首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase equilibria and structure of dry and hydrated egg lecithin   总被引:21,自引:0,他引:21  
The behavior of purified egg lecithin in water has been investigated in relation to the quantity of water present and the temperature. The complete binary phase diagram of egg lecithin-water is presented as well as X-ray diffraction data on selected mixtures. Dry egg lecithin is present in at least partially crystalline form until about 40 degrees C. Above this temperature it forms a "wax-like" phase up to about 88 degrees C. From 88 to 109 degrees C it forms a viscous isotropic phase which gives face-centered cubic spacings by X-ray analysis. Above 110 degrees C its texture is "neat" and the structure is assumed to be lamellar until its final melting point at 231 degrees C. Hydrated lecithin forms (except for a small zone of cubic phase at low water concentrations and high temperature) a lamellar liquid crystalline phase. This phase contains up to 45% water at 20 degrees C. Mixtures containing more water separate into two phases, the lamellar liquid crystalline phase and water. In the melting curve of hydrated lecithin a eutectic is noted at about 16% water and the cubic phase seen when less water is present disappears at this composition of the mixture. These facts, along with previous vapor pressure measurements, suggest that there is a structural change at about 16% water. X-ray diffraction studies of lecithin at 24 degrees C and calculations from these data suggest that the reason for this may be the presence of a "free water layer" when more than 16% water is present.  相似文献   

2.
3.
The structure of myosin and its role in energy transduction in muscle   总被引:1,自引:0,他引:1  
The present understanding of the relationship between the structure of the myosin ATPase and its role in force production for muscle contraction is reviewed. Emphasis is placed on structural transitions in myosin that occur during ATP hydrolysis which may be correlated with force production. Although detailed structural information is presently lacking, numerous spectroscopic and kinetic experiments have indicated that myosin exists in two structural states for each chemical intermediate in the hydrolysis of ATP. Models are discussed which view a transition between these two states as the energy transduction "event" (i.e., force production).  相似文献   

4.

Introduction

We analyse a large sample of the Twitter activity that developed around the social movement ''Occupy Wall Street'', to study the complex interactions between the human communication activity and the semantic content of a debate.

Methods

We use a network approach based on the analysis of the bipartite graph @Users-#Hashtags and of its projections: the ''semantic network'', whose nodes are hashtags, and the ''users interest network'', whose nodes are users. In the first instance, we find out that discussion topics (#hashtags) present a high structural heterogeneity, with a relevant role played by the semantic hubs that are responsible to guarantee the continuity of the debate. In the users’ case, the self-organisation process of users’ activity, leads to the emergence of two classes of communicators: the ''professionals'' and the ''amateurs''.

Results

Both the networks present a strong community structure, based on the differentiation of the semantic topics, and a high level of structural robustness when certain sets of topics are censored and/or accounts are removed.

Conclusions

By analysing the characteristics of the dynamical networks we can distinguish three phases of the discussion about the movement. Each phase corresponds to a specific moment of the movement: from declaration of intent, organisation and development and the final phase of political reactions. Each phase is characterised by the presence of prototypical #hashtags in the discussion.  相似文献   

5.
Uversky VN  Gillespie JR  Fink AL 《Proteins》2000,41(3):415-427
"Natively unfolded" proteins occupy a unique niche within the protein kingdom in that they lack ordered structure under conditions of neutral pH in vitro. Analysis of amino acid sequences, based on the normalized net charge and mean hydrophobicity, has been applied to two sets of proteins: small globular folded proteins and "natively unfolded" ones. The results show that "natively unfolded" proteins are specifically localized within a unique region of charge-hydrophobicity phase space and indicate that a combination of low overall hydrophobicity and large net charge represent a unique structural feature of "natively unfolded" proteins.  相似文献   

6.
A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in zinc-blende CdTe. We found that CdTe undergoes a structural first-order phase transition to $ {\text{I}}\overline 4 {\text{m2}} $ (binary β-tin) tetragonal structure in the constant pressure molecular dynamics simulation at 20 GPa. When the pressure was increased to 50 GPa, the phase of tetragonal structure converted to a new Imm2 orthorhombic structure. These phase transformations were also calculated by using the enthalpy calculations. Transition phases, lattice parameters and bulk properties we attained are comparable with experimental and theoretical data.  相似文献   

7.
We present the structural as well as elastic properties of the alkaline earth oxides and FeO, calculated using hybrid exchange functionals within DFT. We show that by empirically fitting the amount of Fock-exchange in the hybrid functionals, we can accurately reproduce the pressure-induced phase transitions for MgO, CaO, SrO and BaO. For FeO the hybrid functionals predict an insulator?metal transition at ca. 150?GPa, associated with an i-B8?B8 structural phase transition. The structural phase transition is accompanied by a spin transition from a high- to low-spin electron configuration on the Fe2+ ions. Hence, FeO undergoes a magnetic phase transition from an anti-ferromagnetic to non-magnetic structure. We also find that as the ionicity of the polymorphs increases a higher fraction of Fock-exchange is required to reproduce the structural volumes reported from experiments.  相似文献   

8.
Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.  相似文献   

9.
Snyder DA  Montelione GT 《Proteins》2005,59(4):673-686
An important open question in the field of NMR-based biomolecular structure determination is how best to characterize the precision of the resulting ensemble of structures. Typically, the RMSD, as minimized in superimposing the ensemble of structures, is the preferred measure of precision. However, the presence of poorly determined atomic coordinates and multiple "RMSD-stable domains"--locally well-defined regions that are not aligned in global superimpositions--complicate RMSD calculations. In this paper, we present a method, based on a novel, structurally defined order parameter, for identifying a set of core atoms to use in determining superimpositions for RMSD calculations. In addition we present a method for deciding whether to partition that core atom set into "RMSD-stable domains" and, if so, how to determine partitioning of the core atom set. We demonstrate our algorithm and its application in calculating statistically sound RMSD values by applying it to a set of NMR-derived structural ensembles, superimposing each RMSD-stable domain (or the entire core atom set, where appropriate) found in each protein structure under consideration. A parameter calculated by our algorithm using a novel, kurtosis-based criterion, the epsilon-value, is a measure of precision of the superimposition that complements the RMSD. In addition, we compare our algorithm with previously described algorithms for determining core atom sets. The methods presented in this paper for biomolecular structure superimposition are quite general, and have application in many areas of structural bioinformatics and structural biology.  相似文献   

10.
The structural, elastic and electronic properties of lutatium-pnictides (LuN, LuP, LuAs, LuSb, and LuBi) were analyzed by using full-potential linearized augmented plane wave within generalized gradient approximation in the stable rock-salt structure (B1 phase) with space group Fm-3m and high-pressure CsCl structure (B2 phase) with space group Pm-3m. Hubbard-U and spin-orbit coupling were included to predict correctly the semiconducting band gap of LuN. Under compression, these materials undergo first-order structural transitions from B1 to B2 phases at 241, 98, 56.82, 25.2 and 32.3 GPa, respectively. The computed elastic properties show that LuBi is ductile by nature. The electronic structure calculations show that LuN is semiconductor at ambient conditions with an indirect band gap of 1.55 eV while other Lu-pnictides are metallic. It was observed that LuN shows metallization at high pressures. The structural properties, viz, equilibrium lattice constant, bulk modulus and its pressure derivative, transition pressure, equation of state, volume collapse, band gap and elastic moduli, show good agreement with available data.
Figure
Equation of state of Lu-pnictides  相似文献   

11.
Rajavel M  Warrier T  Gopal B 《Proteins》2006,64(4):923-930
The advent of structural genomics has led to a dramatic increase in the number of structures deposited in the Protein Data Bank. The number of new folds, however, still remains a very small fraction of the total number of deposited structures. Recent data on the progress of the structural genomics initiative reveals that more than 85% of target proteins that progress to the stage of data collection and structure determination have a known fold. Enzymes, which tend to exploit reaction space while adopting a common stable scaffold, contribute significantly to this observation. Herein, we evaluate a method to examine the "old fold in a new dataset" scenario likely to be encountered in the structural genomics pipeline. We demonstrate that a fold detection strategy based on secondary structure signatures followed by molecular replacement using a minimalist model can be effectively used to solve the phase problem in X-ray crystallography without further recourse to heavy atom derivatives or multiple anomalous dispersion techniques. Three common folds-the triosephosphate isomerase (TIM), adenine nucleotide alpha hydrolase-like (HUP), and RNA recognition motif (RRM)-were examined using this approach. The results presented herein also provide an estimate of the extent of phase information that can be derived from a single domain in a large multidomain structure.  相似文献   

12.
On the basis of morphological features, 10 consecutive structural phases of spermatids were identified in Chara vulgaris spermiogenesis. They were schematically presented. In early and middle spermiogenesis, i.e. during the period preceding formation of fibrillar structure of mature spermatozoid nucleus, a slight remodelling of chromatin, accompanied by proplastid transformation into an amyloplast as well as by development of 2 flagella and a microtubular manchette, is observed. First, condensed chromatin concentrates around the nuclear envelope (phases III-V) and then it transforms into a network-like structure (phase VI). This change in chromatin structure is preceded by nucleolar extrusion to the cytoplasm where nucleoli become degraded (phase IV) and by a dynamic development of rough endoplasmic reticulum (RER) (phase V) which is continuous with the nuclear envelope and with RER of the adjacent spermatids via plasmodesmata. The inner membrane of the nuclear envelope invaginates into the nucleoplasm in which "nuclear reticulum" appears. It all happens during increased 3H-arginine and 3H-lysine incorporation into proteins which are rapidly translocated into the nucleus. In medium-late spermiogenesis (phases VI-VIII), network-like condensed chromatin disappears. Next, the structure of the nucleus changes dramatically. Short, randomly positioned fibrils (phase VII) appear and gradually become longer (phase VIII), thicker (phase IX) and more distinct, lying parallel to the surface of elongating and curling nucleus. Membranes of the nuclear envelope become closer to each other and a distinct dark layer--probably lamin--appears adhering to the inner membrane of the nuclear envelope. Towards the end of spermiogenesis (phase X), very densely packed parallel helices, ca 2 nm in diameter, are visible. The surfaces of flagella and the spermatozoid are covered with diamond-shaped larger and smaller scales, respectively. Helically coiled spermatozoids are liberated from antheridial filament cells through earlier created (phase VIII) "liberation pores" with pads of unknown nature.  相似文献   

13.
Thirty years ago Singer and Nicolson constructed the "fluid mosaic model" of the membrane, which described the structural and functional characteristics of the plasma membrane of non-polarized cells like circulating blood lymphocytes as a fluid lipid phase accommodating proteins with a relatively free mobility. It is a rare phenomenon in biology that such a model could survive 30 years and even today it has a high degree of validity. However, in the light of new data it demands some modifications. In this minireview we present a new concept, which revives the SN model, by shifting the emphasis from fluidity to mosaicism, i.e. to lipid microdomains and rafts. A concise summary of data and key methods is given, proving the existence of non-random co-distribution patterns of different receptor kinds in the microdomain system of the plasma membrane. Furthermore we present evidence that proteins are not only accommodated by the lipid phase, but they are integral structural elements of it. Novel suggestions to the SN model help to develop a modernized version of the old paradigm in the light of new data.  相似文献   

14.
The structural biology of proteins mediating iron-sulfur (Fe-S) cluster assembly is central for understanding several important biological processes. Here we present the NMR structure of the 16-kDa protein YgdK from Escherichia coli, which shares 35% sequence identity with the E. coli protein SufE. The SufE X-ray crystal structure was solved in parallel with the YdgK NMR structure in the Northeast Structural Genomics (NESG) consortium. Both proteins are (1) key components for Fe-S metabolism, (2) exhibit the same distinct fold, and (3) belong to a family of at least 70 prokaryotic and eukaryotic sequence homologs. Accurate homology models were calculated for the YgdK/SufE family based on YgdK NMR and SufE crystal structure. Both structural templates contributed equally, exemplifying synergy of NMR and X-ray crystallography. SufE acts as an enhancer of the cysteine desulfurase activity of SufS by SufE-SufS complex formation. A homology model of CsdA, a desulfurase encoded in the same operon as YgdK, was modeled using the X-ray structure of SufS as a template. Protein surface and electrostatic complementarities strongly suggest that YgdK and CsdA likewise form a functional two-component desulfurase complex. Moreover, structural features of YgdK and SufS, which can be linked to their interaction with desulfurases, are conserved in all homology models. It thus appears very likely that all members of the YgdK/SufE family act as enhancers of Suf-S-like desulfurases. The present study exemplifies that "refined" selection of two (or more) targets enables high-quality homology modeling of large protein families.  相似文献   

15.
Imai T  Fujita N 《Proteins》2004,56(4):650-660
G-protein-coupled receptors (GPCRs) play a crucial role in signal transduction and receive a wide variety of ligands. GPCRs are a major target in drug design, as nearly 50% of all contemporary medicines act on GPCRs. GPCRs are membrane proteins possessing a common structural feature, seven transmembrane helices. In order to design an effective drug to act on a GPCR, knowledge of the three-dimensional (3D) structure of the target GPCR is indispensable. However, as GPCRs are membrane bound, their 3D structures are difficult to obtain. Thus we conducted statistical sequence analyses to find information about 3D structure and ligand binding using the receptors' primary sequences. We present statistical sequence analyses of 270 human GPCRs with regard to entropy (Shannon entropy in sequence alignment), hydrophobicity and volume, which are associated with the alpha-helical periodicity of the accessibility to the surrounding lipid. We found periodicity such that the phase changes once in the middle of each transmembrane region, both in the entropy plot and in the hydrophobicity plot. The phase shift in the entropy plot reflects the variety of ligands and the generality of the mechanism of signal transduction. The two periodic regions in the hydrophobicity plot indicate the regions facing the hydrophobic lipid chain and the polar phospholipid headgroup. We also found a simple periodicity in the plot of volume deviation, which suggests conservation of the stable structural packing among the transmembrane helices.  相似文献   

16.
The three-dimensional (3D) structure of the genome is important for orchestration of gene expression and cell differentiation. While mapping genomes in 3D has for a long time been elusive, recent adaptations of high-throughput sequencing to chromosome conformation capture (3C) techniques, allows for genome-wide structural characterization for the first time. However, reconstruction of "consensus" 3D genomes from 3C-based data is a challenging problem, since the data are aggregated over millions of cells. Recent single-cell adaptations to the 3C-technique, however, allow for non-aggregated structural assessment of genome structure, but data suffer from sparse and noisy interaction sampling. We present a manifold based optimization (MBO) approach for the reconstruction of 3D genome structure from chromosomal contact data. We show that MBO is able to reconstruct 3D structures based on the chromosomal contacts, imposing fewer structural violations than comparable methods. Additionally, MBO is suitable for efficient high-throughput reconstruction of large systems, such as entire genomes, allowing for comparative studies of genomic structure across cell-lines and different species.  相似文献   

17.
X-ray small-angle diffraction, differential scanning calorimetry (DSC), and temperature scanning densitometry (TSD) were used to study the effect of -lysin on the phase transitions of lipid assemblies from 1,2-0-dixehadecyl-sn-glycero-3-phosphoholine (DHPC). The experiments were carried out in excess of water in a temperature range of 0–55 °C, and at low peptide concentrations between 10-4 and 10-2 moles peptide per mole phospholipid. The incorporation of -lysin into lipid assemblies alters the lipid structure without significant changes on the temperatures of phase transition from gel to liquid crystalline phase. The temperature of the main transition was nearly unaffected. A reduction in the transition volume of the lipids with increasing concentrations of -lysin was observed. The minor changes in these parameters were interpreted as long-range structural changes caused by the peptide incorporation. The results are discussed in terms of the concept of cooperative phase transition of entire clusters occurring within a membrane implying that relative stable domains of gel phase, and liquid crystalline phase co-exist.  相似文献   

18.
Structure of lipid bilayers   总被引:8,自引:0,他引:8  
The quantitative experimental uncertainty in the structure of fully hydrated, biologically relevant, fluid (L(alpha)) phase lipid bilayers has been too large to provide a firm base for applications or for comparison with simulations. Many structural methods are reviewed including modern liquid crystallography of lipid bilayers that deals with the fully developed undulation fluctuations that occur in the L(alpha) phase. These fluctuations degrade the higher order diffraction data in a way that, if unrecognized, leads to erroneous conclusions regarding bilayer structure. Diffraction measurements at high instrumental resolution provide a measure of these fluctuations. In addition to providing better structural determination, this opens a new window on interactions between bilayers, so the experimental determination of interbilayer interaction parameters is reviewed briefly. We introduce a new structural correction based on fluctuations that has not been included in any previous studies. Updated measurements, such as for the area compressibility modulus, are used to provide adjustments to many of the literature values of structural quantities. Since the gel (L(beta)') phase is valuable as a stepping stone for obtaining fluid phase results, a brief review is given of the lower temperature phases. The uncertainty in structural results for lipid bilayers is being reduced and best current values are provided for bilayers of five lipids.  相似文献   

19.
Large-scale initiatives for obtaining spatial protein structures by experimental or computational means have accentuated the need for the critical assessment of protein structure determination and prediction methods. These include blind test projects such as the critical assessment of protein structure prediction (CASP) and the critical assessment of protein structure determination by nuclear magnetic resonance (CASD-NMR). An important aim is to establish structure validation criteria that can reliably assess the accuracy of a new protein structure. Various quality measures derived from the coordinates have been proposed. A universal structural quality assessment method should combine multiple individual scores in a meaningful way, which is challenging because of their different measurement units. Here, we present a method based on a generalized linear model (GLM) that combines diverse protein structure quality scores into a single quantity with intuitive meaning, namely the predicted coordinate root-mean-square deviation (RMSD) value between the present structure and the (unavailable) "true" structure (GLM-RMSD). For two sets of structural models from the CASD-NMR and CASP projects, this GLM-RMSD value was compared with the actual accuracy given by the RMSD value to the corresponding, experimentally determined reference structure from the Protein Data Bank (PDB). The correlation coefficients between actual (model vs. reference from PDB) and predicted (model vs. "true") heavy-atom RMSDs were 0.69 and 0.76, for the two datasets from CASD-NMR and CASP, respectively, which is considerably higher than those for the individual scores (-0.24 to 0.68). The GLM-RMSD can thus predict the accuracy of protein structures more reliably than individual coordinate-based quality scores.  相似文献   

20.
The recent crystal structure of the prokaryotic inwardly rectifying potassium channel, KirBac1.1, revealed for the first time the structure of a K+ channel in the closed state plus the location of the activation gate. Comparison of the KirBac1.1 structure with other known ion channels reveals a number of common structural features. These common characteristics include the formation of the ion conduction pathway at the interface between adjacent subunits, non-fixed charges forming part of the ion pathway, electrostatic sinks drawing ions into the channel, helix dipoles, and hydrophobic gates that ultimately prevent ion movement. This review describes in detail common structural themes present in ion channels.Presented at the Biophysical Society Meeting on Ion channels – from structure to disease held in May 2003, Rennes, France  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号