首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine (DA) neurons in the ventral tegmental area (VTA) are thought to play a critical role in affective, motivational, and cognitive functioning. There are fundamental target-specific differences in the functional characteristics of subsets of these neurons. For example, DA afferents to the prefrontal cortex (PFC) have a higher firing and transmitter turnover rate and are more responsive to some pharmacological and environmental stimuli than DA projections to the nucleus accumbens (NAc). These functional differences may be attributed in part to differences in tonic regulation by glutamate. The present study provides evidence for this mechanism: In freely moving animals, blockade of basal glutamatergic activity in the VTA by the selective alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate antagonist LY293558 produced an increase in DA release in the NAc while significantly decreasing DA release in the PFC. These data support an AMPA receptor-mediated tonic inhibitory regulation of mesoaccumbens neurons and a tonic excitatory regulation of mesoprefrontal DA neurons. This differential regulation may result in target-specific effects on the basal output of DA neurons and on the regulatory influence of voltage-gated NMDA receptors in response to phasic activation by behaviorally relevant stimuli.  相似文献   

2.
The firing of neostriatal spiny neurons in response to an excitatory input is modulated and sculpted by a variety of factors. Neostriatal interneurons are phenotypically diverse and have properties that enable them to specifically, but differentially, influence the activity of spiny neurons. Each of the three types of GABAergic interneurons produces a strong inhibitory postsynaptic potential in spiny neurons, the function of which is probably to influence the precise timing of action potential firing in either individual or ensembles of spiny neurons. By contrast, the role of cholinergic interneurons is to modulate the sub- and supra-threshold responses of spiny neurons to cortical and/or thalamic excitation, particularly in reward-related activities. Both classes of interneurons are important sites of action of neuromodulators in neostriatum, and act in different but complementary ways to modify the activity of the spiny projection neurons.  相似文献   

3.
A major output nucleus of the basal ganglia is the substantia nigra pars reticulata, which sends GABAergic projections to brainstem and thalamic nuclei. The GABAergic (GABA) neurons are reciprocally connected with nearby dopaminergic neurons, which project mainly to the basal ganglia, a set of subcortical nuclei critical for goal-directed behaviors. Here we examined the impact of motivational states on the activity of GABA neurons in the substantia nigra pars reticulata and the neighboring dopaminergic (DA) neurons in the pars compacta. Both types of neurons show short-latency bursts to a cue predicting a food reward. As mice became sated by repeated consumption of food pellets, one class of neurons reduced cue-elicited firing, whereas another class of neurons progressively increased firing. Extinction or pre-feeding just before the test session dramatically reduced the phasic responses and their motivational modulation. These results suggest that signals related to the current motivational state bidirectionally modulate behavior and the magnitude of phasic response of both DA and GABA neurons in the substantia nigra.  相似文献   

4.
G P Mereu  C Pacitti  A Argiolas 《Life sciences》1983,32(12):1383-1389
The effect of (-)-cathinone (CAT), an alkaloid from khat leaves, on brain dopamine (DA) metabolism and on the firing rate of nigral DA neurons was studied in rats, in comparison with that of d-amphetamine. Like d-amphetamine, CAT (8-40 mg/kg i.p.) decreased DOPAC levels in the caudate nucleus, nucleus accumbens and frontal cortex, without modifying DA concentrations. CAT showed approximately one fifth of the potency of d-amphetamine in this effect. CAT, injected i.v. to unanesthetized, paralyzed rats, inhibited the firing rate of DA neurons in the substantia nigra, pars compacta, showing a similar potency to that of d-amphetamine in this respect. CAT-induced inhibition of dopaminergic firing was reversed by haloperidol.  相似文献   

5.
Iglesias J  Villa AE 《Bio Systems》2007,89(1-3):287-293
Adult patterns of neuronal connectivity develop from a transient embryonic template characterized by exuberant projections to both appropriate and inappropriate target regions in a process known as synaptic pruning. Trigger signals able to induce synaptic pruning could be related to dynamic functions that depend on the timing of action potentials. We stimulated locally connected random networks of spiking neurons and observed the effect of a spike-timing-dependent synaptic plasticity (STDP)-driven pruning process on the emergence of cell assemblies. The spike trains of the simulated excitatory neurons were recorded. We searched for spatiotemporal firing patterns as potential markers of the build-up of functionally organized recurrent activity associated with spatially organized connectivity.  相似文献   

6.
Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson''s disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K+ channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca2+ dependence of release and the potential role of exocytotic proteins.  相似文献   

7.
Lammel S  Ion DI  Roeper J  Malenka RC 《Neuron》2011,70(5):855-862
Midbrain dopamine (DA) neurons are not homogeneous but differ in their molecular properties and responses to external stimuli. We examined whether the modulation of excitatory synapses on DA neurons by rewarding or aversive stimuli depends on the brain area to which these DA neurons project. We identified DA neuron subpopulations in slices after injection of "Retrobeads" into single target areas of adult mice and found differences in basal synaptic properties. Administration of cocaine selectively modified excitatory synapses on DA cells projecting to nucleus accumbens (NAc) medial shell while an aversive stimulus selectively modified synapses on DA cells projecting to medial prefrontal cortex. In contrast, synapses on DA neurons projecting to NAc lateral shell were modified by both rewarding and aversive stimuli, which presumably reflects saliency. These results suggest that the mesocorticolimbic DA system may be comprised of three anatomically distinct circuits, each modified by distinct aspects of motivationally relevant stimuli.  相似文献   

8.
Summary. Inhibitors of kynurenine 3-hydroxylase have previously been used to increase endogenous levels of kynurenic acid, an excitatory amino acid receptor antagonist. In the present electrophysiological study PNU 156561A was utilized to elevate endogenous concentrations of kynurenic acid and subsequent effects on the firing pattern of dopamine (DA) neurons of rat substantia nigra (SN) were analyzed. Pretreatment with PNU 156561A (40 mg/kg, i.v., 5–7 h) caused a five-fold increase in endogenous kynurenic acid levels in whole brain five to seven hours after administration and also evoked a significant increase in firing rate and bursting activity of nigral DA neurons. The results of the present study show that a moderate increase in endogenous kynurenic acid levels produces significant actions on the tonic glutamatergic control of the firing pattern of nigral DA neurons, and implicate kynurenine 3-hydroxylase inhibitors as novel antiparkinsonian agents. Received April 3, 2000 Accepted July 2, 2000  相似文献   

9.
Erhardt S  Engberg G 《Life sciences》2000,67(15):1901-1911
Previous electrophysiological studies have shown that the GABA(A)-receptor agonist muscimol is able to markedly increase the firing rate of rat nigral dopamine (DA) neurons. This action of the drug is paradoxical since local microiontophoretic application of the drug is associated with a clearcut inhibition of this neurons. In the present electrophysiological study, an attempt was made to analyze the mechanism of this action of the drug. Administration of muscimol (0.25-4.0 mg/kg, i.v.) was associated with a dose-dependent increase in firing rate as well as an increased bursting activity of the nigral DA neurons. Both these effects of muscimol were clearly antagonised by intravenous administration of the NMDA receptor antagonist MK 801(1 mg/kg) or by intracerebroventricular administration of the broad-spectrum excitatory amino acid receptor antagonist kynurenic acid. Furthermore, pretreatment with PNU 156561A (40 mg/kg, i.v., 5-8h), a compound that raised endogenous kynurenic acid levels about 9 times, also clearly antagonised the actions of muscimol. Indeed, this treatment reversed the excitatory action of muscimol into an inhibitory effect on the nigral DA neurons. Here, we report that the excitatory action of muscimol is mediated indirectly by release of glutamate.  相似文献   

10.
Cholecystokinin (CCK) and dopamine (DA) co-exist in ventral tegmental neurons which project via the mesencephalic pathway to the nucleus accumbens of the rat. CCK and DA are located in separate neurons in the substantia nigra which projects via the nigrostriatal pathway to the caudate nucleus in the rat. The functional significance of this peptide-amine co-localization was investigated using behavioral and neurophysiological techniques. CCK injected directly into the nucleus accumbens potentiated apomorphine-induced stereotypy and dopamine-induced hyperlocomotion. CCK injected directly into the caudate nucleus had no effect on apomorphine-induced stereotypy or dopamine-induced hyperlocomotion CCK injected alone into either site did not induce stereotypy or hyperlocomotion. The dose-response curve to apomorphine induction of stereotypy was shifted to the left by CCK, indicating increased sensitivity to the dopaminergic agonist. Neurophysiological analysis of the firing rate of ventral tegmental neurons demonstrated that CCK produced a left-shift in the dose-response curve of apomorphine on inhibition of neuronal firing. These data suggest that CCK acts as a modulator of dopamine, increasing neuronal responses to dopaminergic agonists. The potentiation of dopamine by CCK may be specific to the mesolimbic neurons, where CCK and DA co-exist in the rat.  相似文献   

11.
In anesthetized rats, midbrain dopamine (DA) neuronal firing rate was differentially sensitive to focal brain microinjection of cholecystokinin peptides (CCK-4 and CCK-8) and N-methyl-D-aspartate (NMDA) into nucleus accumbens, amygdala and prefrontal cortex. Whereas changes in DA neuronal firing rate were frequently observed in response to intra-amygdalar microinjection of CCK peptides, NMDA was most effective in eliciting changes in DA neuronal activity following intra-accumbal microinjection. Thus, stimulation of amygdalar CCK receptors and accumbal excitatory amino acid receptors may participate in the afferent regulation of midbrain DA neuronal function.  相似文献   

12.
It was often reported and suggested that the synchronization of spikes can occur without changes in the firing rate. However, few theoretical studies have tested its mechanistic validity. In the present study, we investigate whether changes in synaptic weights can induce an independent modulation of synchrony while the firing rate remains constant. We study this question at the level of both single neurons and neuronal populations using network simulations of conductance based integrate-and-fire neurons. The network consists of a single layer that includes local excitatory and inhibitory recurrent connections, as well as long-range excitatory projections targeting both classes of neurons. Each neuron in the network receives external input consisting of uncorrelated Poisson spike trains. We find that increasing this external input leads to a linear increase of activity in the network, as well␣as an increase in the peak frequency of oscillation. In␣contrast, balanced changes of the synaptic weight of␣excitatory long-range projections for both classes of postsynaptic neurons modulate the degree of synchronization without altering the firing rate. These results demonstrate that, in a simple network, synchronization and firing rate can be modulated independently, and thus, may be used as independent coding dimensions. Electronic supplementary material  The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

13.
A composite model of the subthalamic nucleus is developed from physiological and anatomical considerations. First, study of a geometric model of the anatomical arrangements of projection neurons within the nucleus indicates that they form a massively connected network. Second, given the excitatory nature of these neurons, their threshold and peak firing rates, a simple model of neuron responses reveals that large regions of this highly interconnected nucleus can respond to excitatory input in the form of a wide-spread uniform pulse. Such widespread pulses of activity may act as a braking signal that resets the major basal ganglia output nuclei.  相似文献   

14.
Rosen MJ  Mooney R 《Neuron》2003,39(1):177-194
Speech and birdsong require auditory feedback for their development and maintenance, necessitating precise auditory encoding of vocal sounds. In songbirds, the telencephalic song premotor nucleus HVC contains neurons that respond highly selectively to the bird's own song (BOS), a property distinguishing HVC from its auditory afferents. We examined the contribution of inhibitory and excitatory synaptic inputs to BOS-evoked firing in those HVC neurons innervating a pathway essential for audition-dependent vocal plasticity. Using in vivo intracellular techniques, we found that G protein-coupled, potassium-mediated inhibition, tuned to the BOS, interacts with BOS-tuned excitation through several mechanisms to shape neuronal firing patterns. Furthermore, in the absence of this inhibition, the response bias to the BOS increases, reminiscent of cancellation mechanisms in other sensorimotor systems.  相似文献   

15.
Glutamate (Glut), acetylcholine (ACh) and dopamine (DA) were iontophoretically applied on cat claustral neurons. Glut did not affect all the neurons; ACh had both excitatory and inhibitory effects, while DA was prevalently inhibitory. An analysis was made of the time-course of excitatory and inhibitory responses on the basis of the mean firing rate variations during and after ACh and DA release. Three types of responses are described for each drug: short lasting inhibition, long lasting inhibition and long lasting excitation. The experimental data were statistically elaborated. The effects of ACh and of DA were compared with those of activation obtained by sensorial peripheric and thalamic stimulations. ACh could be supposed to be the transmitter of most of the inhibitory terminals of these sensitive afferences to the claustrum.  相似文献   

16.
Recent experimental results imply that inhibitory postsynaptic potentials can play a functional role in realizing synchronization of neuronal firing in the brain. In order to examine the relation between inhibition and synchronous firing of neurons theoretically, we analyze possible effects of synchronization and sensitivity enhancement caused by inhibitory inputs to neurons with a biologically realistic model of the Hodgkin-Huxley equations. The result shows that, after an inhibitory spike, the firing probability of a single postsynaptic neuron exposed to random excitatory background activity oscillates with time. The oscillation of the firing probability can be related to synchronous firing of neurons receiving an inhibitory spike simultaneously. Further, we show that when an inhibitory spike input precedes an excitatory spike input, the presence of such preceding inhibition raises the firing probability peak of the neuron after the excitatory input. The result indicates that an inhibitory spike input can enhance the sensitivity of the postsynaptic neuron to the following excitatory spike input. Two neural network models based on these effects on postsynaptic neurons caused by inhibitory inputs are proposed to demonstrate possible mechanisms of detecting particular spatiotemporal spike patterns. Received: 15 April 1999 /Accepted in revised form: 25 November 1999  相似文献   

17.
Dopamine (DA) receptors generate many cellular signals and play various roles in locomotion, motivation, hormone production, and drug abuse. According to the location and expression types of the receptors in the brain, DA signals act in either stimulatory or inhibitory manners. Although DA autoreceptors in the substantia nigra pars compacta are known to regulate firing activity, the exact expression patterns and roles of DA autoreceptor types on the firing activity are highly debated. Therefore, we performed individual correlation studies between firing activity and receptor expression patterns using acutely isolated rat substantia nigra pars compacta DA neurons. When we performed single-cell RT-PCR experiments, D(1), D(2)S, D(2)L, D(3), and D(5) receptor mRNA were heterogeneously expressed in the order of D(2)L > D(2)S > D(3) > D(5) > D(1). Stimulation of D(2) receptors with quinpirole suppressed spontaneous firing similarly among all neurons expressing mRNA solely for D(2)S, D(2)L, or D(3) receptors. However, quinpirole most strongly suppressed spontaneous firing in the neurons expressing mRNA for both D(2) and D(3) receptors. These data suggest that D(2) S, D(2)L, and D(3) receptors are able to equally suppress firing activity, but that D(2) and D(3) receptors synergistically suppress firing. This diversity in DA autoreceptors could explain the various actions of DA in the brain.  相似文献   

18.
Single unit recordings were obtained from putative dopaminergic neurons in the substantia nigra of awake, freely moving rats. The cells exhibited waveforms, range of firing rates and types of firing patterns identical to those of identified DA neurons of anesthetized or paralyzed rats. Two firing patterns were observed: single spike activity and a bursting mode with spikes of progressively diminished amplitude and increased duration within each burst. The degree of burst firing varied considerably among the cells and individual cells sometimes switched from one pattern of firing (e.g. predominantly single spike) to another (e.g. bursting), although the determinants of these transitions are, at this time, unclear. Putative DA neurons were inhibited by i.v. apomorphine and excited by i.v. haloperidol. Haloperidol also reversed the apomorphine-induced inhibition of firing. Inhibitions and excitations were associated with a reduction and elevation, respectively, in burst firing. The effects of the two drugs were identical to their effects in immobilized rats. In several cases, a putative DA neuron was observed to fire all of its spikes in near coincidence with at least one other cell with identical electrophysiological characteristics. This form of interaction (i.e. presumed electrical coupling) between DA cells is only rarely observed in anesthetized or paralyzed rats and may play a significant role in the normal functioning of the nigrostriatal DA system.  相似文献   

19.
In cerebral cortex and lateral septal nuclei different serotonergic receptor subtypes coexist, thus a different action on neuronal firing may be expected depending on the receptor activated. Dorsal raphe nucleus stimulation produced an increased rate of firing in cortical layer V, and in lateral septal nuclei. However, firing rate in cortical layer VI remained unchanged after stimulating the dorsal raphe nucleus. Clomipramine is a tricyclic which exerts its main actions on serotonergic receptors, and long-term treatment with this antidepressant produced a selective increased firing rate in lateral septal neurons, but not in cortical neurons. From an electrophysiological point of view, it is concluded that the excitatory actions on firing rate elicited by dorsal raphe nucleus stimulation or clomipramine treatment are mediated by 5-HT2 receptor subtype activation which is likely to be acting as a 5-HT1A modulator in such places where both receptor subtypes coexist.  相似文献   

20.
Endogenous and deuterium labelled acetylcholine (ACh) and choline (Ch) in the neostriatum were chemically assayed after radio-frequency lesions in the substantia nigra-ventral tegmental area and in the B7 or B8 5-hydroxytryptamine (5-HT) regions of the brainstem. Lesions in the substantia nigra-ventral tegmental region or in the B7 area, which provide dopamine (DA) and 5-HT afferents to the caudate-putamen nucleus, respectively, caused a decrease in 2H9-ACh synthesis, while endogenous levels of ACh and Ch were unchanged. A unilateral lesion of the B8 5-HT region, which projects in part to the substantia nigra, produced an increase in endogenous ACh levels, as well as a decrease in 2H9-ACh synthesis on the side ipsilateral to the lesion.On the basis of these data, we conclude that DA and 5-HT projections to the caudate-putamen nucleus have a net excitatory effect on cholinergic interneurons in that area. Furthermore, we suggest that the putative B8 5-HT projection is excitatory upon nigral neurons that, in turn, project to the neostriatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号