首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Ras superfamily of guanosine-triphosphate (GTP)-binding proteins regulates a diverse spectrum of intracellular processes involved in inflammation and fibrosis. Farnesythiosalicylic acid (FTS) is a unique and potent Ras inhibitor which decreased inflammation and fibrosis in experimentally induced liver cirrhosis and ameliorated inflammatory processes in systemic lupus erythematosus, neuritis and nephritis animal models. FTS effect on Ras expression and activity, muscle strength and fibrosis was evaluated in the dy(2J)/dy(2J) mouse model of merosin deficient congenital muscular dystrophy. The dy(2J)/dy(2J) mice had significantly increased RAS expression and activity compared with the wild type mice. FTS treatment significantly decreased RAS expression and activity. In addition, phosphorylation of ERK, a Ras downstream protein, was significantly decreased following FTS treatment in the dy(2J)/dy(2J) mice. Clinically, FTS treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter. Significant reduction of fibrosis was demonstrated in the treated group by quantitative Sirius Red staining and lower muscle collagen content. FTS effect was associated with significantly inhibition of both MMP-2 and MMP-9 activities. We conclude that active RAS inhibition by FTS was associated with attenuated fibrosis and improved muscle strength in the dy(2J)/dy(2J) mouse model of congenital muscular dystrophy.  相似文献   

2.
Muscular dystrophy is characterized by skeletal muscle weakness and wasting, but little is known about possible alterations to the vasculature. Many muscular dystrophies are caused by a defective dystrophin-glycoprotein complex (DGC), which plays an important role in mechanotransduction and maintenance of structural integrity in muscle cells. The DGC is a group of membrane-associated proteins, including dystrophin and sarcoglycan-delta, that helps connect the cytoskeleton of muscle cells to the extracellular matrix. In this paper, mice lacking genes encoding dystrophin (mdx) or sarcoglycan-delta (sgcd-/-) were studied to detect possible alterations to vascular wall mechanics. Pressure-diameter and axial force-length tests were performed on common carotid arteries from mdx, sgcd-/-, and wild-type mice in active (basal) and passive smooth muscle states, and functional responses to three vasoactive compounds were determined at constant pressure and length. Apparent biomechanical differences included the following: mdx and sgcd-/- arteries had decreased distensibilities in pressure-diameter tests, with mdx arteries exhibiting elevated circumferential stresses, and mdx and sgcd-/- arteries generated elevated axial loads and stresses in axial force-length tests. Interestingly, however, mdx and sgcd-/- arteries also had significantly lower in vivo axial stretches than did the wild type. Accounting for this possible adaptation largely eliminated the apparent differences in circumferential and axial stiffness, thus suggesting that loss of DGC proteins may induce adaptive biomechanical changes that can maintain overall wall mechanics in response to normal loads. Nevertheless, there remains a need to understand better possible vascular adaptations in response to sustained altered loads in patients with muscular dystrophy.  相似文献   

3.
The postnatal development of extrafusal fibers in the slow-twitch soleus muscle of genetically dystrophic C57BL/6J dy2J/dy2J mice and their normal age-matched controls was investigated by histochemical and quantitative methods at selected ages of 4, 8, 12, and 32 weeks. The majority of fibers in the soleus consisted of two kinds, fast-twitch oxidative-glycolytic (FOG) and slow-twitch oxidative (SO), according to reactions for alkaline-stable and acid-stable myosin ATPase and the oxidative enzyme, NADH-tetrazolium reductase. A minor population of fibers, stable for both alkaline- and acid-preincubated ATPase, but variable in staining intensity for NADH-TR, were designated "atypical" fibers. With age, the normal soleus exhibited a gradual increase in the number and proportion of SO fibers and a reciprocal, steady decline in the percentage of FOG fibers. Atypical fibers were numerous at 4 weeks, but were substantially diminished at later ages. Since total extrafusal fiber number remained relatively constant between the periods examined, this change in relative proportions reflects an adaptive transformation of fiber types characteristic of normal postnatal growth. A striking alteration in the number and distribution of fiber types was associated with the dystrophic soleus. At 4 weeks an 18% reduction in total fiber number was already noted. Subsequently, by 32 weeks a further 22% diminution in overall fiber number had occurred. With age, the absolute number and proportion of dystrophic SO fibers were drastically reduced. In contrast, the percentage of dystrophic FOG fibers increased significantly while their absolute numbers between 4 and 32 weeks remained relatively constant. Atypical fibers in the dystrophic solei were found in elevated numbers at all age groups, particularly at 12 weeks. They may, in part, represent attempts at regeneration or an intermediate stage in fiber-type transformation. Microscopically, both of the major fiber types appeared affected, albeit differently, by the dystrophic process. We suggest that a failure or retardation in the normal postnatal conversion of fiber types within the soleus muscle occurs in this murine model for muscular dystrophy.  相似文献   

4.
Testicular function was studied in vivo and in vitro in adult male dy/dy and dy2J/dy2J dystrophic mice. The results demonstrate that testicular function in dy/dy mice is more affected. The basal levels of pituitary hormones measured were normal in dystrophic mice, except for the presence of hyperprolactinemia in dy/dy mice. In dy/dy mice testicular weight was diminished and a deficient transduction of the gonadotropic signal is present in vivo, accompanied by reduced efficiency of 17-hydroxylase and 17-hydroxysteroid dehydrogenase. In dy2J/dy2J mice the signal transduction is normal and the reduction in enzyme efficiency is limited to 17-hydroxysteroid dehydrogenase. The in vitro HCG-induced increases in production of testosterone (T) and estradiol (E2) were reduced in dy/dy/mice, and the data indicate a reduction of enzyme activity rather than in efficiency. In dy21/dy21/mice, HCG-induced T synthesis was increased, HCG-induced E2 synthesis was normal, but basal media E2 levels were reduced, with the in vitro efficiency of aromatase being suppressed under both basal and HCG-stimulated conditions, when compared to their normal littermates.  相似文献   

5.
1. The uptake of monosaccharides and polyols in the obligatory aerobic yeast Rhodotorula gracilis (glutinis) was accompanied by proton uptake. 2. The half-saturation constant of transport, KT, depended on pH, changing from about 2mM at pH 4.5 to 80mM at pH8.5 for D-xylose; this change of the effective carrier affinity was reversible. 3. The apparent dissociation constant of the monosaccharide carrier was estimated at pKa 6.75. 4. At pH8.5, when the pH gradient across the cell membrane vanished, no sugar accumulation was demonstrable. 5. The half-saturation constants of sugar uptake and H+ co-transport were very similar to each other, the latter obviously being controlled by the former. 6. The H+/sugar stoicheiometry remained constant under various physiological conditions; it amounted to one H+ ion per sugar molecule taken up. 7. The data are interpreted as a strong piece of evidence in favour of the active monosaccharide transport in R. gracilis (glutinis) being an H+-symport energized by the electrochemical gradient of H+ across the plasma membrane of the yeast.  相似文献   

6.
7.
8.
Population data on benign and severe forms of X-linked muscular dystrophy   总被引:3,自引:0,他引:3  
Summary Epidemiological data on Becker muscular dystrophy (BMD) and Duchenne muscular dystrophy (DMD) from a large sample of the Italian population are reported. For BMD the incidence rate was found to be 5.5x10-5 liveborn males (lbm) and the prevalence rate, 13.1x10-6; the mutation rate was estimated to be about 6.0x10-6. For DMD the incidence and prevalence rates were found to be respectively 26x10-5 lbm and 31.6x10-6. The DMD mutation rate obtained by the Haldane formula was 86.6x10-6 and by the semi-direct method, 65.6x10-6. The results are discussed in the light of possible allelism of BMD and DMD.  相似文献   

9.
The Ras superfamily of guanosine-triphosphate (GTP)-binding proteins regulates a diverse spectrum of intracellular processes involved in inflammation and fibrosis. Farnesythiosalicylic acid (FTS) is a unique and potent Ras inhibitor which decreased inflammation and fibrosis in experimentally induced liver cirrhosis and ameliorated inflammatory processes in systemic lupus erythematosus, neuritis and nephritis animal models. FTS effect on Ras expression and activity, muscle strength and fibrosis was evaluated in the dy2J/dy2J mouse model of merosin deficient congenital muscular dystrophy. The dy2J/dy2J mice had significantly increased RAS expression and activity compared with the wild type mice. FTS treatment significantly decreased RAS expression and activity. In addition, phosphorylation of ERK, a Ras downstream protein, was significantly decreased following FTS treatment in the dy2J/dy2J mice. Clinically, FTS treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter. Significant reduction of fibrosis was demonstrated in the treated group by quantitative Sirius Red staining and lower muscle collagen content. FTS effect was associated with significantly inhibition of both MMP-2 and MMP-9 activities. We conclude that active RAS inhibition by FTS was associated with attenuated fibrosis and improved muscle strength in the dy2J/dy2J mouse model of congenital muscular dystrophy.  相似文献   

10.
11.
Golden retriever muscular dystrophy (GRMD) is a spontaneous, X-linked, progressively fatal disease of dogs and is also a homologue of Duchenne muscular dystrophy (DMD). Two-thirds of DMD patients carry detectable deletions in their dystrophin gene. The defect underlying the remaining one-third of DMD patients is undetermined. Analysis of the canine dystrophin gene in normal and GRMD dogs has failed to demonstrate any detectable loss of exons. Here, we have demonstrated a RNA processing error in GRMD that results from a single base change in the 3' consensus splice site of intron 6. The seventh exon is then skipped, which predicts a termination of the dystrophin reading frame within its N-terminal domain in exon 8. This is the first example of dystrophin deficiency caused by a splice-site mutation.  相似文献   

12.
Nachman MW  Crowell SL 《Genetics》2000,155(4):1855-1864
The Duchenne muscular dystrophy (Dmd) locus lies in a region of the X chromosome that experiences a high rate of recombination and is thus expected to be relatively unaffected by the effects of selection on nearby genes. To provide a picture of nucleotide variability at a high-recombination locus in humans, we sequenced 5. 4 kb from two introns of Dmd in a worldwide sample of 41 alleles from Africa, Asia, Europe, and the Americas. These same regions were also sequenced in one common chimpanzee and one orangutan. Dramatically different patterns of genetic variation were observed at these two introns, which are separated by >500 kb of DNA. Nucleotide diversity at intron 44 pi = 0.141% was more than four times higher than nucleotide diversity at intron 7 pi = 0.034% despite similar levels of divergence for these two regions. Intron 7 exhibited significant linkage disequilibrium extending over 10 kb and also showed a significant excess of rare polymorphisms. In contrast, intron 44 exhibited little linkage disequilibrium and no skew in the frequency distribution of segregating sites. Intron 7 was much more variable in Africa than in other continents, while intron 44 displayed similar levels of variability in different geographic regions. Comparison of intraspecific polymorphism to interspecific divergence using the HKA test revealed a significant reduction in variability at intron 7 relative to intron 44, and this effect was most pronounced in the non-African samples. These results are best explained by positive directional selection acting at or near intron 7 and demonstrate that even genes in regions of high recombination may be influenced by selection at linked sites.  相似文献   

13.
The dilute (d) coat color locus of mouse chromosome 9 has been identified by more than 200 spontaneous and mutagen-induced recessive mutations. With the advent of molecular probes for this locus, the molecular lesion associated with different dilute alleles can be recognized and precisely defined. In this study, two dilute mutations, dilute-lethal20J (dl20J) and dilute prenatal lethal Aa2, have been examined. Using a dilute locus genomic probe in Southern blot analysis, we detected unique restriction fragments in dl20J and Aa2 DNA. Subsequent analysis of these fragments showed that they represented deletion breakpoint fusion fragments. DNA sequence analysis of each mutation-associated deletion breakpoint fusion fragment suggests that both genomic deletions were generated by nonhomologous recombination events. The spontaneous dl20J mutation is caused by an interstitial deletion that removes a single coding exon of the dilute gene. The correlation between this discrete deletion and the expression of all dilute-associated phenotypes in dl20J homozygotes defines the dl20J mutation as a functional null allele of the dilute gene. The radiation-induced Aa2 allele is a multilocus deletion that, by complementation analysis, affects both the dilute locus and the proximal prenatal lethal-3 (pl-3) functional unit. Molecular analysis of the Aa2 deletion breakpoint fusion fragment has provided access to a previously undefined gene proximal to d. Initial characterization of this new gene suggests that it may represent the genetically defined pl-3 functional unit.  相似文献   

14.
15.
Inherited muscular dystrophy of the chicken is thought to arise from abnormal development of trophic regulation of skeletal muscles by their innervating nerves. To determine whether expression of muscular dystrophy in the chicken is a property of the nerves or of the muscles, wing limb buds were transplanted between normal and dystrophic chick embryos at 312 days of incubation (stage 19–20). Muscles of donor limbs innervated by nerves of the hosts were compared to contralateral unoperated host limb muscles in chicks from 6 to 25 weeks after hatching. Expression of normal or dystrophic phenotype was determined by examination of five different properties which are altered in dystrophic chick muscle: electromyographic evidence of myotonia; fiber diameter; acetylcholinesterase activity, localization, and isozymes; lactic dehydrogenase activity; and succinic dehydrogenase activity. Genetically normal muscle innervated by nerves of normal or dystrophic hosts was phenotypically normal while genetically dystrophic muscle innervated by normal nerves was phenotypically dystrophic. The results suggest that inherited muscular dystrophy of the chicken arises from a defect of muscle rather than from a lesion in the nerves themselves.  相似文献   

16.
Carnosinase (aminoacyl-L-histidine hydrolase, EC 3.4.13.3) hydrolyzes the dipeptide carnosine (beta-alanyl-L-histidine), which is thought to play a role in cerebral and skeletal muscular function and has been implicated as a neuroaffector in the olfactory bulb. Carnosinase activity is present in many tissues of the mouse including heart, liver and lung, but it is most active in kidney, uterus and nasal olfactory mucosa. Kinetic measurements with 1H-NMR spectroscopy indicate that the enzyme is stereospecific and can hydrolyze L-but not D-carnosine. Anserine is a poorer substrate, while homocarnosine is essentially a non-substrate. However, these two dipeptides are effective inhibitors of the hydrolysis of L-carnosine. Carnosinase activity is unaffected when assayed in 2H2O at 99% isotopic purity. From considerations of the effect of Mn2+ on (1) substrate concentration velocity curves; (2) thermostability, and (3) inhibitor behavior, tissues with carnosinase can be divided into two groups. Kidney, uterus and olfactory mucosa represent one group, while central nervous system, muscle, spleen, etc. represent the second. The validity of this classification is confirmed by immunological evidence. Antiserum prepared against carnosinase purified from kidney cross-reacts with and inhibits the activity of olfactory mucosa, kidney and uterus but not that from central nervous system, heart or liver.  相似文献   

17.
Fukuyama-type congenital muscular dystrophy (FCMD) is a severe autosomal-recessive muscular dystrophy accompanied by brain malformation. Previously, we identified the gene responsible for FCMD through positional cloning. Here we report the isolation of its murine ortholog, Fcmd. The predicted amino acid sequence of murine fukutin protein encoded by Fcmd is 90% identical to that of its human counterpart. Radiation hybrid mapping localized the gene to 2.02 cR telomeric to D4Mit272 on chromosome 4. Northern blot analysis revealed ubiquitous expression of Fcmd in adult mouse tissues. Through in situ hybridization, we observed a wide distribution of Fcmd expression throughout embryonic development, most predominantly in the central and peripheral nervous systems. We also detected high Fcmd expression in the ventricular zone of proliferating neurons at 13.5 days post-coitum. Brain malformation in FCMD patients is thought to result from defective neuronal migration. Our data suggest that neuronally expressed Fcmd is likely to be important in the development of normal brain structure.  相似文献   

18.
There were marked differences between the levels of collagen (measured as hydroxyproline) and mucopolysaccharides (measured as hexosamine) found in embryonic chicks with genetic muscular dystrophy and their normal controls. The chief differences were that the dystrophic tissues (gastrocnemius muscle and tendon, pectoralis major and skin) had: (a) greater amounts of hexosamine early in embryonic development; (b) hydroxyproline levels that rose at a faster rate, yielding different slopes than their normal controls; (c) relatively greater amounts of hydroxyproline than hexosamine later in embryonic life (day 20). Connective tissue systems in muscles were preferentially affected. The connective tissue system associated with dystrophic tissues appeared to lag behind the normal rhythm pattern of embryological development. The changes in connective tissue metabolism observed in dystrophic chicks suggested that the collagen from dystrophic embryonic chicks may be of a different structure or composition than that found in the normals.  相似文献   

19.
Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, limiting muscle regeneration and resulting in fibrotic and fatty tissue replacement of muscle, which exacerbates the wasting process in dystrophic muscles. Limiting immune response is thus one of the therapeutic options to improve healing, as well as to improve the efficacy of gene- or cell-mediated strategies to restore dystrophin expression. Protein kinase C θ (PKCθ) is a member of the PKCs family highly expressed in both immune cells and skeletal muscle; given its crucial role in adaptive, but also innate, immunity, it is being proposed as a valuable pharmacological target for immune disorders. In our study we asked whether targeting PKCθ could represent a valuable approach to efficiently prevent inflammatory response and disease progression in a mouse model of muscular dystrophy. We generated the bi-genetic mouse model mdx/θ(-/-), where PKCθ expression is lacking in mdx mice, the mouse model of Duchenne muscular dystrophy. We found that muscle wasting in mdx/θ(-/-) mice was greatly prevented, while muscle regeneration, maintenance and performance was significantly improved, as compared to mdx mice. This phenotype was associated to reduction in inflammatory infiltrate, pro-inflammatory gene expression and pro-fibrotic markers activity, as compared to mdx mice. Moreover, BM transplantation experiments demonstrated that the phenotype observed was primarily dependent on lack of PKCθ expression in hematopoietic cells.These results demonstrate a hitherto unrecognized role of immune-cell intrinsic PKCθ activity in the development of DMD. Although the immune cell population(s) involved remain unidentified, our findings reveal that PKCθ can be proposed as a new pharmacological target to counteract the disease, as well as to improve the efficacy of gene- or cell- therapy approaches.  相似文献   

20.
Muscular dystrophy (MD) refers to a clinically and genetically heterogeneous group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. Although the primary defect underlying most forms of MD typically results from a loss of sarcolemmal integrity, the secondary molecular mechanisms leading to muscle degeneration and myofiber necrosis is debated. One hypothesis suggests that elevated or dysregulated cytosolic calcium is the common transducing event, resulting in myofiber necrosis in MD. Previous measurements of resting calcium levels in myofibers from dystrophic animal models or humans produced equivocal results. However, recent studies in genetically altered mouse models have largely solidified the calcium hypothesis of MD, such that models with artificially elevated calcium in skeletal muscle manifest fulminant dystrophic-like disease, whereas models with enhanced calcium clearance or inhibited calcium influx are resistant to myofiber death and MD. Here, we will review the field and the recent cadre of data from genetically altered mouse models, which we propose have collectively mostly proven the hypothesis that calcium is the primary effector of myofiber necrosis in MD. This new consensus on calcium should guide future selection of drugs to be evaluated in clinical trials as well as gene therapy-based approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号