首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have examined the expression of the petunia (Petunia hybrida) glycine-rich protein-1 (ptGRP1) gene product using an antibody raised against a synthetic peptide comprising amino acids 22 through 36 of the mature ptGRP1 protein. This antibody recognizes a single protein of 23 kilodaltons. Cell fractionation studies showed that, as predicted (CM Condit, RB Meagher [1986] Nature 323: 178-181), ptGRP1 is most likely localized in the cell wall. In addition, it was found that (extractable) ptGRP1 is present in much higher abundance in unexpanded than in fully expanded tissue, with highest levels of accumulation in the bud. This same developmentally regulated pattern of protein expression was found in all varieties of petunia tested. In addition, tissue blots of petunia stem sections showed that ptGRP1 is localized to within the vascular tissue (to at least the phloem or cambium) and to either the epidermal cells or to a layer of collenchyma cells directly below the epidermis. Localization of ptGRP1 antigen in these cell types is shown to occur at different times in the overall development of the plant and at different quantitative levels.  相似文献   

3.
4.
The presence of specific glycine-rich proteins (GRP) related to petunia GRP1 (ptGRP1) was examined in three species of monocots (wheat, barley and maize) and five species of dicots (rape, turnip, soybean, crabapple and tomato). Protein blot analysis showed that anti-ptGRP1 antibody cross-reacted with a single different polypeptide in all species except maize. The molecular mass of these polypeptides ranged from 14 to 55 kDa. Tissue-print immunoblots of rape petioles and stems showed that the rape ptGRP1 homologue, like ptGRP1, is primarily located in the vascular tissue, and that its expression decreases with developmental age of the tissue. In barley, the ptGRP1 homologue is found in leaf vascular bundles, and may also be present in the surrounding bundle sheaths. Unlike the dicots examined, expression of the protein did not appear to decrease significantly with developmental age.  相似文献   

5.
6.
7.
Kong WH  Yan S  Gu Z  Tso JK 《生理学报》2002,54(5):400-404
利用原位杂交和免疫组化等方法,研究兔精子发生过程中生精细胞cyclin B1 mRNA的表达和蛋白定位特点,结果显示,兔生精上皮中Cyclin B1 mRNA的主要分布在初级精母细胞中,直至圆形精子细胞仍然存在,于精子细胞的变态过程中逐渐消失,在伸长的精子细胞和精子中未检测出cyclin B1 mRNA,Cyclin B1蛋白在进入分裂期的精原细胞和精母细胞中表达,在圆形精子细胞和伸长的精子细胞中呈现大量的cyclin B1蛋白,上述结果表明,在兔精子发生过程中,cyclin B1 mRNA表达和蛋白定位具有发育阶段依赖性的特征。  相似文献   

8.
In a recent publication (Plant Molecular Biology 16: 547–565 (1991)) Showalter et al. described the isolation and initial characterization of fifteen extensin and extensin-like tomato cDNAs. These cDNAs were determined to fall into five distinct classes; class I and II clones encoded extensins, class III and V clones encoded glycine-rich proteins (GRPs), and class IV clones encoded a portion of a GRP sequence on one DNA strand and a portion of an extensin sequence on the other DNA strand. In this publication, a more detailed analysis of the expression of these cDNA classes was performed with respect to wounding in various tomato organs, development, kinetics and systemic extent of the wound response, ethylene treatment, abscisic acid (ABA) treatment, and drought stress by using RNA gel blot hybridizations. In general, extensin gene expression was readily detected in stems and roots, but not in leaves. With both class I and II extensin cDNA probes, wound-induced accumulation of mRNA in stems was first detected between 4 and 8 h after wounding with maximal accumulation occurring after 12 h. Moreover, these extensin wound responses were detected locally at the wound site but not systemically. Expression of the class III GRP was largely limited to wounded stem tissue. Initial detection and maximal accumulation of the class III GRP mRNA was similar to the extensins mRNAs; however, this GRP wound response occurred both locally and systemically. Additionally, abscisic acid treatment and drought stress resulted in the marked accumulation of the class III GRP mRNA in tomato stems, but did not alter the expression of the other cDNA classes. In contrast, expression of the class V GRP occurred in stems and roots and to a lesser extent in leaves and decreased in response to wounding over a 24 h time period. The class V GRP wound response was further characterized by an early, transient accumulation of mRNA occurring 2–4 h after wounding in stems and by its local nature.  相似文献   

9.
10.
The etiology and pathogenesis of tumors of the central nervous system are still inadequately explained. In the present study the expression patterns of a critical molecular component of wnt signaling pathway - axin I was investigated in 42 patients with glioblastoma, the most aggressive form of glial tumors. Immunostaining and image analysis revealed the quantity and localization of the protein. Downregulation of this tumor suppressor expression was observed in 31% of tumors when compared to the levels of axin in healthy brain tissues. Axin was observed in the cytoplasm in 69% of glioblastoma samples, in 21.4% in both the cytoplasm and nucleus and 9.5% had expression solely in the nucleus. Mean values of relative axin's expression obtained by image analysis showed that the highest relative quantity of axin was measured when the protein was in the nucleus and the lowest relative quantity of axin when the protein was localized in the cytoplasm. Investigation on axin's existence at the subcellular level in glioblastomas suggests that axin's expression and spatial regulation is a dynamic process. Despite increasing knowledge on glioma biology and genetics, the prognostic tools for glioblastoma still need improvement. Our findings on expression of axin 1 may contribute to better understanding of glioblastoma molecular profile.  相似文献   

11.
We cloned a MADS-box gene, pMADS3, from Petunia hybrida, which shows high sequence homology to the Arabidopsis AGAMOUS and Antirrhinum PLENA. pMADS3 is expressed exclusively in stamens and carpels of wild-type petunia plants. In the petunia mutant blind, which shows homeotic conversions of corolla limbs into antheroid structures with pollen grains and small parts of sepals into carpelloid tissue, pMADS3 is expressed in all floral organs as well as in leaves. Ectopic expression of pMADS3 in transgenic petunia leads to phenocopies of the blind mutant, i.e., the formation of antheroid structures on limbs and carpelloid tissue on sepals. Transgenic tobacco plants that overexpress pMADS3 exhibit an even more severe phenotype, with the sepals forming a carpel-like structure encasing the interior floral organs. Our results identify BLIND as a negative regulator of pMADS3, which specifies stamens and carpels during petunia flower development.  相似文献   

12.
13.
Initial studies have suggested that Pop1/Bves protein is exclusively expressed in the smooth muscle walls of the coronary vessels, implying its possible importance in coronary diseases. However, the mRNA and activity of this gene are detected in both skeletal and cardiac muscles, not coronary smooth muscle, and Pop1/Bves knockout mice have defects in skeletal muscle regeneration. Here we used specific monoclonal antibodies (MAbs) raised against chicken Pop1/Bves and demonstrated the presence of this protein in cardiomyocytes through development and its apparent absence in coronary vessels. Immunostaining of cardiomyocytes cultured in vitro confirmed the membrane localization of this protein in cells that participate in cell adhesion, with significant intracellular staining seen in isolated cells. In skeletal muscle, Pop1 protein becomes detectable at embryonic day (E) 7, coincident with the differentiation of morphologically distinct muscle masses from the limb muscle blastema, but the protein is not found at high levels in the cell membrane of myotubes until E11, coincident with the formation of secondary myotubes from satellite cells. These data support the hypothesis that Pop1/Bves is a cell adhesion molecule present in skeletal and cardiac muscle.  相似文献   

14.
The expression of the murine Prl-1 protein tyrosine phosphatase gene was examined in normal embryos from E10.5 through E18.5. Prl-1 mRNA was detected in the brain, neural tube, and dorsal root ganglia, and in several non-neuronal tissues, including the skeletal system. Heart and skeletal muscle were consistently negative. At E13.5, Prl-1 was expressed in the condensing prechondrogenic cells of the vertebrae, whereas at E18.5, Prl-1 mRNA was localized to the hypertrophic chondrocytes. The dynamic expression of Prl-1 during cartilage differentiation may suggest a functional role in skeletal development.  相似文献   

15.
Two general mechanisms mediate glucose transport, one is a sodium-coupled glucose transporter found in the apical border of intestinal and kidney epithelia, while the other is a sodium-independent transport system. Of the latter, several facilitated transporters have been identified, including GLUT1 (erythrocyte/brain), GLUT2 (liver) and GLUT4 (adipose/muscle) isoforms. In this study, we used Western-blot analysis and high resolution immunoelectron microscopy (IEM) to investigate the stage-related expression and cellular localization of GLUT1, 2 and 4. The Western blot results demonstrate that GLUT1 is detectable in the oocyte and throughout preimplantation development. GLUT2 isoforms were not detectable until the blastocyst stage, while the GLUT4 isoform was undetectable in the oocyte through blastocyst stages. The present findings confirm previous studies at the molecular level which demonstrated that mRNAs encoding the same GLUT isoforms are detectable at corresponding developmental stages. GLUT1 and GLUT2 display different cellular distributions at the blastocyst stage as shown by IEM studies. GLUT1 has a widespread distribution in both trophectoderm and inner cell mass cells, while GLUT2 is located on trophectoderm membranes facing the blastocyst cavity. This observation suggests a different functional significance for these isoforms during mouse preimplantation development.  相似文献   

16.
17.
Acclimation of the halotolerant alga Dunaliella salina to low temperature induced the accumulation of a 12.4 kDa protein (DsGRP-1) and reduction of a 13.1 kDa protein (DsGRP-2). DsGRP-1 and DsGRP-2 are boiling-stable proteins that are localised in the cytoplasm, as revealed by sub-cellular fractionation and by immuno-localisation. The proteins were partially purified and their corresponding genes were cloned. The predicted sequences are homologous to Glycine-Rich RNA-binding Proteins (GRPs) from plants and cyanobacteria. The nucleotide sequences of grp1 and grp2 differ in a short insert encoding 9 amino acids in the glycine-rich domain of DsGRP-2. grp2 contains a single intron at position 179 indicating that DsGRP-1 and DsGRP-2 are not derived from alternative splicing of a common gene. The level of grp mRNA increased at 7 degrees C and was rapidly depressed at 24 degrees C. Analysis of binding to ribonucleotide homopolymers revealed that DsGRP-1 and DsGRP-2 bind preferentially to poly-G and to poly-U indicating that they are RNA-binding proteins. It is proposed that DsGRP-1 and DsGRP-2 are encoded by distinct genes which are differentially regulated by temperature.  相似文献   

18.
RNA localization is a regulated component of gene expression of fundamental importance in development and differentiation. Several RNA binding proteins involved in RNA localization during development in Drosophila have been identified, of which Y14, Mago, Pumilio, and IMP-1 are known to be expressed in adult mammalian intestine. The present study was undertaken to define the developmental and regional expression of these proteins, as well as Staufen-1, in mouse intestinal cells and in other tissues and cell lines using RT-PCR, and localization using in situ hybridization and immunohistochemistry. Staufen-1, Y14, Mago-m, and Pumilio-1 were expressed in intestinal epithelial cells of both villus and crypt and in Caco-2 and IEC-6 cells. In contrast, expression of IMP-1 was age- and region-specific, showing clear expression in distal fetal and newborn intestine, but very low or no expression in adult. The mRNAs were cytosolic, with more apical than basal expression in enterocytes. Staufen protein showed a similar localization pattern to that of its cognate mRNA. Overall, the data suggest an essential role for these proteins in intestinal cells. Age and regional expression of IMP-1 may indicate a role in regulation of site-specific translation of intestinal genes or in RNA localization.  相似文献   

19.
20.
Yang Y  Ma J  Song Z  Wu M 《FEBS letters》2002,532(1-2):36-44
Several novel prokaryotic and eukaryotic expression vectors were constructed for protein transduction and subcellular localization. These vectors employed an N-terminal stretch of 11 basic amino acid residues (47-57) from the human immunodeficiency virus type 1 (HIV-1) TAT protein transduction domain (PTD) for protein translocation and cellular localization. The vectors also contained a six-histidine (His(6)) tag at the N- or C-terminus for convenient purification and detection, and a multiple cloning site for easy insertion of foreign genes. Some heterologous genes including HSV-TK, Bcl-rambo, Smac/DIABLO and GFP were fused in-frame to TAT PTD and successfully overexpressed in Escherichia coli. The purified TAT-GFP fusion protein was able to transduce into the mammalian cells and was found to locate mainly in the cytosol when exogenously added to the cell culture medium. However, using a transfection system, mammalian-expressed TAT-GFP predominantly displayed a nuclear localization and nucleolar accumulation in mammalian cell lines. This discrepancy implies that the exact subcellular localization of transduced protein may depend on cell type, the nature of imported proteins and delivery approach. Taken together, our results demonstrate that a TAT PTD length of 11 amino acids was sufficient to confer protein internalization and its subsequent cellular localization. These novel properties allow these vectors to be useful for studying protein transduction and nuclear import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号