首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a part of a core project of IGBP (International Geosphere-Biosphere Programme), distribution, production, oxidation and transport processes of methane in bottom sediments and lake water in a mesotrophic lake (Lake Biwa) have been studied with special reference to the spatial heterogeneity of each process. In this study, we attempted to synthesize previously reported results with newly obtained ones to depict the methane dynamics in the entire lake. The pelagic water column exhibited subsurface maxima of dissolved methane during a stratified period. Transect observation at the littoral zone suggested that horizontal transportation may be a reason for the high methane concentration in epilimnion and thermocline at the offshore area. Tributary rivers and littoral sediments were suggested to be the source. Observations also showed that the internal wave caused resuspension of the bottom sediment and release of methane from the sediment into the lake water. The impact of the internal waves was pronounced in the late stage of a stratified period. The littoral sediment showed much higher methanogenic activity than the profundal sediments, and the bottom water of the littoral sediments had little methanotrophic activity. In the profundal sediment, most of the methane that diffused up from the deeper part was oxidized when it passed through the oxic layer. Active methane oxidation was also observed in the hypolimnetic water, while the lake water in the epilimnion and thermocline showed very low methane oxidation, probably due to the inhibitory effect of light. These results mean a longer residence time for methane in the epilimnion than in the hypolimnion. Horizontal inflow of dissolved methane from the river and/or littoral sediment, together with the longer residence time in the surface water, may cause the subsurface maxima, which have also been observed in other lakes and in the ocean.  相似文献   

2.
Most probable numbers (MPNs) of methanogens in various salt marsh and estuarine sediments were determined with an anaerobic, habitat-simulating culture medium with 80% H2 plus 20% CO2 as substrate. Average MPNs for the short Spartina (SS) marsh sediments of Sapelo Island, Ga., were maximal at the 5- to 7-cm depth (1.2 × 107/g of dry sediment). Populations decreased to approximately 880/g of dry sediment at the 34- to 36-cm depth. There was no significant difference between summer and winter populations. In tall Spartina (TS) marsh sediments, average populations were maximal (1.2 × 106/g of dry sediment) in the upper 0- to 2-cm zone; populations from the 5- to 36-cm zones were similar (average of 9 × 104/g of dry sediment). Methanogenic populations for TS sediments of James Island Creek marsh, Charleston, S.C., were similar (average of 3 × 106/g of dry sediment) for all depths tested (0 to 22 cm), which was comparable to the trend observed for TS sediments at Sapelo Island, Ga. Sediment grab samples collected along a transect of James Island Creek and its adjacent Spartina marsh had MPNs that were approximately 20 times greater for the region of Spartina growth (average of 106/g of dry sediment) compared with the channel (approximately 5 × 104 methanogens per g of dry sediment). A similar trend was found at Pawley's Island marsh, S.C., but populations were approximately one order of magnitude lower. In vitro rates of methanogenesis with SS sediments incubated under 80% H2-20% CO2 showed that the 5- to 7-cm region exhibited maximal activity (51 nmol of CH4 g−1 h−1), which was greater than rates for sediments above and below this depth. SS sediment samples (5 to 7 cm) incubated under 100% N2 and supplemented with formate exhibited rates of methanogenesis similar to those generated by samples under 80% H2-20% CO2. Replacing the N2 atmosphere with H2 resulted in an eightfold decrease in the rate of methanogenesis. In vitro methanogenic activity by TS salt marsh sediments, incubated under 80% H2-20% CO2, was similar for all depths tested (0 to 22 cm). TS sediment samples (0 to 7 cm) supplemented with formate and incubated under 100% N2 had greater rates of methanogenesis compared with unsupplemented samples.  相似文献   

3.
The ultramafic-hosted Logatchev hydrothermal field (LHF) is characterized by vent fluids, which are enriched in dissolved hydrogen and methane compared with fluids from basalt-hosted systems. Thick sediment layers in LHF are partly covered by characteristic white mats. In this study, these sediments were investigated in order to determine biogeochemical processes and key organisms relevant for primary production. Temperature profiling at two mat-covered sites showed a conductive heating of the sediments. Elemental sulfur was detected in the overlying mat and metal-sulfides in the upper sediment layer. Microprofiles revealed an intensive hydrogen sulfide flux from deeper sediment layers. Fluorescence in situ hybridization showed that filamentous and vibrioid, Arcobacter-related Epsilonproteobacteria dominated the overlying mats. This is in contrast to sulfidic sediments in basalt-hosted fields where mats of similar appearance are composed of large sulfur-oxidizing Gammaproteobacteria. Epsilonproteobacteria (7-21%) and Deltaproteobacteria (20-21%) were highly abundant in the surface sediment layer. The physiology of the closest cultivated relatives, revealed by comparative 16S rRNA sequence analysis, was characterized by the capability to metabolize sulfur components. High sulfate reduction rates as well as sulfide depleted in (34)S further confirmed the importance of the biogeochemical sulfur cycle. In contrast, methane was found to be of minor relevance for microbial life in mat-covered surface sediments. Our data indicate that in conductively heated surface sediments microbial sulfur cycling is the driving force for bacterial biomass production although ultramafic-hosted systems are characterized by fluids with high levels of dissolved methane and hydrogen.  相似文献   

4.
Flooding of land associated with the creation of reservoirs may increase, at least in the short term, methane flux to the atmosphere. To evaluate the potential contribution of such land use on methane production, field samples were studied in vitro for the potential activity of methanogenic bacteria in unflooded or flooded boreal forest soils, together with lacustrine sediments. From this comparative study, periodically flooded or flooded peats contribute more to methane production than do unflooded peats, soils, and natural lake sediment. The intensity and temporal changes in the activity of methanogenic archaea in the different systems depended on a combination of environmental factors, such as the amount and quality of organic carbon, the water level, and the concentration of oxidizing ions (SO42-, Fe3+).  相似文献   

5.
Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity.  相似文献   

6.
Methane is a potent greenhouse gas; methane production and consumption within seafloor sediments has generated intense interest. Anaerobic oxidation of methane (AOM) and methanogenesis (MOG) primarily occur at the depth of the sulfate–methane transition zone or underlying sediment respectively. Methanogenesis can also occur in the sulfate-reducing sediments through the utilization of non-competitive methylated compounds; however, the occurrence and importance of this process are not fully understood. Here, we combined a variety of data, including geochemical measurements, rate measurements and molecular analyses to demonstrate the presence of a cryptic methane cycle in sulfate-reducing sediments from the continental shelf of the northern South China Sea. The abundance of methanogenic substrates as well as the high MOG rates from methylated compounds indicated that methylotrophic methanogenesis was the dominant methanogenic pathway; this conclusion was further supported by the presence of the methylotrophic genus Methanococcoides. High potential rates of AOM were observed in the sediments, indicating that methane produced in situ could be oxidized simultaneously by AOM, presumably by ANME-2a/b as indicated by 16S rRNA gene analysis. A significant correlation between the relative abundance of methanogens and methanotrophs was observed over sediment depth, indicating that methylotrophic methanogenesis could potentially fuel AOM in this environment. In addition, higher potential rates of AOM than sulfate reduction rates at in situ methane conditions were observed, making alternative electron acceptors important to support AOM in sulfate-reducing sediment. AOM rates were stimulated by the addition of Fe/Mn oxides, suggesting AOM could be partially coupled to metal oxide reduction. These results suggest that methyl-compounds driven methane production drives a cryptic methane cycling and fuels AOM coupled to the reduction of sulfate and other electron acceptors.  相似文献   

7.
Temperature limitation of methanogenesis in aquatic sediments.   总被引:36,自引:28,他引:8       下载免费PDF全文
Microbial methanogenesis was examined in sediments collected from Lake Mendota, Wisconsin, at water depths of 5, 10, and 18 m. The rate of sediment methanogenesis was shown to vary with respect to sediment site and depth, sampling date, in situ temperature, and number of methanogens. Increased numbers of methanogenic bacteria and rates of methanogenesis correlated with increased sediment temperature during seasonal change. The greatest methanogenic activity was observed for 18-m sediments throughout the sampling year. As compared with shallower sediments, 18-m sediment was removed from oxygenation effects and contained higher amounts of ammonia, carbonate, and methanogenic bacteria, and the population density of methanogens fluctuated less during seasonal change. Rates of methanogenesis in 18-m sediment cores decreased with increasing sediment depth. The optimum temperature, 35 to 42 C, for sediment methanogenesis was considerably higher than the maximum observed in situ temperature of 23 C. The conversion of H2 and [14C]carbonate to [14C]methane displayed the same temperature optimum when these substrates were added to sediments. The predominant methanogenic population had simple nutritional requirements and were metabolically active at 4 to 45 C. Hydrogen oxidizers were the major nutritional type of sediment methanogens; formate and methanol fermentors were present, but acetate fermentors were not observed. Methanobacterium species were most abundant in sediments although Methanosarcina, Methanococcus, and Methanospirillum species were observed in enrichment cultures. A chemolithotropic species of Methanosarcina and Methanobacterium was isolated in pure culture that displayed temperature optima above 30 C and had simple nutritional requirements.  相似文献   

8.
Methanogenesis from Methylated Amines in a Hypersaline Algal Mat   总被引:3,自引:1,他引:2       下载免费PDF全文
Methane ebullition and high rates of methane production were observed in sediments of a hypersaline pond (180‰) which contained sulfate in excess of 100 mM. The highest rates of methane production were observed in surface sediments associated with an algal mat dominated by a Spirulina sp. The mat contained a methylated amine, glycine betaine (GBT), at levels which accounted for up to 20% of the total mat nitrogen. GBT was apparently the source of trimethylamine (TMA), which was also present in the sediment at relatively high concentrations. Patterns of substrate metabolism by the methanogenic populations in sediment slurries suggested that TMA was a major methane precursor. Neither exogenous hydrogen nor acetate stimulated methanogenesis, while addition of a variety of amines including TMA, trimethylamine oxide, GBT, and choline resulted in substantial increases with yields of >70%. The temperature optimum for methanogenesis in this system was 45 to 55°C, which coincided with the observed sediment temperature. Patterns and rates of methane production in this and other hypersaline algal mats may be determined by a complex interaction between salinity, the use of methylated amines for osmoregulation by algae, and the formation of TMA by fermentation.  相似文献   

9.
A novel method was used to examine the microbial ecology of iron-rich wetland sediments receiving neutral-pH coal mine drainage. Gel probes inserted into the sediments allowed analysis of the distribution and activity of bacterial sulfate reduction (BSR). A mixed population of sulfate-reducing bacteria enriched from anoxic wetland sediments was immobilized in low temperature-gelling agarose held in grooved rods or probes. The probes were inserted vertically into sediments and were allowed to incubate in situ for 48 h. After their retrieval, the gels were sectioned and analyzed for residual BSR activity and were compared to in situ BSR rates and chemical porewater profiles. The depth distribution of residual BSR activity in the immobilized cell gel probes differed significantly from the BSR measured in situ. Approximately 51% of the total integrated residual sulfate reduction activity measured in the gel probes occurred between 0 and 7 cm of the upper 20 cm of sediment. In contrast, ca. 99% of the integrated in situ BSR occurred between 7- and 20-cm depth, and only 1% of the total integrated rate occurred between 0- and 7-cm depth. Lactate-enriched bacteria immobilized in the gel may have been atypical of the majority of sulfate-reducing bacteria in the sediment. Agarose-immobilized sulfate-reducing bacteria might also be able to proliferate in the otherwise inhospitable zone of iron reduction, where sulfate and labile carbon compounds for which they are usually outcompeted can diffuse freely into the gel matrix. Gel probes containing particulate iron monosulfide (FeS) indicated that FeS remained stable in sediments at depths greater than 2 to 3 cm below the sediment-water interface, consistent with the shallow penetration of oxygen into surface sediments.  相似文献   

10.
The competition between sulfate-reducing and methanogenic bacteria for hydrogen was investigated in eutrophic lake sediments that contained low in situ sulfate concentrations and in sulfate-amended sediments. Sulfate reduction and methane production coexisted in situ in lake surface sediments (0 to 2 cm), but methane production was the dominant terminal process. Addition of 10 to 20 mM sulfate to sediments resulted in a decrease in the hydrogen partial pressure and a concomitant inhibition of methane production over time. Molybdate inhibition of sulfate reduction in sulfate-amended sediments was followed by an increase in the hydrogen partial pressure and the methane production rate to values comparable to those in sediments not amended with sulfate. The sulfate reducer population had a half-saturation constant for hydrogen uptake of 141 pascals versus 597 pascals for the methanogen population. Thus, when sulfate was not limiting, the lower half-saturation constant of sulfate reducers enabled them to inhibit methane production by lowering the hydrogen partial pressure below levels that methanogens could effectively utilize. However, methanogens coexisted with sulfate reducers in the presence of sulfate, and the outcome of competition at any time was a function of the rate of hydrogen production, the relative population sizes, and sulfate availability.  相似文献   

11.
The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments – namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogenic archaea. Anaerobic oxidation of methane presumably proceeds via a 'reversed' methanogenic pathway. The ANME are generally associated with sulfate-reducing bacteria (SRB) and sulfate is the only documented final electron acceptor for AOM in marine sediments. Our comparative study explored the coupling of AOM with sulfate reduction (SR) and methane generation (MOG) in microbial communities from Gulf of Mexico cold seep sediments that were naturally enriched with methane and other hydrocarbons. These sediments harbour a variety of ANME clades and SRB. Following enrichment under an atmosphere of methane, AOM fuelled 50–100% of SR, even in sediment slurries containing petroleum-associated hydrocarbons and organic matter. In the presence of methane and sulfate, the investigated microbial communities produce methane at a small fraction (∼10%) of the AOM rate. Anaerobic oxidation of methane, MOG and SR rates decreased significantly with decreasing concentration of methane, and in the presence of the SR inhibitor molybdate, but reacted differently to the MOG inhibitor 2-bromoethanesulfonate (BES). The addition of acetate, a possible breakdown product of petroleum in situ and a potential intermediate in AOM/SR syntrophy, did not suppress AOM activity; rather acetate stimulated microbial activity in oily sediment slurries.  相似文献   

12.
A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5 degrees C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-(14)C]acetate to sediment samples resulted in the passage of label mainly to CO(2). Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm(-3) h(-1) compared to 2.5 to 6 nmol cm(-3) h(-1)), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H(2) (2.4-fold), and H(2) uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H(2) release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, approximately 0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H(2) and CO(2) where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20 degrees C.  相似文献   

13.
Microbial Formation of Ethane in Anoxic Estuarine Sediments   总被引:11,自引:9,他引:2       下载免费PDF全文
Estuarine sediment slurries produced methane and traces of ethane when incubated under hydrogen. Formation of methane occurred over a broad temperature range with an optimum above 65°C. Ethane formation had a temperature optimum at 40°C. Formation of these two gases was inhibited by air, autoclaving, incubation at 4 and 80°C, and by the methanogenic inhibitor, 2-bromoethanesulfonic acid. Ethane production was stimulated by addition of ethylthioethanesulfonic acid, and production from ethylthioethanesulfonic acid was blocked by 2-bromoethanesulfonic acid. A highly purified enrichment culture of a methanogenic bacterium obtained from sediments produced traces of ethane from ethylthioethanesulfonic acid. These results indicate that the small quantities of ethane found in anaerobic sediments can be formed by certain methanogenic bacteria.  相似文献   

14.
Anoxic sediments from Rotsee (Switzerland) were analyzed for the presence and diversity of methanogens by using molecular tools and for methanogenic activity by using radiotracer techniques, in addition to the measurement of chemical profiles. After PCR-assisted sequence retrieval of the 16S rRNA genes (16S rDNA) from the anoxic sediment of Rotsee, cloning, and sequencing, a phylogenetic analysis identified two clusters of sequences and four separated clones. The sequences in cluster 1 grouped with those of Methanosaeta spp., whereas the sequences in cluster 2 comprised the methanogenic endosymbiont of Plagiopyla nasuta. Discriminative oligonucleotide probes were constructed against both clusters and two of the separated clones. These probes were used subsequently for the analysis of indigenous methanogens in a core of the sediment, in addition to domain-specific probes against members of the domains Bacteria and Archaea and the fluorescent stain 4', 6-diamidino-2-phenylindole (DAPI), by fluorescent in situ hybridization. After DAPI staining, the highest microbial density was obtained in the upper sediment layer; this density decreased with depth from (1.01 +/- 0.25) x 10(10) to (2.62 +/- 0.58) x 10(10) cells per g of sediment (dry weight). This zone corresponded to that of highest metabolic activity, as indicated by the ammonia, alkalinity, and pH profiles, whereas the methane profile was constant. Probes Eub338 and Arch915 detected on average 16 and 6% of the DAPI-stained cells as members of the domains Bacteria and Archaea, respectively. Probe Rotcl1 identified on average 4% of the DAPI-stained cells as Methanosaeta spp., which were present throughout the whole core. In contrast, probe Rotcl2 identified only 0.7% of the DAPI-stained cells as relatives of the methanogenic endosymbiont of P. nasuta, which was present exclusively in the upper 2 cm of the sediment. Probes Rotp13 and Rotp17 did not detect any cells. The spatial distribution of the two methanogenic populations corresponded well to the methane production rates determined by incubation with either [14C]acetate or [14C]bicarbonate. Methanogenesis from acetate accounted for almost all of the total methane production, which concurs with the predominance of acetoclastic Methanosaeta spp. that represented on average 91% of the archaeal population. Significant hydrogenotrophic methanogenesis was found only in the organically enriched upper 2 cm of the sediment, where the probably hydrogenotrophic relatives of the methanogenic endosymbiont of P. nasuta, accounting on average for 7% of the archaeal population, were also detected.  相似文献   

15.
The activity of methanogenic and methanotrophic bacteria was evaluated in bottom sediments of Lake Baikal. Methane concentration in Baikal bottom sediments varied from 0.0053 to 81.7 ml/dm3. Bacterial methane was produced at rates of 0.0004-534.7 microliters CH4/(dm3 day) and oxidized at rates of 0.005-1180 microliters CH4/(dm3 day). Peak methane production and oxidation were observed in Frolikha Bay near a methane vent. Methane was emitted into water at rates of 49.2-4340 microliters CH4/(m2 day). Rates of bacterial methane oxidation in near-bottom water layers ranged from 0.002 to 1.78 microliters/(1 day). Methanogens and methanotrophs were found to play an important role in the carbon cycle through all layers of sediments, particularly in the areas of methane vent and gas-hydrate occurrence.  相似文献   

16.
When microorganisms eluted from upper Hudson River sediment were cultured without any substrate except polychlorobiphenyl (PCB)-free Hudson River sediment, methane formation was the terminal step of the anaerobic food chain. In sediments containing Aroclor 1242, addition of eubacterium-inhibiting antibiotics, which should have directly inhibited fermentative bacteria and thereby should have indirectly inhibited methanogens, resulted in no dechlorination activity or methane production. However, when substrates for methanogenic bacteria were provided along with the antibiotics (to free the methanogens from dependence on eubacteria), concomitant methane production and dechlorination of PCBs were observed. The dechlorination of Aroclor 1242 was from the para positions, a pattern distinctly different from, and more limited than, the pattern observed with untreated or pasteurized inocula. Both methane production and dechlorination in cultures amended with antibiotics plus methanogenic substrates were inhibited by 2-bromoethanesulfonic acid. These results suggest that the methanogenic bacteria are among the physiological groups capable of anaerobic dechlorination of PCBs, but that the dechlorination observed with methanogenic bacteria is less extensive than the dechlorination observed with more complex anaerobic consortia.  相似文献   

17.
Gas hydrates deposited in subseafloor sediments are considered to primarily consist of biogenic methane. However, little evidence for the occurrence of living methanogens in subseafloor sediments has been provided. This study investigated viable methanogen diversity, population, physiology and potential activity in hydrate-bearing sediments (1–307 m below the seafloor) from the eastern Nankai Trough. Radiotracer experiments, the quantification of coenzyme F430 and molecular sequencing analysis indicated the occurrence of potential methanogenic activity and living methanogens in the sediments and the predominance of hydrogenotrophic methanogens followed by methylotrophic methanogens. Ten isolates and nine representative culture clones of hydrogenotrophic, methylotrophic and acetoclastic methanogens were obtained from the batch incubation of sediments and accounted for 0.5–76% of the total methanogenic sequences directly recovered from each sediment. The hydrogenotrophic methanogen isolates of Methanocalculus and Methanoculleus that dominated the sediment methanogen communities produced methane at temperatures from 4 to 55 °C, with an abrupt decline in the methane production rate at temperatures above 40 °C, which is consistent with the depth profiles of potential methanogenic activity in the Nankai Trough sediments in this and previous studies. Our results reveal the previously overlooked phylogenetic and metabolic diversity of living methanogens, including methylotrophic methanogenesis.Subject terms: Biogeochemistry, Biodiversity, Environmental microbiology  相似文献   

18.
Microbial methanogenesis was proved geochemically, based on the abundance of methanogenic bacteria and methane production rates in experiments with radioactive carbon. The results are compared with direct measurements of methane concentrations in mud samples taken with a hermetic sampler. The migration of methane formed in sediments occurs during filtration of porewater rather than at the expense of gas diffusion.  相似文献   

19.
Seasonal Rates of Methane Oxidation in Anoxic Marine Sediments   总被引:3,自引:3,他引:0       下载免费PDF全文
Methane concentrations and rates of methane oxidation were measured in intact sediment cores from an inshore marine sediment at Jutland, Denmark. The rates of methane oxidation, determined by the appearance of 14CO2 from injected 14CH4, varied with sediment depth and season. Most methane oxidation was anoxic, but oxygen may have contributed to methane oxidation at the sediment surface. Cumulative rates (0- to 12-cm depth) for methane oxidation at Kysing Fjord were 3.34, 3.48, 8.60, and 17.04 μmol m−2 day−1 for April (4°C), May (13°C), July (17°C), and August (21°C), respectively. If all of the methane was oxidized by sulfate, it would account for only 0.01 to 0.06% of the sulfate reduction. The data indicate that methane was produced, in addition to being oxidized, in the 0- to 18-cm sediment stratum.  相似文献   

20.
The abundances and activities of aerobic methane-oxidizing bacteria (MOB) were compared in depth profiles of littoral and profundal sediments of Lake Constance, Germany. Abundances were determined by quantitative PCR (qPCR) targeting the pmoA gene and by fluorescence in situ hybridization (FISH), and data were compared to methane oxidation rates calculated from high-resolution concentration profiles. qPCR using type I MOB-specific pmoA primers indicated that type I MOB represented a major proportion in both sediments at all depths. FISH indicated that in both sediments, type I MOB outnumbered type II MOB at least fourfold. Results obtained with both techniques indicated that in the littoral sediment, the highest numbers of methanotrophs were found at a depth of 2 to 3 cm, corresponding to the zone of highest methane oxidation activity, although no oxygen could be detected in this zone. In the profundal sediment, highest methane oxidation activities were found at a depth of 1 to 2 cm, while MOB abundance decreased gradually with sediment depth. In both sediments, MOB were also present at high numbers in deeper sediment layers where no methane oxidation activity could be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号