首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morales-Baquerol  R.  Carrillo  P.  Cruz-Pizarro  L. 《Hydrobiologia》1995,313(1):359-363
We examine the development of Hexarthra bulgarica (Wisniewski) populations in relation to thermal stability in natural environments. A high frequency sampling program was developed simultaneously in two high mountain lakes: a shallow one, with daily large temperature changes but little surface-bottom temperature difference and a deeper one with more stable temperature but vertical heterogeneity in the water profile. Since the capacity of H. bulgarica to perform vertical migrations in these lakes of Sierra Nevada is already known, we have studied the relationship between egg ratios and chlorophyll-a concentration, mean temperatures and temperature instability (measured as the daily rate of temperature change — TCR — as well as the surface-bottom temperature difference — SBT -) in both lakes. Results show that the intensity of temperature fluctuations has a positive effect on the egg-ratios, as TCR is only correlated with that variable in the shallow lake and SBT is only correlated with egg-ratios in the deeper one.  相似文献   

2.
Metabolomes, as chemical phenotypes of organisms, are likely not only shaped by the environment but also by common ancestry. If this is the case, we expect that closely related species of pines will tend to reach similar metabolomic solutions to the same environmental stressors. We examined the metabolomes of two sympatric subspecies of Pinus sylvestris in Sierra Nevada (southern Iberian Peninsula), in summer and winter and exposed to folivory by the pine processionary moth. The overall metabolomes differed between the subspecies but both tended to respond more similarly to folivory. The metabolomes of the subspecies were more dissimilar in summer than in winter, and iberica trees had higher concentrations of metabolites directly related to drought stress. Our results are consistent with the notion that certain plant metabolic responses associated with folivory have been phylogenetically conserved. The larger divergence between subspecies metabolomes in summer is likely due to the warmer and drier conditions that the northern iberica subspecies experience in Sierra Nevada. Our results provide crucial insights into how iberica populations would respond to the predicted conditions of climate change under an increased defoliation in the Mediterranean Basin.  相似文献   

3.
California is home to both the native state-threatened Sierra Nevada red fox (Vulpes vulpes necator), which historically inhabited high elevations of the Sierra Nevada and Cascade mountains, and to multiple low-elevation red fox populations thought to be of exotic origin. During the past few decades the lowland populations have dramatically expanded their distribution, and possibly moved into the historic range of the native high-elevation fox. To determine whether the native red fox persists in its historic range in California, we compared mitochondrial cytochrome-b haplotypes of the only currently-known high-elevation population (n = 9 individuals) to samples from 3 modern lowland populations (n = 35) and historic (1911–1941) high-elevation (n = 22) and lowland (n = 7) populations. We found no significant population differentiation among the modern and historic high-elevation populations (average pairwise F ST = 0.06), but these populations differed substantially from all modern and historic lowland populations (average pairwise F ST = 0.52). Among lowland populations, the historic and modern Sacramento Valley populations were not significantly differentiated from one another (F ST = −0.06), but differed significantly from recently founded populations in the San Francisco Bay region and in southern California (average pairwise F ST = 0.42). Analysis of molecular variance indicated that 3 population groupings (mountain, Sacramento Valley, and other lowland regions) explained 45% of molecular variance (F CT = 0.45) whereas only 4.5% of the variance was partitioned among populations within these groupings (F SC = 0.08). These findings provide strong evidence that the native Sierra Nevada red fox has persisted in northern California. However, all nine samples from this population had the same haplotype, suggesting that several historic haplotypes may have become lost. Unidentified barriers have apparently prevented gene flow from the Sacramento Valley population to other eastern or southern populations in California. Future studies involving nuclear markers are needed to assess the origin of the Sierra Nevada red fox and to quantify levels of nuclear gene flow.  相似文献   

4.
We analyze geographic variation in morphology for Sierra Nevadan populations of Brown-headed Cowbirds (Molothrus ater) in relation to two levels of geographic structure of populations: 1) subspecies and 2) vocal dialects. Two morphologically distinct subspecies occupy opposite slopes of the Sierra Nevada: M. a artemisiae on the east slope is larger than M. a. obscurus on the west slope, and its juveniles have predominantly white versus yellow rictal (bill) flanges. Populations of obscurus moved into California from the lower Colorado River around 1900 and invaded the western Sierra during the 1930's. A relatively constant type of flight whistle occurs in obscurus populations up to 700 km apart, but east-slope artemisiae are divided into many distinct dialects. The means of seven morphological measurements and of principal component 1 (i.e., body size) for 2,287 individuals show similar clinal patterns for adult males, yearling males, and females over a 60-km north–south transect along the eastern Sierra Nevada: large sizes occur at the southernmost study site at Bishop, decrease clinally to the north to Mammoth Lakes, and then increase clinally to the north from Mammoth Lakes to the northernmost site at Lee Vining. This reversal in cline slope is reiterated for variation in the frequency of white-flanged juveniles. Our data do not support adaptive explanations for the clines. Rather, the most parsimonious explanation is that there has been flow of obscurus genes into artemisiae from the west slope across the crest of the Sierra Nevada into the Mammoth Lakes area. Concordantly, the Sierran crest at Mammoth Lakes is considerably lower than any other point within about 80 km to the north or 180 km to the south. Two other findings strongly support this interpretation. First, wing lengths of our longest-winged samples (at Bishop and Lee Vining) are significantly shorter than those of cowbirds collected in the same region between 1912 and 1922. Second, the wing lengths of Mammoth Lakes adult males and females during 1978–1981 are significantly larger than those of the 1982–1985 period. This putative hybridization must have been rapid, as there have been fewer than 50 years since secondary contact could have occurred. Calculation of the gene-flow parameter Ι of Endler (1977) indicates that the gene-flow rate reported here is higher than for nearly all of the species he surveyed. This gene flow occurs between two subspecies with different flight whistles and across several cowbird flight-whistle dialects within artemisiae. Therefore, vocal differences among these dialects do not appear to be a strong deterrent to gene flow.  相似文献   

5.
The mating system and allozyme variation at 20 loci in three Klamath Mountains and two Sierra Nevada populations of Jeffrey pine (Pinus jeffreyi Grev. & Balf.) were investigated. On average, multilocus estimates of the proportion of viable progeny due to outcrossing (tm) were high in all populations (mean tm = 0.935, range 0.881 to 0.971). Despite differences in stand structure, tm did not differ (P > 0.05) between the Klamath (mean tm = 0.933) and Sierra Nevada (mean tm = 0.937) populations. At all but one locus in one population and at two in another, genotype frequencies fit (P > 0.05) Hardy-Weinberg expectations. Mean estimates of observed heterozygosity in Klamath (0.182) and Sierra Nevada (0.327) populations were comparable to values reported for other conifers.  相似文献   

6.
Camargo  W. N.  Bossier  P.  Sorgeloos  P.  Sun  Y. 《Hydrobiologia》2002,468(1-3):245-249
A total of fourteen Artemia samples from Colombia, Venezuela, Curaçao (Netherlands Antilles), Puerto Rico, and reference samples from U.S.A. (San Francisco Bay, SFB) belonging to the superspecies Artemia franciscana, and Argentina (A. persimilis), were analysed with the RAPD technique in order to demonstrate genetic dissimilarities. Pearson's correlation coefficients between the DNA banding patterns were calculated. They served as input values for the construction of UPGMA dendrograms. The results indicate that, within the collection of Colombian, Venezuelan and the two Netherlands Antilles Artemiacyst samples examined, two different groups seem to exist. Geographically, the mountainous area of Sierra Nevada de Santa Marta separates these two groups (lower Caribbean to the South and middle Caribbean to the North). Although the Caribbean, North and South American populations belong to A. franciscana, genetic discontinuities are to be expected due to habitat differences and geographic isolation. The Sierra Nevada (with an altitude of about 5800 m) emerges as the barrier very likely to explain the observed RAPD differences. Little genetic variability was present in the Colombian samples from Manaure that were collected almost every ten years, nor in the samples from Galerazamba collected almost two decades apart, although these samples were more likely subjected to different prevailing environmental conditions. The SFB population did not show a very close relation with all Caribbean populations analyzed, including the Puerto Rican. All A. franciscana populations analyzed were divergent from A. persimilis(Argentina).  相似文献   

7.
The status of Sage-grouse (Centrocercusurophasianus) is of increasing concern, aspopulations throughout its range havecontracted as a result of habitat loss anddegradation. Historically, Sage-grouse wereclassified into two subspecies: eastern(C. u. urophasianus) and westernSage-grouse (C. u. phaios) based onslight differences in coloration noted amongeight individuals sampled from Washington,Oregon, and California. We sequenced a rapidlyevolving portion of the mitochondrial controlregion in 332 birds from 16 populations. Although our sampling area covers the proposedboundary between the eastern and westernsubspecies, no genetic evidence to support thedelineation of these subspecies was found. However, a population straddling southwesternNevada and eastern California was found tocontain an unusually high proportion of uniquehaplotypes, consistent with its geneticisolation from other Sage-grouse populations. Of additional interest was the lack ofdiversity in the two populations sampled fromWashington, one of which contained only asingle haplotype. We suggest that multiplelines of evidence are valuable for theformulation of conservation strategies andhence the southwestern Nevada/easternCalifornia population merits furthermorphological, behavioral, and molecular investigation.  相似文献   

8.
Life table statistics and degree-day requirements for Gonatocerus ashmeadi Girault, a parasitoid of the glassy-winged sharpshooter Homalodisca coagulata (Say), were used to estimate the number of expected parasitoid generations in California (USA). Between two to 51 and one to 37 generations per year were estimated across different climatic regions in California, using life table and degree-day models, respectively. Temperature-based values for net reproductive rate, Ro, were estimated in California using a laboratory-derived equation and ranged from zero to approximately 48 and analyses indicate that a minimum of eight generations are required each year to sustain a population increase of G. ashmeadi. Long-term weather data from 381 weather stations across California were used with an Inverse-Distance Weighting algorithm to map temperature-based estimations for the entire state of California. This Geographic Information Systems model was used to determine number of G. ashmeadi generations based on day-degree accumulation, Tc, and Ro. GIS mapping indicated that Californian counties in the north, central west coast, central west and Sierra Nevada regions may be climatic conditions unfavorable for supporting the permanent establishment of invading populations of G. ashmeadi should H. coagulata successfully establish year-round populations in these areas. Southern counties in California that experience warmer year round temperatures and support year round populations of H. coagulata, appear to be conducive to the establishment of permanent populations of G. ashmeadi. The mechanisms facilitating G. ashmeadi invasion and the implications of these temperature-based estimates for biological control of H. coagulata are discussed.  相似文献   

9.
We developed 22 new microsatellite loci for the fisher (Martes pennanti), a North American mesocarnivore. The loci were developed with samples from the southern Sierra Nevada Mountains in California, and were screened with samples from this population and four other populations. We observed a range of six to 21 polymorphic loci per population, with the Sierra Nevada population exhibiting markedly lower levels of variation compared to the other four.  相似文献   

10.
Genetic tools that identify species from trace DNA samples could supplement traditional survey methods to clarify distributional limits of rare species. For species with legal habitat protection, elevational limits of distributions are used to determine where management actions may affect endangered species. The endangered Sierra Nevada yellow-legged frog (Rana sierrae) generally is found down to 1,370 m, but in the Plumas National Forest, California, USA, there are a number of historical records below this elevation, resulting in protections extending to 1,067 m. This species is phenotypically similar to the foothill yellow-legged frog (R. boylii), with which it occasionally hybridizes. We used a combination of genetic methods to investigate the fine-scale distribution of the Sierra Nevada yellow-legged frog in the Plumas National Forest. We collected and analyzed environmental DNA (eDNA) samples from all accessible lower elevation sites with records of Sierra Nevada yellow-legged frog (n = 17) and swabbed 220 individuals for genetic identification from 2016–2018 to clarify the distribution of this endangered species. We created a climatic suitability model using the validated Sierra Nevada yellow-legged frog records and current (1970–2000) climate models to assess additional highly suitable localities for Sierra Nevada yellow-legged frog presence using eDNA capture. We did not confirm detection of Sierra Nevada yellow-legged frog eDNA at any historical sites and identified all swabbed individuals from below 1,370 m (n = 144) as foothill yellow-legged frogs. We located a new Sierra Nevada yellow-legged frog site (at 1,919 m) during surveys guided by the climatic suitability model. It does not appear after extensive eDNA and genetic sampling that the Sierra Nevada yellow-legged frog occurs below 1,370 m in this portion of their range at present. Our results show that eDNA sampling can be used as an effective management tool to evaluate historical locations and previously unknown suitable localities for current presence of a species of interest. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   

11.
Aim Mammalian carnivores are considered particularly sensitive indicators of environmental change. Information on the distribution of carnivores from the early 1900s provides a unique opportunity to evaluate changes in their distributions over a 75‐year period during which the influence of human uses of forest resources in California greatly increased. We present information on the distributions of forest carnivores in the context of two of the most significant changes in the Sierra Nevada during this period: the expansion of human settlement and the reduction in mature forests by timber harvest. Methods We compare the historical and contemporary distributions of 10 taxa of mesocarnivores in the conifer forests of the Sierra Nevada and southern Cascade Range by contrasting the distribution of museum and fur harvest records from the early 1900s with the distribution of detections from baited track‐plate and camera surveys conducted from 1996 to 2002. A total of 344 sample units (6 track plates and 1 camera each) were distributed systematically across c. 3,000,000 ha area over a 7‐year period. Results Two species, the wolverine (Gulo gulo) and the red fox (Vulpes vulpes), present in the historical record for our survey area, were not detected during the contemporary surveys. The distributions of 3 species (fisher [Martespennanti], American marten [M. americana], and Virginia opossum [Didelphisvirginiana]) have substantially changed since the early 1900s. The distributions of fishers and martens, mature‐forest specialists, appeared to have decreased in the northern Sierra Nevada and southern Cascade region. A reputed gap in the current distribution of fishers was confirmed. We report for the first time evidence that the distribution of martens has become fragmented in the southern Cascades and northern Sierra Nevada. The opossum, an introduced marsupial, expanded its distribution in the Sierra Nevada significantly since it was introduced to the south‐central coast region of California in the 1930s. There did not appear to be any changes in the distributions of the species that were considered habitat generalists: gray fox (Urocyon cinereoargenteus), striped skunk (Mephitis mephitis), western spotted skunk (Spilogale gracilis), or black bear (Ursus americanus). Detections of raccoons (Procyon lotor) and badgers (Taxidea taxus) were too rare to evaluate. Contemporary surveys indicated that weasels (M. frenata and M. erminea) were distributed throughout the study area, but historical data were not available for comparison. Main conclusions Two species, the wolverine and Sierra Nevada red fox, were not detected in contemporary surveys and may be extirpated or in extremely low densities in the regions sampled. The distributions of the mature forest specialists (marten and fisher) appear to have changed more than the distributions of the forest generalists. This is most likely due to a combination of loss of mature forest habitat, residential development and the latent effects of commercial trapping. Biological characteristics of individual species, in combination with the effect of human activities, appear to have combined to affect the current distributions of carnivores in the Sierra Nevada. Periodic resampling of the distributions of carnivores in California, via remote detection methods, is an efficient means for monitoring the status of their populations.  相似文献   

12.
Summary Plastid and mitochondrial DNAs from Hedysarum species of the western Mediterranean basin, H. spinosissimum ssp eu-spinosissimum, H. spinosissimum ssp capitatum, H. carnosum, H. coronarium and H. flexuosum, were compared by restriction endonuclease fragment analysis. ctDNA fragment patterns for ssp eu-spinosissimum and ssp capitatum were indistinguishable in different enzyme digests. An identical ctDNA variation was found in Hpa II digests with two Sardinian populations of ssp capitatum. Each of the two subspecies was characterized by specific mt DNA patterns with Pst I, Bam HI, Sma I and EcoRI. No variation was detected in populations of different geographical origins for a given subspecies. H. carnosum, H. coronarium and H. flexuosum generated specific ct and mt DNA patterns. Comparison of mitochondrial fragments indicated: — a strong homology between the two subspecies, — a closer homology among the three other diploids, each being closer to the other two than to H. spinosissimum subspecies — as was also the case for the plastid genomes.  相似文献   

13.
Peripatric speciation and the importance of founder effects have long been controversial, and multilocus sequence data and coalescent methods now allow hypotheses of peripatric speciation to be tested in a rigorous manner. Using a multilocus phylogeographical data set for two species of salamanders (genus Hydromantes) from the Sierra Nevada of California, hypotheses of recent divergence by peripatric speciation and older, allopatric divergence were tested. Phylogeographical analysis revealed two divergent lineages within Hydromantes platycephalus, which were estimated to have diverged in the Pliocene. By contrast, a low‐elevation species, Hydromantes brunus, diverged from within the northern lineage of H. platycephalus much more recently (mid‐Pleistocene), during a time of major climatic change in the Sierra Nevada. Multilocus species tree estimation and coalescent estimates of divergence time, migration rate, and growth rate reject a scenario of ancient speciation of H. brunus with subsequent gene flow and introgression from H. platycephalus, instead supporting a more recent divergence with population expansion. Although the small, peripheral distribution of H. brunus suggests the possibility of peripatric speciation, the estimated founding population size of the species was too large to have allowed founder effects to be important in its divergence. These results provide evidence for both recent speciation, most likely tied to the climatic changes of the Pleistocene, and older lineage divergence, possibly due to geological events, and add to evidence that Pleistocene glacial cycles were an important driver of diversification in the Sierra Nevada.  相似文献   

14.
We describe a new subspecies of Pale-bellied Tapaculo Scytalopus griseicollis from the northern Eastern Cordillera of Colombia and Venezuela. This form differs diagnosably in plumage from described subspecies Scytalopus griseicollis griseicollis and Scytalopus griseicollis gilesi and from the latter in tail length. It is also differentiated non-diagnosably in voice from both these populations. Ecological niche modelling analysis suggests that the new subspecies is restricted to the Andean montane forest and páramo north of both the arid Chicamocha valley and the Sierra Nevada del Cocuy.  相似文献   

15.
Mitochondrial DNA control region sequences of spotted owls (Strix occidentalis) allowed us to investigate gene flow, genetic structure, and biogeographic relationships among these forest-dwelling birds of western North America Estimates of gene flow based on genetic partitioning and the phylogeography of haplotypes indicate substantial dispersal within three long-recognized subspecies. However, patterns of individual phyletic relationships indicate a historical absence of gene flow among the subspecies, which are essentially monophyletic. The pattern of haplotype coalescence enabled us to identify the approximate timing and direction of a recent episode of gene flow from the Sierra Nevada to the northern coastal ranges. The three subspecies comprise phylogenetic species, and the northern spotted owl (S. o. caurina) is sister to a clade of California (S. o. occidentalis) plus Mexican spotted owls (S o lucida); this represents a novel biogeographic pattern within birds. The California spotted owl had substantially lower nucleotide diversity than the other two subspecies; this result is inconsistent with present patterns of population density A causal explanation requires postulating a severe bottleneck or a selective sweep, either of which was confined to only one geographic region.  相似文献   

16.
Strict sterility barriers where found between theScutellaria populations on Sicily and the Greek populations. The material from Samos is separated by a strict sterility barrier from the other Greek populations. In contrast, the populations on mainland Greece and adjacent islands are all ± interfertile. Three species are recognized,S. rubicunda Hornem., endemic to Sicily, andS. brevibracteata subsp.icarica, endemic to Samos and Ikaria. All other populations are referred toS. rupestris with eight subspecies, most of which are endemic to one island or to one mountain. Three new subspecies are described, viz. subsp.rechingeri and subsp.olympica, endemic to mt Vourinos and mt Olympus in North Greece, respectively, and subsp.caroli-henrici, native to the Malea peninsula of Peloponnisos. The phytogeographical connections and genetic differentiation within and between populations are discussed.Dedicated to Prof. DrK. H. Rechinger on the occasion of his 80th birthday.  相似文献   

17.
The littoral zone of lakes in the high mountains of Sierra Nevada, Spain, were sampled during the ice-free periods of 1980 and 1981. A species list is given and a new subspecies, Lepadella quinquecostata nevadensis, subsp. nov. is described. Notes on the geographical distribution of some species are also included.  相似文献   

18.
19.
Population persistence depends in many cases on gene flow between local populations. Parnassius apollo nevadensis is an endemic subspecies of Apollo butterfly in the Sierra Nevada (southern Spain), whose populations are distributed in discrete patches at altitudes between 1850 and 2700 m. In this paper, we use 13 microsatellite loci to examine the genetic structure of this P. apollo subspecies. We revealed both a strong pattern of isolation by distance (which was stronger when calculated with realistic travel distances that accounted for topography) and source–sink dynamics. The observed population genetic structure is consistent with strongly asymmetrical gene flow, leading to constant directional migration and differential connectivity among the populations. The apparently contradictory results from the clustering algorithms (Structure and Geneland) are also consistent with a recent (<100 ya) reduction in the distribution range. The results point to global warming as a possible cause of this reduction, as in other populations of this species. We identify some natural and anthropogenic barriers to gene flow that may be the cause of the recent population structure and source–sink dynamics.  相似文献   

20.
Natural and anthropogenic boundaries have been shown to affect population dynamics and population structure for many species with movement patterns at the landscape level. Understanding population boundaries and movement rates in the field for species that are cryptic and occur at low densities is often extremely difficult and logistically prohibitive; however genetic techniques may offer insights that have previously been unattainable. We analysed thirteen microsatellite loci for 739 mountain lions (Puma concolor) using muscle tissue samples from individuals in the Great Basin throughout Nevada and the Sierra Nevada mountain range to test the hypothesis that heterogeneous hunting pressure results in source‐sink dynamics at the landscape scale. We used a combination of non‐spatial and spatial model‐based Bayesian clustering methods to identify genetic populations. We then used a recently developed Bayesian multilocus genotyping method to estimate asymmetrical rates of contemporary movement between those subpopulations and to identify source and sink populations. We identified two populations at the highest level of genetic structuring with a total of five subpopulations in the Great Basin of Nevada and the Sierra Nevada range. Our results suggest that source‐sink dynamics occur at landscape scales for wide‐ranging species, such as mountain lions, and that source populations may be those that are under relatively less hunting pressure and that occupy refugia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号