首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of urokinase-type plasminogen activator (uPA) and its receptor (uPAR/CD87) in cell migration and invasion is well substantiated. Recently, uPA has been shown to be essential in cell migration, since uPA-/- mice are greatly impaired in inflammatory cell recruitment. We have shown previously that the uPA-induced chemotaxis requires interaction with and modification of uPAR/CD87, which is the true chemoattracting molecule acting through an unidentified cell surface component which mediates this cell surface chemokine activity. By expressing and testing several uPAR/CD87 variants, we have located and functionally characterized a potent uPAR/CD87 epitope that mimics the effects of the uPA-uPAR interaction. The chemotactic activity lies in the region linking domains 1 and 2, the only protease-sensitive region of uPAR/CD87, efficiently cleaved by uPA at physiological concentrations. Synthetic peptides carrying this epitope promote chemotaxis and activate p56/p59(hck) tyrosine kinase. Both chemotaxis and kinase activation are pertussis toxin sensitive, involving a Gi/o protein in the pathway.  相似文献   

2.
The plasminogen (Plg) activation cascade on the cell surface plays a central role in cell migration and is involved in a plethora of physiological and pathological processes. Its regulation is coordinated by many receptors, in particular the urokinase-type plasminogen activator receptor (uPAR, CD87), receptors that physically interact and functionally cooperate with uPAR, and Plg binding molecules. Here we studied the impact of one of the Plg binding molecules, the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P-IGF2R, CD222), on cellular Plg activation. By developing both in vitro and in vivo Plg activation assays on size-fractionated lysates of M6P-IGF2R-silenced cells, we identified Plg-associated complexes with M6P-IGF2R as the regulatory factor. Using lipid raft preserving versus dissolving detergents, we found lipid dependence of the Plg regulatory function of these complexes. Furthermore, M6P-IGF2R-silencing in uPAR-positive human cell lines reduced internalization of Plg, resulting in elevated Plg activation. In contrast, the expression of human M6P-IGF2R in mouse embryonic fibroblasts derived from M6P-IGF2R knock-out mice enhanced Plg internalization. Finally, peptide 18-36 derived from the Plg-binding site within M6P-IGF2R enhanced Plg uptake. Thus, by targeting Plg to endocytic pathways, M6P-IGF2R appears to control Plg activation within cells that might be important to restrict plasmin activity to specific sites and substrates.  相似文献   

3.
The specific cellular receptor for urokinase-type plasminogen activator (uPA) is found on a variety of cell types and has been postulated to play a central role in the mediation of pericellular proteolytic activity. We have studied the kinetics of plasminogen (Plg) activation catalyzed by uPA specifically bound to its receptor on the human monocytoid cell-line U937 and demonstrate this process to have properties differing widely from those observed for uPA in solution. The solution-phase reaction was characterized by a Km of 25 microM and for the cell-associated reaction this fell 40-fold to 0.67 microM, below the physiological Plg concentration of 2 microM. A concomitant 6-fold reduction in kcat resulted in an increase in the overall catalytic efficiency, kcat/Km, of 5.7-fold. This high affinity Plg activation was abolished in the presence of a Plg-binding antagonist. In contrast to intact cells, purified uPA receptor (isolated from phorbol 12-myristate 13-acetate-stimulated U937 cells) was observed to partially inhibit uPA-catalyzed Plg activation, although activity against low molecular weight substrates was retained. Therefore, the cellular binding of Plg appears to be of critical importance for the efficient activation of Plg by receptor-bound uPA. Plasmin generated in the cell-surface Plg activation system described here was also observed to be protected from its principal physiological inhibitor alpha-2-antiplasmin. Together, these data demonstrate that the cell surface constitutes the preferential site for Plg activation when uPA is bound to its specific cellular receptor, which therefore has the necessary characteristics to play an efficient role in the generation of pericellular proteolytic activity.  相似文献   

4.
The serine protease urokinase-type plasminogen activator (uPA), its inhibitor PAI-1, and its cellular receptor uPA-R (CD87) are of crucial importance during cellular invasion and migration, required for a variety of physio- and pathophysiological processes. It has become increasingly evident in recent years that the uPA/uPA-R-system has far more functional properties than plasminogen activation alone. This is reflected by its involvement in cellular events such as proliferation, adhesion, migration, and chemotaxis. Since uPA-R lacks a transmembrane domain and thus on its own is not capable of transmitting signals into cells, association and functional cooperation with other signaling molecules/receptors is needed. In this respect, one group of adhesion and signaling receptors, the integrins, have been identified which constitute, together with the uPA/uPA-R-system, an interdependent biological network by which the uPA/uPA-R-system broadly affects integrin functions and vice versa. Moreover, there is a growing body of evidence that cellular uPA, uPA-R, and PAI-1 expression is under control of specific ECM/integrin interactions and also that integrins are regulated by components of the uPA/uPA-R-system. By this multifaceted crosstalk, cells may modulate their proteolytic, adhesive, and migratory activities and monitor ECM integrity in their microenvironment.  相似文献   

5.
Urokinase-type plasminogen activator (uPA) induces cell adhesion and chemotactic movement. uPA signaling requires its binding to uPA receptor (uPAR/CD87), but how glycosylphosphatidylinositol-anchored uPAR mediates signaling is unclear. uPAR is a ligand for several integrins (e.g. alpha 5 beta 1) and supports cell-cell interaction by binding to integrins on apposing cells (in trans). We studied whether binding of uPAR to alpha 5 beta 1 in cis is involved in adhesion and migration of Chinese hamster ovary cells in response to immobilized uPA. This process was temperature-sensitive and required mitogen-activated protein kinase activation. Anti-uPAR antibody or depletion of uPAR blocked, whereas overexpression of uPAR enhanced, cell adhesion to uPA. Adhesion to uPA was also blocked by deletion of the growth factor domain (GFD) of uPA and by anti-GFD antibody, whereas neither the isolated uPA kringle nor serine protease domain supported adhesion directly. Interestingly, anti-alpha 5 antibody, RGD peptide, and function-blocking mutations in alpha 5 beta 1 blocked adhesion to uPA. uPA-induced cell migration also required GFD, uPAR, and alpha 5 beta 1, but alpha 5 beta 1 alone did not support uPA-induced adhesion and migration. Thus, binding of uPA causes uPAR to act as a ligand for alpha 5 beta 1 to induce cell adhesion, intracellular signaling, and cell migration. We demonstrated that uPA induced RGD-dependent binding of uPAR to alpha 5 beta 1 in solution. These results suggest that uPA-induced adhesion and migration of Chinese hamster ovary cells occurs as a consequence of (a) uPA binding to uPAR through GFD, (b) the subsequent binding of a uPA.uPAR complex to alpha 5 beta 1 via uPAR, and (c) signal transduction through alpha 5 beta 1.  相似文献   

6.
Plasmin, the pivotal thrombolytic enzyme, is generated on the surface of many cell types, where urokinase receptor (uPAR)-bound urokinase (uPA) activates cell-bound plasminogen (Plg). It has been reported that neutrophils mediate endogenous thrombolysis involving a uPA-dependent mechanism, and we previously demonstrated that both uPAR and integrin alpha(M)beta(2) recognize uPA to control cell migration and adhesion. In the present study, we report that the alpha(M)beta(2) regulates neutrophil-dependent fibrinolysis. Phorbol 12-myristate 13-acetate (PMA)-stimulated but not resting neutrophils dissolved fibrin clots, and this activity was not only uPA- and Plg-dependent but also alpha(M)beta(2)-dependent. Purified alpha(M)beta(2) directly bound uPA (K(d) = 40 nm) and Plg (K(d) = 1 microm) in a dose-dependent and saturable manner. In Plg activation assays, addition of purified alpha(M)beta(2), but not a control protein, to a single chain uPA (sc-uPA)/Plg mixture, decreased the K(m) from 2 to 0.1 microm, thereby augmenting the overall reaction efficiency by 50-fold. The binding of sc-uPA to alpha(M)beta(2) was critical for the alpha(M)beta(2)-mediated enhancement of plasmin (Plm) generation, because this effect was lost when WT-sc-uPA was replaced with a kringle-less mutant (DeltaK-sc-uPA), which does not bind to alpha(M)beta(2). Plm inactivation by alpha(2)-antiplasmin was significantly delayed when Plm was preincubated with purified, soluble alpha(M)beta(2). When Plg was added to PMA-stimulated neutrophils, both uPA and Plg were co-immunoprecipitated with alpha(M)beta(2.) Thus, assembly of Plg and uPA on integrin alpha(M)beta(2) regulates Plm activity and, thereby, plays a crucial role in neutrophil-mediated thrombolysis.  相似文献   

7.
The urokinase-type plasminogen activator receptor (uPAR/CD87) is a glycosylphosphatidylinositol-anchored membrane protein with multiple functions in extracellular proteolysis, cell adhesion, cell migration and proliferation. We now report that cell surface uPAR dimerizes and that dimeric uPAR partitions preferentially to detergent-resistant lipid rafts. Dimerization of uPAR did not require raft partitioning as the lowering of membrane cholesterol failed to reduce dimerization and as a transmembrane uPAR chimera, which does not partition to lipid rafts, also dimerized efficiently. While uPA bound to uPAR independently of its membrane localization and dimerization status, uPA-induced uPAR cleavage was strongly accelerated in lipid rafts. In contrast to uPA, the binding of Vn occurred preferentially to raft- associated dimeric uPAR and was completely blocked by cholesterol depletion.  相似文献   

8.
Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) play an important role in cell guidance and chemotaxis during normal and pathological events. uPAR is GPI-anchored and the mechanism by which it transmits intracellular polarity cues across the plasma membrane during directional sensing has not been elucidated. The constitutively recycling endocytic receptor Endo180 forms a trimolecular complex with uPAR in the presence of uPA, hence its alternate name uPAR-associated protein. Here, we demonstrate that Endo180 is a general promoter of random cell migration and has a more specific function in cell chemotaxis up a uPA gradient. Endo180 expression was demonstrated to enhance uPA-mediated filopodia production and promote rapid activation of Cdc42 and Rac. Expression of a noninternalizing Endo180 mutant revealed that promotion of random cell migration requires receptor endocytosis, whereas the chemotactic response to uPA does not. From these studies, we conclude that Endo180 is a crucial link between uPA-uPAR and setting of the internal cellular compass.  相似文献   

9.
The urokinase plasminogen activator receptor (uPAR) plays an important role in the migration of leukocytes. It occurs as a membrane-bound form that contains a glycosylphosphatidylinositol (GPI) anchor and also as a soluble form (suPAR) that lacks the GPI anchor. Recently, a sequence of amino acids, SRSRYLE, within the receptor has been found to become unmasked on uPA binding or chymotrypsin cleavage. Exposure of the epitope results in the activation of p56/p59(hck) kinase and chemotaxis of myelomonocytic cells. Using an epitope-tagged suPAR molecule, we found that both three-domain and two-domain suPAR promote the adhesion of differentiated THP-1 cells to fibronectin and vitronectin, indicating that suPAR can modify cell adhesion as well as cell migration. In addition, we found that the amino acid sequence RYLE, within the chemotactic peptide, is conserved across species and that alanine substitution of Tyr 92 decreased the ability of the peptide to activate p56/59(hck).  相似文献   

10.
It is assumed that plasmin participates in pericellular proteolysis in the epidermis. Plasmin is generated by keratinocyte-associated plasminogen activators from the proenzyme plasminogen; plasminogen activation can proceed at the keratinocyte surface. The resultant plasmin interferes with cell to matrix adhesion and does possibly contribute to keratinocyte migration during reepithelialization. Here we describe the receptor for urokinase-type plasminogen activator (uPA-R) in the human keratinocyte cell line HaCaT, which serves to direct plasminogen activation to the cell surface; we relate the receptor to the uPA-R previously described in human myclo-/monocytes. Binding of uPA to the receptor accelerated plasminogen activation by a factor of ≈10, compared to uPA in solution. Receptor-bound uPA was susceptible to inhibition by the plasminogen activator inhibitors 1 and 2. uPA and uPA-R antigen, as well as uPA activity, were localized to the leading front of expanding sheets of HaCaT cells. Exposure of HaCaT cells to plasminogen was followed by detachment of the cells. Detachment was prevented by an anti-catalytic anti-uPA antibody, by the plasmin-specific inhibitor aprotinin, and by the lysine analogue tranexamic acid, the latter of which prevents plasmin(ogen) binding to the cell surface. Our findings support the hypothesis that uPA-mediated plasminogen activation is characteristic of mobile rather than sessile keratinocytes. Moreover, the uPA-R seems to focalize plasminogen activation to the surface of cells at the site of keratinocyte migration.  相似文献   

11.
We report the crystal structure of a soluble form of human urokinase-type plasminogen activator receptor (uPAR/CD87), which is expressed at the invasive areas of the tumor-stromal microenvironment in many human cancers. The structure was solved at 2.7 A in association with a competitive peptide inhibitor of the urokinase-type plasminogen activator (uPA)-uPAR interaction. uPAR is composed of three consecutive three-finger domains organized in an almost circular manner, which generates both a deep internal cavity where the peptide binds in a helical conformation, and a large external surface. This knowledge combined with the discovery of a convergent binding motif shared by the antagonist peptide and uPA allowed us to build a model of the human uPA-uPAR complex. This model reveals that the receptor-binding module of uPA engages the uPAR central cavity, thus leaving the external receptor surface accessible for other protein interactions (vitronectin and integrins). By this unique structural assembly, uPAR can orchestrate the fine interplay with the partners that are required to guide uPA-focalized proteolysis on the cell surface and control cell adhesion and migration.  相似文献   

12.
PAI-1 (plasminogen activator inhibitor-1) binds the urokinase-type plasminogen activator (uPA) and causes its degradation via its receptor uPAR and low-density lipoprotein receptor-related protein (LRP). While both uPA and PAI-1 are chemoattractants, we find that a preformed uPA-PAI-1 complex has no chemotactic activity and that PAI-1 inhibits uPA-induced chemotaxis. The inhibitory effect of PAI-1 on uPA-dependent chemotaxis is reversed when uPAR internalization is inhibited by the 39 kDa receptor-associated protein or by anti-LRP antibodies. Under the same conditions, the uPA-PAI-1 complex is turned into a chemoattractant causing cytoskeleton reorganization and extracellular-regulated kinase/mitogen-activated protein kinases activation. Thus, uPAR internalization by PAI-1 regulates cell migration.  相似文献   

13.
The plasminogen (Plg)/plasminogen activator (PA) system plays a key role in cancer progression, presumably via mediating extracellular matrix degradation and tumor cell migration. Consequently, urokinase-type PA (uPA)/plasmin antagonists are currently being developed for suppression of tumor growth and angiogenesis. Paradoxically, however, high levels of PA inhibitor 1 (PAI-1) are predictive of a poor prognosis for survival of patients with cancer. We demonstrated previously that PAI-1 promoted tumor angiogenesis, but by an unresolved mechanism. We anticipated that PAI-1 facilitated endothelial cell migration via its known interaction with vitronectin (VN) and integrins. However, using adenoviral gene transfer of PAI-1 mutants, we observed that PAI-1 promoted tumor angiogenesis, not by interacting with VN, but rather by inhibiting proteolytic activity, suggesting that excessive plasmin proteolysis prevents assembly of tumor vessels. Single deficiency of uPA, tissue-type PA (tPA), uPA receptor, or VN, as well as combined deficiencies of uPA and tPA did not impair tumor angiogenesis, whereas lack of Plg reduced it. Overall, these data indicate that plasmin proteolysis, even though essential, must be tightly controlled during tumor angiogenesis, probably to allow vessel stabilization and maturation. These data provide insights into the clinical paradox whereby PAI-1 promotes tumor progression and warrant against the uncontrolled use of uPA/plasmin antagonists as tumor angiogenesis inhibitors.  相似文献   

14.
The high affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored cellular receptor (uPAR) promotes plasminogen activation and the efficient generation of pericellular proteolytic activity. We demonstrate here that expression of the tetraspanin CD82/KAI1 (a tumor metastasis suppressor) leads to a profound effect on uPAR function. Pericellular plasminogen activation was reduced by approximately 50-fold in the presence of CD82, although levels of components of the plasminogen activation system were unchanged. uPAR was present on the cell surface and molecularly intact, but radioligand binding analysis with uPA and anti-uPAR antibodies revealed that it was in a previously undetected cryptic form unable to bind uPA. This was not due to direct interactions between uPAR and CD82, as they neither co-localized on the cell surface nor could be co-immunoprecipitated. However, expression of CD82 led to a redistribution of uPAR to focal adhesions, where it was shown by double immunofluorescence labeling to co-localize with the integrin alpha(5)beta(1), which was also redistributed in the presence of CD82. Co-immunoprecipitation experiments showed that, in the presence of CD82, uPAR preferentially formed stable associations with alpha(5)beta(1), but not with a variety of other integrins, including alpha(3)beta(1). These data suggest that CD82 inhibits the proteolytic function of uPAR indirectly, directing uPAR and alpha(5)beta(1) to focal adhesions and promoting their association with a resultant loss of uPA binding. This represents a novel mechanism whereby tetraspanins, integrins, and uPAR, systems involved in cell adhesion and migration, cooperate to regulate pericellular proteolytic activity and may suggest a mechanism for the tumor-suppressive effects of CD82/KAI1.  相似文献   

15.
The plasminogen activation system is involved in cancer progression and metastasis. Among other proteolytic factors, it includes the serine protease urokinase-type plasminogen activator (uPA) and its three-domain (D1D2D3) receptor uPAR (CD87), which focuses plasminogen activation to the cell surface. The function of uPAR is regulated in part through shedding of domain D1 by proteases, e.g., uPA itself or plasmin. Human tissue kallikrein 4 (hK4), which is highly expressed in prostate and ovarian tumor tissue, was previously shown to cleave and activate the pro-enzyme forms of prostate-specific antigen (PSA, tissue kallikrein hK3) and uPA. Here we demonstrate that uPAR is also a target for hK4, being cleaved in the D1-D2 linker sequence and, to a lesser extent, in its D3 juxtamembrane domain. hK4 may thus modulate the tumor-associated uPA/uPAR-system activity by either activating the pro-enzyme form of uPA or cleaving the cell surface-associated uPA receptor.  相似文献   

16.
The urokinase-type plasminogen activator receptor (uPAR) is a glycolipid-anchored membrane protein with an established role in focalizing uPA-mediated plasminogen activation on cell surfaces. Distinct from this function, uPAR also modulates cell adhesion and migration on vitronectin-rich matrices. Although uPA and vitronectin engage structurally distinct binding sites on uPAR, they nonetheless cooperate functionally, as uPA binding potentiates uPAR-dependent induction of lamellipodia on vitronectin matrices. We now present data advancing the possibility that it is the burial of the β-hairpin in uPA per se into the hydrophobic ligand binding cavity of uPAR that modulates the function of this receptor. Based on these data, we now propose a model in which the inherent interdomain mobility in uPAR plays a major role in modulating its function. Particularly one uPAR conformation, which is stabilized by engagement of the β-hairpin in uPA, favors the proper assembly of an active, compact receptor structure that stimulates lamellipodia induction on vitronectin. This molecular model has wide implications for drug development targeting uPAR function.  相似文献   

17.
We have investigated the role of the plasminogen activation cascade in skeletal muscle differentiation. Migrating, undifferentiated myoblasts express urokinase plasminogen activator (uPA) and its cell surface receptor (uPAR). Consequently, uPA is localized predominantly to the cell surface. Preventing uPA from associating with its receptor with a noncatalytic form of uPA (NC-uPA) hinders migration of myoblasts and inhibits differentiation. When myoblasts reach confluence, cease migrating, and start to differentiate, uPAR gets downregulated, and uPA becomes redistributed from the cell surface to the extracellular space. The function of uPA at this stage was tested using the protease inhibitors aprotinin, α2-antiplasmin, or plasminogen activator inhibitor-1 (PAI-1). Contrary to the role of cell-associated uPA, inhibition of soluble uPA/plasmin stimulates differentiation of myoblasts. Aprotinin can inhibit activation of latent TGFβ and stimulates differentiation, suggesting PAI-1 and α2-antiplasmin also may stimulate differentiation via this mechanism. These data suggest that regulation of uPA localization allows a dual function for this protease in regulating cell migration and controlling cell differentiation. J. Cell. Physiol. 171:217–225, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
The migration of endothelial cells in response to various stimulating factors plays an essential role in angiogenesis. The p38 MAPK pathway has been implicated to play an important role in endothelial cell migration because inhibiting p38 MAPK activity down-regulates vascular endothelial growth factor (VEGF)-stimulated migration. Currently, the signaling components in the p38 MAPK activation pathway and especially the mechanisms responsible for p38 MAPK-regulated endothelial cell migration are not well understood. In the present study, we found that p38 MAPK activity is required for endothelial cell migration stimulated by both VEGF and nongrowth factor stimulants, sphingosine 1-phosphate and soluble vascular cell adhesion molecule. By using dominant negative forms of signaling components in the p38 MAPK pathway, we identified that a regulatory pathway consisting of MKK3-p38alpha/gamma-MAPK-activated protein kinase 2 participated in VEGF-stimulated migration. In further studies, we showed that a minimum of a 10-h treatment with SB203580 (specific p38 MAPK inhibitor) was needed to block VEGF-stimulated migration, suggesting an indirect role of p38 MAPK in this cellular event. Most interestingly, the occurrence of SB203580-induced migratory inhibition coincided with a reduction of urokinase plasminogen activator (uPA) expression. Furthermore, agents disrupting uPA and uPA receptor interaction abrogated VEGF-stimulated cell migration. These results suggest a possible association between cell migration and uPA expression. Indeed, VEGF-stimulated migration was not compromised by SB203580 in endothelial cells expressing the uPA transgene; however, VEGF-stimulated migration was inhibited by agents disrupting uPA-uPA receptor interaction. These results thus suggest that the p38 MAPK pathway participates in endothelial cell migration by regulating uPA expression.  相似文献   

19.
The urokinase-type plasminogen activation system, including the serine protease uPA (urokinase-type plasminogen activator) and its cell surface receptor (uPAR, CD87), are important key molecules in tumor invasion and metastasis. Besides its proteolytic function, binding of uPA to uPAR on tumor cells exerts various cell responses such as migration, adhesion, proliferation, and differentiation. Hence, the uPA/uPAR system is a potential target for tumor therapy. We have designed a new generation of uPA-derived synthetic cyclic peptides suited to interfere with the binding of uPA to uPAR and present a new technology involving micro silica particles coated with uPA (SP-uPA) and reacting with recombinant soluble uPAR (suPAR), to rapidly assess the antagonistic potential of uPA-peptides by flow cytofluorometry (FACS). For this, we used silica particles of 10 microm in diameter to which HMW-uPA is coupled using the EDC/NHS method. Soluble, recombinant suPAR was added and the interaction of SP-uPA with suPAR verified by reaction with monoclonal antibody HD13.1 directed to uPAR, followed by a cyan dye (cy5)-labeled antibody directed against mouse IgG. Thereby it was possible to test naturally occurring ligands of uPAR (HMW-uPA, ATF) as well as highly effective, synthetic cyclic uPA-derived peptides (cyclo21,29[D-Cys21Cys29]-UPA21-30, cyclo21,29[D-Cys21Nle28Cys29]-uPA21-30, cyclo21,29[D-Cys(21)2-Nal24Cys29]-uPA21-30, and cyclo21,29[D-Cys21Orn23Thi24Thi25Cys29]-uPA21-30. The results obtained with the noncellular SP-uPA/uPAR system are highly comparable to those obtained with a cellular system involving FITC-uPA and the promyeloid cell line U937 as the source of uPAR.  相似文献   

20.
Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI‐1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR. Moreover, we show that PAI‐1 counteracts the negative feedback and behaves as a proteolysis‐triggered stabilizer of uPAR‐mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N‐terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号