downregulation of Dab1 protein are required for Reln signaling.  相似文献   

15.
Formation of the mammalian six-layered neocortex depends on a signaling pathway that involves Reelin, the very low-density lipoprotein receptor, the apolipoprotein E receptor-2 (ApoER2), and the adaptor protein Disabled-1 (Dab1). The 1.5 A crystal structure of a complex between the Dab1 phosphotyrosine binding (PTB) domain and a 14-residue peptide from the ApoER2 tail explains the unusual preference of Dab1 for unphosphorylated tyrosine within the NPxY motif of the peptide. Crystals of the complex soaked with the phosphoinositide PI-4,5P(2) (PI) show that PI binds to conserved basic residues on the PTB domain opposite the peptide binding groove. This finding explains how the Dab1 PTB domain can simultaneously bind PI and the ApoER2 tail. Recruitment of the Dab1 PTB domain to PI-rich regions of the plasma membrane may facilitate association with the Reelin receptor cytoplasmic tails to transduce a critical positional cue to migrating neurons.  相似文献   

16.
To characterize the contribution of glycogen synthase kinase 3beta (GSK3beta) inactivation to insulin-stimulated glucose metabolism, wild-type (WT-GSK), catalytically inactive (KM-GSK), and uninhibitable (S9A-GSK) forms of GSK3beta were expressed in insulin-responsive 3T3-L1 adipocytes using adenovirus technology. WT-GSK, but not KM-GSK, reduced basal and insulin-stimulated glycogen synthase activity without affecting the -fold stimulation of the enzyme by insulin. S9A-GSK similarly decreased cellular glycogen synthase activity, but also partially blocked insulin stimulation of the enzyme. S9A-GSK expression also markedly inhibited insulin stimulation of IRS-1-associated phosphatidylinositol 3-kinase activity, but only weakly inhibited insulin-stimulated Akt/PKB phosphorylation and glucose uptake, with no effect on GLUT4 translocation. To further evaluate the role of GSK3beta in insulin signaling, the GSK3beta inhibitor lithium was used to mimic the consequences of insulin-stimulated GSK3beta inactivation. Although lithium stimulated the incorporation of glucose into glycogen and glycogen synthase enzyme activity, the inhibitor was without effect on GLUT4 translocation and pp70 S6 kinase. Lithium stimulation of glycogen synthesis was insensitive to wortmannin, which is consistent with its acting directly on GSK3beta downstream of phosphatidylinositol 3-kinase. These data support the hypothesis that GSK3beta contributes to insulin regulation of glycogen synthesis, but is not responsible for the increase in glucose transport.  相似文献   

17.
The large extracellular matrix protein Reelin is produced by Cajal-Retzius neurons in specific regions of the developing brain, where it controls neuronal migration and positioning. Genetic evidence suggests that interpretation of the Reelin signal by migrating neurons involves two neuronal cell surface proteins, the very low density lipoprotein receptor (VLDLR) and the apoE receptor 2 (ApoER2) as well as a cytosolic adaptor protein, Disabled-1 (Dab1). We show that Reelin binds directly and specifically to the ectodomains of VLDLR and ApoER2 in vitro and that blockade of VLDLR and ApoER2 correlates with loss of Reelin-induced tyrosine phosphorylation of Disabled-1 in cultured primary embryonic neurons. Furthermore, mice that lack either Reelin or both VLDLR and ApoER2 exhibit hyperphosphorylation of the microtubule-stabilizing protein tau. Taken together, these findings suggest that Reelin acts via VLDLR and ApoER2 to regulate Disabled-1 tyrosine phosphorylation and microtubule function in neurons.  相似文献   

18.
Activation of very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (apoER2) results in either pro- or anti-atherogenic effects depending on the ligand. Using reelin and apoE as ligands, we studied the impact of VLDLR- and apoER2-mediated signaling on the expression of ATP binding cassette transporter A1 (ABCA1) and cholesterol efflux using RAW264.7 cells. Treatment of these mouse macrophages with reelin or human apoE3 significantly increased ABCA1 mRNA and protein levels, and apoAI-mediated cholesterol efflux. In addition, both reelin and apoE3 significantly increased phosphorylated disabled-1 (Dab1), phosphatidylinositol 3-kinase (PI3K), protein kinase Cζ (PKCζ), and specificity protein 1 (Sp1). This reelin- or apoER2-mediated up-regulation of ABCA1 expression was suppressed by 1) knockdown of Dab1, VLDLR, and apoER2 with small interfering RNAs (siRNAs), 2) inhibition of PI3K and PKC with kinase inhibitors, 3) overexpression of kinase-dead PKCζ, and 4) inhibition of Sp1 DNA binding with mithramycin A. Activation of the Dab1-PI3K signaling pathway has been implicated in VLDLR- and apoER2-mediated cellular functions, whereas the PI3K-PKCζ-Sp1 signaling cascade has been implicated in the regulation of ABCA1 expression induced by apoE/apoB-carrying lipoproteins. Taken together, these data support a model in which activation of VLDLR and apoER2 by reelin and apoE induces ABCA1 expression and cholesterol efflux via a Dab1-PI3K-PKCζ-Sp1 signaling cascade.  相似文献   

19.
The atypical isoforms of protein kinase C (aPKCs) play an important role in insulin signaling and are involved in insulin-stimulated glucose uptake in different cell systems. On the other hand, aPKCs also are able to negatively regulate important proteins for insulin signaling, like phosphatidylinositol 3-kinase and protein kinase B/Akt. To find aPKC-interacting proteins that may promote positive or negative activities of aPKCs, a yeast two-hybrid screen was performed. Partitioning-defective protein 6 (Par6) was detected in human cDNA libraries of different adult insulin-sensitive tissues. Although Par6 is known as an aPKC-interacting protein during development, no role for Par6 in insulin signaling has been reported so far. We therefore studied the effects of Par6 overexpression in C2C12 murine myoblasts. In these cells, Par6 associated constitutively with endogenous aPKCs, and the expression level as well as the activity of aPKCs were increased. Insulin-dependent association of the p85 subunit of phosphatidylinositol 3-kinase with insulin receptor substrate 1 was hampered and the phosphorylation of Akt/glycogen synthase kinase-3alpha/beta was significantly impaired after stimulation with insulin or with platelet-derived growth factor. Consequently, insulin-dependent glycogen synthesis was down-regulated (1.44 vs. 2.24 fold, P < 0.01). We therefore suggest that Par6 acts as a negative regulator of the insulin signal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号