首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The response to different in vitro methods for use in potato breeding has been evaluated in 11 genotypes of 5 Solanum species, S. etuberosum, S. lycopersicoides, S. maglia, S. rickii, and S. tuberosum. Callus induction and growth, and shoot regeneration were strongly influenced by the genotype, explant source, and medium utilized. Furthermore, considerable differences among the 11 genotypes were found both in plating efficiency and shoot regeneration from protoplast culture. Some interesting correlations were found between different tissue culture responses, suggesting linkage and/or pleiotropic effect of genes. The potential application to potato breeding of the in vitro techniques analyzed is discussed.Abbreviations BA 6-benzylaminopurine - GA3 gibberellic acid - NAA naphthaleneacetic acid - MS Murashige & Skoog (1962) - 2,4-d dichlorophenoxyacetic acid  相似文献   

2.
Summary An early identification of fusion products was based on the presumed vigorous growth of hybrid calluses after fusion between Solanum brevidens and S. tuberosum leaf protoplasts. The S. brevidens protoplasts were unable to form multicellular colonies under the applied culture conditions. Three size groups of calluses were separated and analyzed at two different early phases of culture period. Squash blot hybridization with a S. brevidens specific repetitive DNA probe showed that the group of the largest calluses consisted of putative somatic hybrids with a frequency of 80–100% in three independent experiments. Furthermore, approximately 80–95% of the middle sized calluses and 33–90% of the smallest ones were shown to be hybrid. The unexpectedly high percentage of fusion products, even in the case of the smallest calluses, may result from the suppression of the development of parental potato colonies in cultures with mixed cell population. Till this time 120 independent colonies selected as putative hybrids have been regenerated into plants. All of them exhibited hybrid phenotype, and their hybrid origin was proved by cytological and restriction fragment length polymorphism analyses.Abbreviations BA N6-benzyladenine - NAA -naphthaleneacetic acid - RFLP restriction fragment length polymorphism - UV ultraviolet  相似文献   

3.
Using the AFLP technique highly informative DNA fingerprints were generated from 19 taxa ofSolanum sect.Petota (potatoes) and three taxa ofSolanum sect.Lycopersicum (tomatoes). Both phenetic and cladistic analyses were conducted from the individual genotypic level to the species level. An AFLP fingerprint, using a combination of suitable AFLP primers, generated 12 to 71 scorable fragments per genotype which was sufficient for taxonomic interpretation. The classifications based on the molecular markers were generally in agreement with current taxonomic opinions. Unexpectedly,S. microdontum was associated with ser.Megistacroloba rather than with ser.Tuberosa, andS. demissum (ser.Demissa) and species of ser.Acaulia appeared closely affiliated. AFLP is an efficient and reliable technique to generate biosystematic data and therefore a promising tool for evolutionary studies.  相似文献   

4.
K. J. Oparka  D. A. M. Prior 《Planta》1988,176(4):533-540
The fluorescent dye Lucifer Yellow CH (LYCH) was introduced directly into the symplast of potato (Solanum tuberosum L.) tuber storage parenchyma by microinjection and also into the apoplast through cuts made in the stolon cortex. Microinjected LYCH moved away rapidly from a single storage cell and spread radially via the symplast. When the microinjected tissue was subsequently fixed in glutaraldehyde and sectioned the dye was seen clearly to be localised in the cytoplasm but not in the vacuole. In comparison, when LYCH was introduced into cuts made in the stolon cortex the dye entered the tuber by the xylem and subsequently spread apoplastically. No movement of dye was observed in the phloem. In glutaraldehyde-fixed tissues, in which LYCH was introduced to the apoplast, the dye was found within xylem vessels, in the cell walls and in intercellular spaces. Wall regions, possibly associated with plasmodesmata, became stained by the dye as it moved through the apoplast. Three hours after introduction of the dye to the stolon, intense deposits of LYCH were found in the vacuoles of all cells in the tuber, many aligned along the tonoplast. Differentiating vascular parenchyma elements contained large amounts of dye within enlarging vacuoles. However, with the exception of plasmolysed and-or damaged cells, LYCH was absent from the cytoplasm following its introduction to the plasmalemma it is suggested that the most likely pathway from the cell wall to the vacuole was by endocytosis, the dye being transported across the cytoplasm in membrane-bound vesicles. Clathrin-coated vesicles were abundant in the storage cells, providing a possible endocytotic pathway for dye movement. The significance of these observations is discussed in relation to the movement of LYCH in plant tissues and to the movement of solutes within and between storage cells of the tuber.Abbreviation LYCH Lucifer Yellow CH  相似文献   

5.
K. Santarius  H. -D. Belitz 《Planta》1978,141(2):145-153
Several vegetative tissues of potato plants were screened for proteinase activity. Both endopeptidase and exopeptidase activities were investigated using gelatin and L-amino acid-4-nitroanilides (benzoyl-L-arginine-4-nitroanilide/BAPA, glutaryl-L-phenyl-alanine-4-nitroanilide/GLUPHEPA, alanine-4-nitro-anilide/APA, leucine-4-nitroanilide/LPA, and benzoyl-L-tyrosine-4-nitroanilide/BTPA) as substrates. Leaves and rootes were found to contain the highest levels of endopeptidase activity; lesser activities were detected in flower petals, sprouts, and tubers. Three different types of proteinases, L-BAPAase (serine proteinase), APAase (thiol proteinase), and BTPAase (sensitive to reducing agents), were characterized in various physical and chemical properties. Their temperature optima were determined to be 25° (L-BAPAase) and 40° (BTPAase, APAase) respectively; their pH optimum was between 8.6 and 9.0, their isoelectric points were between pH 4.25 and 6.0, and their molecular weight was estimated 70,000 (L-BAPAase, APAase) and between 150,000–250,000 (BTPAase). The trypsin-like activity against L-BAPA was inhibited by diisopropylfluorophosphate and by tosyllysine-chloromethyl ketone, but not by trypsin inhibitors from potato and legume.Abbreviations APA alanine-4-nitroanilide - BAPA benzoyl-L-arginine-4-nitroanilide - BTPA benzoyl-L-tyrosine-4-nitroanilide - DFP diisopropylfluorophosphate - DMF dimethyl formamide - EDTA ethylenedinitrilotetraacetic acid - GLUPHEPA glutaryl-L-phenylalanine-4-nitroanilide - LPA leucine-4-nitroanilide - PHMB p-hydroxy-mercuribenzoate - PI-I potato chymotrypsin inhibitor I - PPI potato proteinase leaf - PPr potato proteinase root - PPt potato proteinase tuber - PVP polyvinylpyrrolidone - TLCK tosyl-L-lysinechloromethyl ketone - TPCK tosyl-L-phenylalanyl chloromethane  相似文献   

6.
    
Summary To investigate the mechanisms of seed failure in intraspecific and interspecific crosses of Solanum two diploid, S. commersonii and Group Phureja, and one tetraploid species, S. acaule, species were crossed and the seeds were analyzed for embryo and endosperm development. Many seeds of certain crosses observed seven days after pollinations were found to contain abnormal embryos and degenerating endosperms. In some cases seeds contained an embryo with no endosperm, or an endosperm with no embryo. Other interspecific crosses which were predicted to fail actually produced seeds with normally developed embryos and endosperms. To further characterize the intra- and interspecific embryos and endosperms the nuclear DNA was measured. There are several ways to explain the ploidy levels of embryos and endosperms among the crosses, the occurrence of unreduced gametes in some cases and genomic instability in other cases. The latter resulted in chromosome loss at meiotic and mitotic divisions. Genomic balance in interspecific seeds is critical to both embryo and endosperm development.Scientific Journal Series Article No. 14636 of the Minnesota Experiment Station  相似文献   

7.
Sensillae on the antennae of the Colorado potato beetle,Leptinotarsa decemlineata are described using scanning (SEM) and transmission (TEM) electron microscopy and compared with SEM observations of antennal sensilla inL. haldemani andL. texana. In all the three species, 13 distinct sensillar types were identified with a higher density of sensilla in the more polyphagous species,L. decemlineata than in the moderately host specificL. haldemani and the highly host specificL. texana. Cuticular specializations and the predominance of olfactory sensilla are discussed in relation to host specificity in the three species.  相似文献   

8.
Summary A series of fusion experiments were performed between protoplasts of a cytoplasmic albino mutant of tomato, Lycopersicon esculentum (ALRC), and gamma-irradiated protoplasts of L. hirsutum and the Solanum species S. commersonii, S. etuberosum and S. nigrum. These species were chosen for their different phylogenetic relationships to tomato. In all fusion combinations except from those between ALRC and S. nigrum, green calli were selected as putative fusion products and shoots regenerated from them. They were subsequently analyzed for their morphology, nuclear DNA composition and chloroplast DNA origin. The hybrids obtained between ALRC and L. hirsutum contained the chloroplasts of L. hirsutum and had the flower and leaf morphology of L. esculentum. After Southern blot analysis, using 13 restriction fragment length polymorphisms (RFLPs) randomly distributed over all chromosomes, all hybrids showed L. esculentum hybridization patterns. No chromosomes of L. hirsutum were found. These results indicate that these hybrids were true cybrids.The putative asymmetric hybrids, obtained with S. commersonii and S. etuberosum, showed phenotypic traits of both parents. After hybridization with species-specific repetitive nuclear DNA probes it was found that nuclear material of both parents was present in all plants. In the case of S. nigrum, which combination has the greatest phylogenetic distance between the fusion parents, no hybrid plants could be obtained. The chloroplast DNA of all hybrid plants was of the donor type suggesting that chloroplast transfer by asymmetric protoplast fusion can overcome problems associated with large phylogenetic distances between parental plants.  相似文献   

9.
    
Cell walls of the periderm of native potato tuber (Solanum tuberosum L. cv. Primura) consist of a primary wall, a suberized secondary wall and a tertiary wall. With a mixture of pectinase and cellulase intact periderm membranes can be isolated. Isolation does not affect fine structure. It is suggested that the lignin in the middle lamellae and primary walls prevents the enzymes from digesting pectinaceous materials and cellulose. In specimens fixed with OsO4, the suberized walls appear as alternating electrondense and electron-lucent lamellae. This lamellar architecture is not altered by extraction with chloroform. Therefore, the current view that the electronlucent lamellae consist of soluble lipids (waxes) can no longer be maintained. It is argued that the lamellation is a property of the suberin itself, and the suberized wall consists of alternating layers of suberins differing in polarity. A hypothesis of suberin assembly from sub-units is advanced and the subunits are shown for the first time.  相似文献   

10.
Inhibition of starch biosynthesis in transgenic potato (Solanum tuberosum L. cv. Désirée) plants (by virtue of antisense inhibition of ADP-glucose pyrophosphorylase) has recently been reported to influence tuber formation and drastically reduce dry matter content of tubers, indicating a reduction in sink strength (Müller-Röber et al. 1992, EMBO J 11: 1229–1238). Transgenic tubers produced low levels of starch, but instead accumulated high levels of soluble sugars. We wanted to know whether these changes in tuber development/sink strength could be reversed by the production of a new high-molecular-weight polymer, i.e. fructan, that incorporates sucrose and thereby should reduce the level of osmotically active compounds. To this end the enzyme levan sucrase from the gram-negative bacterium Erwinia amylovora was expressed in tubers of transgenic potato plants inhibited for starch biosynthesis. Levan sucrase was targeted to different subcellular compartments (apoplasm, vacuole and cytosol). Only in the case of apoplastic and vacuolar targeting was significant accumulation of fructan observed, leading to fructan representing between 12% and 19% of the tuber dry weight. Gel filtration and 13C-nuclear magnetic resonance spectroscopy showed that the molecular weight and structure of the fructan produced in transgenic plants is identical to levan isolated from E. amylovora. Whereas apoplastic expression of levansucrase had deleterious effects on tuber development, tubers containing the levansucrase in the vacuole did not differ in phenotype from tubers of the starch-deficient plants used as starting material for transformation with the levansucrase. When tuber yield was analysed, no increase but rather a further decrease relative to ADP-glucose pyrophosphorylase antisense plants was observed.Abbreviations CaMV cauliflower mosaic virus - NMR nuclear magnetic resonanceWe gratefully acknowledge Dr. Ulrich Eder (Schering AG, Berlin, Germany) for performing 13C-NMR spectroscopy, and Dr. Susanne Hoffmann-Benning (Institut für Genbiologische Forschung) for introducing us to immunohistochemistry. We thank Jessyca Dietze for plant transformations, Birgit Burose for taking care of greenhouse plants, and Antje Voigt for photographic work.  相似文献   

11.
Potato plants (Solanum tuberosum L. cv. Désirée) transformed with sense and antisense constructs of a cDNA encoding the potato hexokinase 2 exhibited altered enzyme activities and expression of hexokinase 2 mRNA. Measurements of the maximum catalytic activity of hexokinase revealed an 11-fold variation in leaf (from 48% of the wild-type activity in antisense transformants to 446% activity in sense transformants) and an 8-fold variation in developing tubers (from 35% of the wild-type activity in antisense transformants to 212% activity in sense transformants). Despite the wide range of hexokinase activities, no substantial change was found in the fresh weight yield, starch, sugar and metabolite levels of transgenic tubers. However, both potato hexokinases 1 and 2 were able to complement the hyposensitivity of antisense hexokinase 1 Arabidopsis transgenic plants to glucose. In an in vitro bioassay of seed germination in a medium with high glucose levels, double transformants showed the same sensitivity to glucose as that of the wild-type ecotype, displaying a stunted phenotype in hypocotyls, cotyledons and roots.  相似文献   

12.
(i) Sucrose-phosphate synthase (SPS) was purified 40-fold from stored potato (Solanum tuberosum L.) tubers to a final specific activity of 33–70 nkat·(mg protein)–1 via batch elution from diethylaminoethyl (DEAE)-sephacel, polyethylene glycol (PEG) precipitation and Mono Q anion-exchange chromatography. (ii) Immunoblotting revealed a major and a minor band with molecular weights of 124.8 kDa and 133.5 kDa, respectively. Both bands were also present in extracts prepared in boiling SDS to exclude proteolysis. No smaller polypeptides were seen, except when the preparations were incubated before application on a polyacrylamide gel. (iii) The enzyme preparation was activated by glucose-6-phosphate and inhibited by inorganic phosphate. Both effectors had a large effect on the Km (fructose-6-phosphate) and the Km (uridine-5-diphosphoglucose) with phosphate acting antagonistically to glucose-6-phosphate. (iv) Preincubation of potato slices with low concentrations of okadaic acid or microcystin resulted in a three- to fourfold decrease in the activity of SPS when the tissue was subsequently extracted and assayed. The decrease was especially marked when the assay contained low concentrations of substrates and glucose-6-phosphate, and inorganic phosphate was included. Preincubation with mannose or in high osmoticum resulted in an increase of SPS activity. (v) Analogous changes were observed in germinating Ricinus communis L. seedlings. After preincubation of the cotyledons in glucose, high SPS activity could be measured, whereas okadaic acid, omission of glucose, or addition of phosphate or sucrose led to a large decrease of SPS activity in the selective assay. (vi) It is argued that SPS from non-photosynthetic tissues is regulated by metabolites and by protein phosphorylation in an analogous manner to the leaf enzyme.Abbreviations Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - Pi inorganic phosphate - PGI phosphoglucose isomerase - PP2A phosphoprotein phosphatase 2A - PEG polyethyleneglycol - SPS sucrose-phosphate synthase - UDPGlc uridine-5-diphosphoglucoseThis work was supported by the Deutsche Forschungsgemeinschaft, the BMFT and Sandoz AG, Basel, Switzerland. We are grateful to Prof. E. Beck (Pflanzenphysiologie, Bayreuth, Germany) for providing us with laboratory facilities, and to Dr. U. Sonnewald (Institut für Genbiologische Forschung, Berlin, Germany) for many discussions and providing us with unpublished data.  相似文献   

13.
Solanum section Petota, the potato and its wild relatives, includes about 200 wild species distributed from the southwestern United States to central Argentina and adjacent Chile, with about 30 species in North and Central America. The North/Central American region and the South American region all include diploids, tetraploids, and hexaploids. Chloroplast DNA restriction enzyme data from a prior study showed that 13 of the North/Central American species formed a clade containing only diploids, but there was low resolution within the clade. This Amplified Fragment Length Polymorphism (AFLP) study is conducted to provide additional resolution within the North/Central American diploids and complements the chloroplast results, and prior morphological results. Wagner parsimony and phenetic analyses mostly agreed with the morphological data in supporting currently recognized species except that they suggest that S. brachistotrichium and S. stenophyllidium are conspecific. Our new AFLP data, in combination with the cpDNA and morphological data, also support sister taxon relationships for the following diploid species from North and Central America: 1) S. cardiophyllum subsp. ehrenbergii and S. stenophyllidium, 2) S. tarnii and S. trifidum, 3) S. jamesii and S. pinnatisectum, 4) S. lesteri and S. polyadenium, and 5) S. clarum and S. morelliforme.This work represents partial fulfillment for the requirements of a Ph.D. degree in Plant Breeding and Genetics at the University of Wisconsin-Madison. We thank committee members Paul Berry, Michael Havey, Thomas Osborn, and Kenneth Sytsma. We also thank John Bamberg and Staff of the Unites States Potato Genebank for germplasm and locality data; Charles Nicolet and staff of the University of Wisconsin Biotechnology Center for technical help; Lynn Hummel and staff at Walnut Street Greenhouse for help in growing plants; and lab partners Brian Karas, Iris Peralta, Celeste Raker, and Sarah Stephenson for technical advice. This study was supported by CONACYT (Mexico) scholarship number 116742 granted to Sabina I. Lara-Cabrera, and the United States Department of Agriculture. Names are necessary to report data. However, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

14.
Solanum sect. Petota (tuber-bearing wild and cultivated potatoes) are a group of approximately 190 wild species distributed throughout the Americas from the southwestern United States south to Argentina, Chile, and Uruguay. Solanum series Conicibaccata are a group of approximately 40 species within sect. Petota, distributed from central Mexico to central Bolivia, composed of diploids (2n = 2x = 24), tetraploids (2n = 4x = 48) and hexaploids (2n = 6x = 64); the polyploids are thought to be polysomic polyploids. This study initially was designed to address species boundaries of the four Mexican and Central American species of series Conicibaccata with AFLP data with the addition of first germplasm collections of one of these four species, Solanum woodsonii, as a follow-up to prior morphological, chloroplast DNA, and RAPD studies; and additional species of series Conicibaccata from South America. AFLP data from 12 primer combinations (1722 polymorphic bands) are unable to distinguish polyploid species long thought to be distinct. The data suggest a complex reticulate history of the tetraploids or the need for a broad downward reevaluation of the number of species in series Conicibaccata, a trend seen in other series of sect. Petota. Separately, through flow cytometry, we report the first ploidy level of S. woodsonii, as tetraploid (2n = 48). The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

15.
Klaus D  Ohlrogge JB  Neuhaus HE  Dörmann P 《Planta》2004,219(3):389-396
In contrast to oil seeds, potato (Solanum tuberosum L.) is characterized by a high amount of starch stored in the tubers. To assess the capacity for oil synthesis in potato tubers, the changes in lipid content and flux into lipid synthesis were explored in transgenic potatoes altered in carbohydrate or lipid metabolism. A strong decrease in the amount of starch observed in antisense lines for ADP-glucose pyrophosphorylase or plastidic phosphoglucomutase had no effect on storage-lipid content. Similarly, potato lines over-expressing the Arabidopsis thaliana (L.) Heynh. plastidic ATP/ADP transporter that contained an increased amount of starch were not altered in oil content, indicating that the plastidic ATP level is not limiting fatty acid synthesis in potato tubers. However, over-expression of the acetyl-CoA carboxylase from Arabidopsis in the amyloplasts of potato tubers led to an increase in fatty acid synthesis and a more than 5-fold increase in the amount of triacylglycerol. Taken together, these data demonstrate that potato tubers have the capacity for storage-lipid synthesis and that malonyl-CoA, the substrate for elongation during fatty acid synthesis, represents one of the limiting factors for oil accumulation.Abbreviations AATP Plastidic ADP/ATP transporter - ACCase Acetyl-CoA:carboxylase - DGAT Acyl-CoA:diacylglycerol acyltransferase - FW Fresh weight - TLC Thin-layer chromatography - WT Wild typeSource for transgenic plant material. Upon request, transgenic potato lines altered in ACCase activity can be obtained from Peter Dörmann. For potato lines with alterations in AATP transporter activity, please refer to H. Ekkehard Neuhaus. Transgenic AGP and PGM lines are available from A. Fernie (Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany).  相似文献   

16.
Two lines of transgenic potato (Solanum tuberosum L.) plants modified in their cell wall structure were characterized and compared to wild type with regard to biomechanical properties in order to assign functional roles to the particular cell wall polysaccharides that were targeted by the genetic changes. The targeted polymer was rhamnogalacturonan I (RG-I), a complex pectic polysaccharide comprised of mainly neutral oligosaccharide side chains attached to a backbone of alternating rhamnosyl and galacturonosyl units. Tuber rhamnogalacturonan I molecules from the two transformed lines are reduced in linear galactans and branched arabinans, respectively. The transformed tuber tissues were found to be more brittle when subjected to uniaxial compression and the side-chain truncation was found to be correlated with the physical properties of the tissue. Interpretation of the force–deflection curves was aided by a mathematical model that describes the contribution of the cellulose microfibrils, and the results lead to the proposition that the pectic matrix plays a role in transmitting stresses to the load-bearing cellulose microfibrils and that even small changes to the rheological properties of the matrix have consequences for the biophysical properties of the wall.  相似文献   

17.
Summary Thirty somatic hybrids between Solanum tuberosum and Solanum brevidens were analysed for mitochondrial and chloroplast genome rearrangements. In all cases, the chloroplast genomes were inherited from one of the parental protoplast populations. No chloroplast DNA alterations were evident but a range of mitochondrial DNA alterations, from zero to extensive intra- and inter-molecular recombinations, were found. Such recombinations involved specific recombination hot spots in the mitochondrial genome. Not all hybrids regenerated from a common callus possessed identical mitochondrial genomes, suggesting that sorting out of mitochondrial populations in the callus may have been incomplete at the plant regeneration stage. Sorting out of organelles in planta was not observed.  相似文献   

18.
19.
Labelling experiments in which high-specific-activity [U-14C]sucrose or [U-14C]hexoses were injected into potato (Solanum tuberosum L. cv. Desiree) tubers showed that within 1 d of detaching growing tubers from their mother plant, there is an inhibition of starch synthesis, a stimulation of the synthesis of other major cell components, and rapid resynthesis of sucrose. This is accompanied by a general increase in phosphorylated intermediates, an increase in UDP-glucose, and a dramatic decrease of ADP-glucose. No significant decline in the extracted activity of enzymes for sucrose degradation or synthesis, or starch synthesis is seen within 1 d, nor is there a significant decrease in sucrose, amino acids, or fresh weight. Over the next 7 d, soluble carbohydrates decline. This is accompanied by a decline in sucrose-synthase activity, hexose-phosphate levels, and the synthesis of structural cell components. It is argued that a previously unknown mechanism acting at ADP-glucose pyrophosphorylase allows sucrose-starch interconversions to be regulated independently of the use of sucrose for cell growth.  相似文献   

20.
Cold storage of potato (Solanum tuberosum L.) tubers is known to cause accumulation of reducing sugars. Hexose accumulation has been shown to be cultivar-dependent and proposed to be the result of sucrose hydrolysis via invertase. To study whether hexose accumulation is indeed related to the amount of invertase activities, two different approaches were used: (i) neutral and acidic invertase activities as well as soluble sugars were measured in cold-stored tubers of 24 potato cultivars differing in the cold-induced accumulation of reducing sugars and (ii) antisense potato plants with reduced soluble acid invertase activities were created and the soluble sugar accumulation in cold-stored tubers was studied. The cold-induced hexose accumulation in tubers from the different potato cultivars varied strongly (up to eightfold). Large differences were also detected with respect to soluble acid (50-fold) and neutral (5-fold) invertase activities among the different cultivars. Although there was almost no correlation between the total amount of invertase activity and the accumulation of reducing sugars there was a striking correlation between the hexose/sucrose ratio and the extractable soluble invertase activitiy. To exclude the possibility that other cultivar-specific features could account for the obtained results, the antisense approach was used to decrease the amount of soluble acid invertase activity in a uniform genetic background. To this end the cDNA of a cold-inducible soluble acid invertase (EMBL nucleicacid database accession no. X70368) was cloned from the cultivar Desirée, and transgenic potato plants were created expressing this cDNA in the antisense orientation under control of the constitutive 35S cauliflower mosaic virus promotor. Analysis of the harvested and cold-stored tubers showed that inhibition of the soluble acid invertase activity leads to a decreased hexose and an increased sucrose content compared with controls. As was already found for the different potato cultivars the hexose/sucrose ratio decreased with decreasing invertase activities but the total amount of soluble sugars did not significantly change. From these data we conclude that invertases do not control the total amount of soluble sugars in coldstored potato tubers but are involved in the regulation of the ratio of hexose to sucrose.The authors are grateful to Heike Deppner and Christiane Prüßner for tuber harvest and technical assistance during the further analysis. We thank Andrea Knospe for taking care of tissue culture, Birgit Schäfer for patient photographic work, Hellmuth Fromme and the greenhouse personnel for attending plant growth and development and Astrid Basner for elucidating the sequence of clone INV-19. The work was supported by the Bundesministerium für Forschung und Technologie (BMFT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号