首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nontoxic and biodegradable pollutant-mobilizing agents, instead of chemical surfactants, were tested in the washing of an actual-site chloroaromatic-contaminated soil. A soil historically contaminated by chlorinated anilines and benzenes, thiophenes and several polycyclic aromatic hydrocarbons was subjected to washing by suspending it (15% w/v) in water or in water with 1.0% (w/v) beta-clodextrin (beta-CD), hydroxypropyl-beta-cyclodextrin (HP-beta-CD), rhamnolipid (RL), dissolved humic substances (HS), or Triton X-100 (TX) in shaken batch reactors for 24 hr. The resulting wastewaters were amended with nutrients and treated aerobically in shaken reactors for 65 days. The biogenic agents markedly enhanced (by 237%, beta-CD; 265%, HP-beta-CD; 400%, RL; 566%, HS) the capability of water of eluting organic pollutants from the soil. TX enhanced the overall pollutant removal by about 660%; however, a lower depletion of the initial soil ecotoxicity, along with a more extensive impact on the soil organic matter, was observed. Furthermore, TX adversely affected the bioremediation of the resulting effluent by apparently inducing a premature decrease of specialized bacterial biomass. By contrast, the biogenic agents, and in particular HS and RL, sustained the biodegradation and dechlorination of pollutants by apparently enhancing the availability of specialized bacteria in the reactors. Thus, the biogenic agents proposed here seem to be promising nontoxic and nonaggressive soil washing agents for the integrated physicochemical (washing) and biological (aerobic posttreatment) restoration of poorly bioremediable (chloro) organics-contaminated soils.  相似文献   

2.
A two phases process consisting of a soya lecithin (SL)-based soil washing process followed by the photocatalytic treatment of resulting effluents was developed and applied at the laboratory scale in the remediation of an actual-site soil historically contaminated by 0.65 g/kg of polychlorinated biphenyls (PCBs). Triton X-100 (TX) was employed in the same process as a control surfactant. SL and TX, both applied as 2.25 g/L aqueous solutions, displayed a comparable ability to remove PCBs from the soil. However, SL solution displayed a lower ecotoxicity, a lower ability to mobilize soil constituents and a higher soil detoxification capacity with respect to the TX one. The photocatalytic treatment resulted in marked depletions (from 50% to 70%) of total organic carbon (TOC) and PCBs initially occurring in the SL and TX contaminated effluents. Despite the ability of SL to adversely affect the rate of TOC and PCB photodegradation, higher PCB depletion and dechlorination yields along with lower increases of ecotoxicity were observed in SL-containing effluents with respect to the TX ones at the end of 15 days of treatment. The two phases process developed and tested for the first time in this study seems to have the required features to become, after a proper optimization and scale up, a challenging procedure for the sustainable remediation of actual site, poorly biotreatable PCB-contaminated soils.  相似文献   

3.
The high hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) strongly reduces their bioavailability in aged contaminated soils, thus limiting their bioremediation. The biodegradation of PAHs in soils can be enhanced by employing surface-active agents. However, chemical surfactants are often recalcitrant and exert toxic effects in the amended soils. The effects of two biogenic materials as pollutant-mobilizing agents on the aerobic bioremediation of an aged-contaminated soil were investigated here. A soil historically contaminated by about 13 g kg(-1) of a large variety of PAHs, was amended with soya lecithin (SL) or humic substances (HS) at 1.5% w/w and incubated in aerobic solid-phase and slurry-phase reactors for 150 days. A slow and only partial biodegradation of low-molecular weight PAHs, along with a moderate depletion of the initial soil ecotoxicity, was observed in the control reactors. The overall removal of PAHs in the presence of SL or HS was faster and more extensive and accompanied by a larger soil detoxification, especially under slurry-phase conditions. The SL and HS could be metabolized by soil aerobic microorganisms and enhanced the occurrence of both soil PAHs and indigenous aerobic PAH-degrading bacteria in the reactor water phase. These results indicate that SL and HS are biodegradable and efficiently enhance PAH bioavailability in soil. These natural surfactants significantly intensified the aerobic bioremediation of a historically PAH-contaminated soil under treatment conditions similar to those commonly employed in large-scale soil bioremediation.  相似文献   

4.
The bioremediation of aged polychlorinated biphenyl (PCB)-contaminated soils is adversely affected by the low bioavailability of the pollutants. Randomly methylated-beta-cyclodextrins (RAMEB) were tested as a potential PCB-bioavailability-enhancing agent in the aerobic treatment of two aged-contaminated soils. The soils, contaminated by about 890 and 8500 mg/kg of Aroclor 1260 PCBs, were amended with biphenyl (4 g/kg), inorganic nutrients (to adjust their C:N ratio to 20:1), and variable amounts of RAMEB (0%, 0.5%, or 1.0% [w/w]) and treated in both aerobic 3-L solid-phase reactors and 1.5-L packed-bed loop reactors for 6 months. Notably, significant enhancement of the PCB biodegradation and dechlorination, along with a detectable depletion of the initial soil ecotoxicity, were generally observed in the RAMEB-treated reactors of both soils. RAMEB effects were different in the two soils, depending upon the treatment conditions employed, and generally increased proportionally with the concentration at which RAMEB was applied. RAMEB, which was slowly metabolized by the soil's aerobic microorganisms, was found to markedly enhance the occurrence of the indigenous aerobic, cultivable biphenyl-growing bacteria harboring genes homologous to those of two highly specialized PCB degraders (i.e., bphABC genes of Pseudomonas pseudoalcaligenes KF707 and bphA1A2A3A4BC1 genes of Rhodococcus globerulus P6) and chlorobenzoic acid-degrading bacteria as well as the occurrence of PCBs in the water phase of the soil reactors. These findings indicate that RAMEB enhanced the aerobic bioremediation of the two soils by increasing the bioavailability of PCBs and the occurrence of specialized bacteria in the soil reactors.  相似文献   

5.
重金属污染土壤修复技术中有关淋洗剂的研究进展   总被引:32,自引:2,他引:30  
淋洗法是修复污染土壤的一种很有效的方法 ,是对污染土壤生物修复的一种补充 ,使污染土壤修复的系统化成为可能。淋洗法就是使用淋洗剂来清洗土壤 ,使土壤中污染物随淋洗液流出 ,然后对淋洗液及土壤进行后续处理 ,从而达到修复污染土壤的目的。而淋洗剂的选择是影响这一技术效率高低的主要因素之一。本文对目前淋洗剂的应用情况 ,作用机制进行了总结和评价。探讨了天然有机酸、生物表面活性剂等对环境影响小的淋洗液的应用前景。并根据“以废治污”的指导思想提出并分析了以柠檬酸废水和味精废水作为淋洗剂修复重金属污染土壤的可行性。  相似文献   

6.
Sawatsky  N.  Li  X. 《Plant and Soil》1997,192(2):227-236
This study was conducted to investigate water movement in hydrocarbon contaminated soils. Three soils were studied, a hydrocarbon contaminated soil, the same soil after 3 years of bioremediation, and a control soil from the same site. There was a critical soil water content around 18% (bioremediated soil) and 20% (contaminated soil), above which the sorptivity of the contaminated soil was near that of the control soil. For soils with water contents below this value, there was a strong divergence in sorptivity between contaminated and control or bioremediated soils. Results suggest that water availability in contaminated soils will be highly dependent on soil water properties as water potential approaches the permanent wilting point (-1.5 MPa matrix potential).Infiltration of water into air dry (2% m.c. w/w) hydrocarbon contaminated soils was up to three orders of magnitude slower than for the control soil. For air dried soils, the infiltration rate of the contaminated and bioremediated soils was constant with time. This was in contrast to the control soil where infiltration rate was a function of the reciprocal of the square root of time.  相似文献   

7.
In less developed countries, the prevalence of soil contaminated with used lubricating oil is high and the situation worsens with the economic advancement. The contamination has been shown to adversely affect the environment and human health. To mitigate, bioremediation could be adopted to tackle the problem of hydrocarbon-contaminated soil. Thus, this experimental research carried out the bioremediation using chicken manure in soils contaminated with 5%, 10% and 20% w/w used lubricating oil for a 42-day composting period. To compare, this research also experimented with the 5%, 10% and 20% oil-contaminated soils untreated with chicken manure. The results showed that the highest total petroleum hydrocarbons (TPHs) reduction efficiency of >60% was achieved in the 5% oil-contaminated compost remediated with chicken manure. The highest biodegradation rate of lubricating oil of 0.023–0.0025 day?1 as measured by the first-order kinetics could also be achieved under the 5% oil contamination condition with the application of chicken manure. The findings highlight the prospect of chicken manure as a proper nutrient for enhanced remediation of hydrocarbon-contaminated soils, particularly of low contamination concentrations.  相似文献   

8.
This field study investigated the colonization process of soil contaminated with different petroleum products (petrol, diesel fuel, spent engine oil; dose: 6000 mg of fuel·kg?1 dry mass [d.m.] of soil) by epigeic and edaphic invertebrates during the progress of natural bioremediation and bioremediation enhanced using selected microorganisms (ZB-01 biopreparation). Epigeic fauna was captured using pitfall traps. Occurrence of edaphic fauna in soil samples as well as total petroleum hydrocarbon contents (TPH) were also investigated. Results showed that inoculation with ZB-01 biocenosis allowed the degradation of petroleum derivatives in the soil contaminated with diesel fuel and engine oil, with 82.3% and 75.4% efficiency, respectively. Applying bioremediation to all contaminated soils accelerated the process of recolonization by edaphic invertebrates. However, the 28-month period was too short to observe full population recovery in soils contaminated with diesel fuel and engine oil. Microbe-enhanced bioremediation accelerated recolonization by epigeic invertebrates on soil contaminated with diesel fuel, whereas it exerted inhibitory effect on recolonization of soil contaminated with engine oil (especially by Collembola). The observed discrepancies in the rates of recolonization for soils contaminated with petrol and diesel fuel that were still noted at the stage of no longer different TPH levels justify the idea to include the survey of edaphic faunal density as one of the parameters in the ecological risk assessment of various bioremediation techniques.  相似文献   

9.
This article describes an experimental program developed to investigate the potential for using hydrocarbon‐contaminated soils as a fine aggregate replacement in concrete. Five different contaminated soil types with a total petroleum hydrocarbon content of less than 1% were investigated. For each soil type, three concrete mixtures were obtained by replacing sand with contaminated soils (10, 20, and 40% replacement ratio). The resulting concrete was tested for setting times, compression strength, flexural strength, durability, and teachability of benzene to water.

The results indicate that the addition of hydrocarbon‐contaminated soil adversely affects the strength of concrete. The strength reduction at each soil replacement level depends on contamination concentration, contaminant type, and soil type. The durability of the tested concrete is comparable to normal concrete. For all five soils at a 40% replacement ratio, the leachability of benzene was nondetectable after 24 h and after 10 d. After testing the leachability of artificially contaminated soils (0.5 and 3% neat benzene contamination) for 24 h, it was found that the leaching of benzene increases with the percentage of contamination. However, the fraction of benzene that leached was about 95% lower than the values for loose soils.  相似文献   


10.
Hexavalent chromium [Cr(VI)], is a toxic, water-soluble contaminant present in many soils and industrial effluents. Bacteria from various soils were examined for Cr(VI) resistance and reducing potential. Microbes selected from both Cr(VI)-contaminated and-noncontaminated soils and sediments were capable of catalyzing the reduction of Cr(VI) to Cr(III) a less toxic, less water-soluble form of Cr, demonstrating the utility of using a selection strategy for indigenous Cr(VI)-reducing bacteria in a bioprocess. As a result, indigenous Cr(VI)- reducing microbes from contaminated sites should provide the means for developing a bioprocess to reduce Cr(VI) to Cr(III) in nonsterile effluents such as those from soil washes. This approach also avoids the contamination problems associated with pure cultures of allochthonous microorganisms. In addition the apparent ubiquity of Cr(VI)-reducing bacteria in soil and sediments indicates potential for in situ bioremediation of Cr(VI)-contaminated soils and ground water.  相似文献   

11.
Laboratory landfarming experiments were conducted to study the bioremediation potential of weathered Michigan crude oil‐contaminated soils. It was found that landfarming was successful in removing up to 90% of the total petroleum hydrocarbons (TPH) in the soil within 22 weeks of treatment. Boiling point analyses of untreated and treated soils indicate a significant removal of TPH compounds independent of molecular weight or carbon number. Up to 85% of heavy petroleum hydrocarbons with carbon numbers above 44 were biode‐graded. In addition, approximately 93% of saturated and 79% of aromatic compounds of the TPH were biodegraded during the 22 week treatment period. The use of polyethylene sheeting as a landfarm cover does not appear to adversely affect biodegradation kinetics under laboratory conditions. Finally, equilibrium leachate concentrations for BTEX and regulated (in Michigan) polynuclear aromatics (PNAs) were below the respective detection limits for each compound. It can be concluded that landfarming of these weathered soils will be highly successful in removing petroleum hydrocarbons while not adversely impacting either ground‐water or surface water quality.  相似文献   

12.
Selenium concentrations in the soil environment are directly linked to its transfer in the food chain, eventually causing either deficiency or toxicity associated with several physiological dysfunctions in animals and humans. Selenium bioavailability depends on its speciation in the soil environment, which is mainly influenced by the prevailing pH, redox potential, and organic matter content of the soil. The selenium cycle in the environment is primarily mediated through chemical and biological selenium transformations. Interactions of selenium with microorganisms and plants in the soil environment have been studied in order to understand the underlying interplay of selenium conversions and to develop environmental technologies for efficient bioremediation of seleniferous soils. In situ approaches such as phytoremediation, soil amendment with organic matter and biovolatilization are promising for remediation of seleniferous soils. Ex situ remediation of contaminated soils by soil washing with benign leaching agents is widely considered for removing heavy metal pollutants. However, it has not been applied until now for remediation of seleniferous soils. Washing of seleniferous soils with benign leaching agents and further treatment of Se-bearing leachates in bioreactors through microbial reduction will be advantageous as it is aimed at removal as well as recovery of selenium for potential re-use for agricultural and industrial applications. This review summarizes the impact of selenium deficiency and toxicity on ecosystems in selenium deficient and seleniferous regions across the globe, and recent research in the field of bioremediation of seleniferous soils.  相似文献   

13.
The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil.  相似文献   

14.
Two basidiomycetous fungi (Merulius aureus syn. Phlebia sp. and an unidentified genus) and a deuteromycetous fungus (Fusarium sambucinum Fuckel MTCC 3788) were isolated from soils affected with effluents of a pulp and paper mill over several years. These isolates were immobilized on nylon mesh and the consortium was used for bioremediation of pulp and paper mill effluent in a continuously aerated bench-top bioreactor. The treatment resulted in the reduction of color, lignin and COD of the effluent in the order of 78.6%, 79.0% and 89.4% in 4 days. A major part of reductions in these parameters occurred within first 24h of the treatment, which was also characterized by a steep decline in the pH of the effluent. During this period, total dissolved solids, electrical conductivity and salinity of the effluent also registered marked decline. It is pertinent to note that this is the first report of bioremediation of pulp and paper mill effluent by an immobilized fungal consortium.  相似文献   

15.
污染土壤淋洗修复技术研究进展   总被引:22,自引:0,他引:22  
土壤淋洗修复技术是一种行之有效的污染土壤治理技术,适合于快速修复受高浓度重金属和有机物污染土壤与沉积物。本文综述了土壤淋洗修复技术的特点、技术流程、土壤淋洗剂的研究与应用进展,指出异位土壤淋洗修复技术因修复效果稳定,易于实现系统控制和废弃物减量化等优点而具有更广阔的应用前景,天然螯合剂和生物表面活性剂等环境友好型淋洗剂正逐渐取代人工螯合剂和化学表面活性剂成为土壤淋洗剂研究的主流方向,而现代超分子化学的引入和发展有可能对复合污染土壤的高效淋洗修复研究产生新的影响。  相似文献   

16.
Bioremediation of hydrocarbon (HC) contaminated soils is most effective in aerobic conditions. Despite the fact that mass transfer of oxygen is an important process parameter, the effect of this parameter on solid-phase bioremediation has received limited attention. In this study, the combined effect of temperature and aeration on the bioremediation of low organic content coarse-grained soils, freshly contaminated with diesel, was investigated in solid-phase bench-scale bioreactors. Total HC and carbon range soil concentrations, volatilization, and microbial activity were monitored throughout the six-month experiments at two temperatures (7 and 22°C) and at two aeration rates (13 and 45 mL·s?1). Total HC removal reached between 48 and 83%. Generally, removal increased proportionally with temperature and aeration rates, and decreased proportionally with HC compounds molecular weight. Both biodegradation and volatilization played important roles in removal in all treatments. The high aeration rate enhanced microbial activity in soil. Enhancement was believed to be due to increased mass transfer of oxygen from the soil gas to the soil solution, where microbial activity occurs. However, high aeration also enhanced volatilization, especially at 22°C where 51% of HCs were lost to volatilization. High aeration rate enhanced biodegradation of compounds > nC15 without promoting their excessive volatilization.  相似文献   

17.
AIMS: To identify native Antarctic bacteria capable of oil degradation at low temperatures. METHODS AND RESULTS: Oil contaminated and pristine soils from Signy Island (South Orkney Islands, Antarctica) were examined for bacteria capable of oil degradation at low temperatures. Of the 300 isolates cultured, Pseudomonas strain ST41 grew on the widest range of hydrocarbons at 4 degrees C. ST41 was used in microcosm studies of low temperature bioremediation of oil-contaminated soils. Microcosm experiments showed that at 4 degrees C the levels of oil degradation increased, relative to the controls, with (i) the addition of ST41 to the existing soil microbial population (bioaugmentation), (ii) the addition of nutrients (biostimulation) and to the greatest extent with (iii) a combination of both treatments (bioaugmentation and biostimulation). Addition of water to oil contaminated soil (hydration) also enhanced oil degradation, although less than the other treatments. Analysis of the dominant species in the microcosms after 12 weeks, using temporal temperature gradient gel electrophoresis, showed Pseudomonas species to be the dominant soil bacteria in both bioaugmented and biostimulated microcosms. CONCLUSIONS: Addition of water and nutrients may enhance oil degradation through the biostimulation of indigenous oil-degrading microbial populations within the soil. However, bioaugmentation with Antarctic bacteria capable of efficient low temperature hydrocarbon degradation may enhance the rate of bioremediation if applied soon after the spill. SIGNIFICANCE AND IMPACT OF THE STUDY: In the future, native soil bacteria could be of use in bioremediation technologies in Antarctica.  相似文献   

18.
Research on feasible methods for the enhancement of bioremediation in soil contaminated by crude oil is vital in oil-exporting countries such as Kuwait, where crude oil is a major pollutant and the environment is hostile to biodegradation. This study investigated the possibility of enhancing crude oil bioremediation by supplementing soil with cost-effective organic materials derived from two widespread locally grown trees, Conocarpus and Tamarix. Amendments in soils increased the counts of soil microbiota by up to 98% and enhanced their activity by up to 95.5%. The increase in the biodegradation of crude oil (75%) and high levels of alkB expression substantiated the efficiency of the proposed amendment technology for the bioremediation of hydrocarbon-contaminated sites. The identification of crude-oil-degrading bacteria revealed the dominance of the genus Microbacterium (39.6%), Sphingopyxis soli (19.3%), and Bordetella petrii (19.6%) in unamended, Conocarpus-amended, and Tamarix-amended contaminated soils, respectively. Although soil amendments favored the growth of Gram-negative bacteria and reduced bacterial diversity, the structures of bacterial communities were not significantly altered.  相似文献   

19.
The use of pyrolyzed carbon, biochar, as a soil amendment is of potential interest for improving phytoremediation of soil that has been contaminated by petroleum hydrocarbons. To examine this question, the research reported here compared the effects of biochar, plants (mesquite tree seedlings), compost and combinations of these treatments on the rate of biodegradation of oil in a contaminated soil and the population size of oil-degrading bacteria. The presence of mesquite plants significantly enhanced oil degradation in all treatments except when biochar was used as the sole amendment without compost. The greatest extent of oil degradation was achieved in soil planted with mesquite and amended with compost (44% of the light hydrocarbon fraction). Most probable number assays showed that biochar generally reduced the population size of the oil-degrading community. The results of this study suggest that biochar addition to petroleum-contaminated soils does not improve the rate of bioremediation. In contrast, the use of plants and compost additions to soil are confirmed as important bioremediation technologies.  相似文献   

20.
Isolation of Saprophytic Basidiomycetes from Soil   总被引:7,自引:3,他引:4       下载免费PDF全文
A method with the combined advantages of soil particle washing, selective inhibitors, and an indicator substrate was developed to isolate saprophytic basidiomycetes from soil. Organic particles were washed from soil and plated on a medium containing lignin, guaiacol, and benomyl, which reduced mold growth and allowed detection of basidiomycetes producing laccase or peroxidase. The 64 soil samples yielded 67 basidiomycete isolates, representing 51 groups on the basis of morphology and physiology. This method should facilitate investigations into the biodiversity of soil basidiomycetes and yield organisms that are useful in bioremediation of soils contaminated with pesticides or other recalcitrant aromatic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号