共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Liu YZ Xiao P Guo YF Xiong DH Zhao LJ Shen H Liu YJ Dvornyk V Long JR Deng HY Li JL Recker RR Deng HW 《Human genetics》2006,119(3):295-304
Human height is an important and heritable trait. Our previous two genome-wide linkage studies using 630 (WG1 study) and an extended sample of 1,816 Caucasians (WG2 study) identified 9q22 [maximum LOD score (MLS)=2.74 in the WG2 study] and preliminarily confirmed Xq24 (two-point LOD score=1.91 in the WG1 study, 2.64 in the WG2 study) linked to height. Here, with a much further extended large sample containing 3,726 Caucasians, we performed a new genome-wide linkage scan and confirmed, in high significance, the two regions’ linkage to height. An MLS of 4.34 was detected on 9q22 and a two-point LOD score of 5.63 was attained for Xq24. In an independent sub-sample (i.e., the subjects not involved in the WG1 and WG2 studies), the two regions also achieved significant empirical P values (0.002 and 0.004, respectively) for “region-wise” linkage confirmation. Importantly, the two regions were replicated on a genotyping platform different from the WG1 and WG2 studies (i.e., a different set of markers and different genotyping instruments). Interestingly, 9q22 harbors the ROR2 gene, which is required for growth plate development, and Xq24 was linked to short stature. With the largest sample from a single population of the same ethnicity in the field of linkage studies for complex traits, our current study, together with two previous ones, provided overwhelming evidence substantiating 9q22 and Xq24 for height variation. In particular, our three consecutive whole genome studies are uniquely valuable as they represent the first practical (rather than simulated) example of how significant increase in sample size may improve linkage detection for human complex traits.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. 相似文献
3.
Genetic and physical mapping of Xq24-q26 markers flanking the Lowe oculocerebrorenal syndrome 总被引:1,自引:0,他引:1
The Lowe oculocerebrorenal syndrome (OCRL) is characterized by congenital cataract, mental retardation, and renal tubular dysfunction. We are using the approaches of linkage analysis, mapping with somatic cell hybrids, and long-range restriction mapping to determine the order of Xq24-q26 markers with respect to each other and to the OCRL locus. DXS42 and DXS100 are proximal to the translocation breakpoint in a female patient with OCRL and a de novo translocation t(X;3)(q25;q27). DXS10, DXS86, HPRT, and DXS177 are distal to the breakpoint. These flanking markers show tight linkage to the disease locus in 11 families segregating for OCRL. Results from field inversion gel analysis show that DXS86 and DXS10 share a 460-kb BssHII fragment. Multipoint analysis to determine the position of HPRT with respect to (DXS10,DXS86) suggests that HPRT is proximal to (DXS10,DXS86). We propose the following order for markers in Xq24-q26: Xcen-(DXS42,DXS37,DXS100)-OCRL-DXS53 -HPRT-[(DXS10,DXS86),DXS177]-Xqter. The identification of additional tightly linked flanking markers extends the number of markers available for use in genetic counseling and begins to define the physical map of the region containing the gene for OCRL. 相似文献
4.
We have used a panel of somatic cell hybrids containing different rearrangements of human chromosome 13 to integrate genetic and physical maps of this chromosome. The positions of 17 translocation/deletion breakpoints on human chromosome 13 have been determined relative to the microsatellite markers on the genetic linkage map compiled by Généthon. Because markers on maps from several other Consortium groups have also been analyzed using many of the same hybrids, it was possible to relate these with the Généthon map. The position of all of the chromosome breakpoints have been placed, wherever possible, between two adjacent markers on the genetic linkage maps using PCR analysis for the presence/absence of the markers in the somatic cell hybrids. The positions of the breakpoints have already been determined cytogenetically, and some of these breakpoints are located at landmark positions on the chromosome. The relative density of markers along the chromosome differs between independently derived maps, and, based on the known locations of certain breakpoints in the physical map, inconsistencies in the genetic maps have been identified. 相似文献
5.
Xose M. Lens Luiz F. Onuchic Guanqing Wu Tomohito Hayashi Martin Daoust Toshio Mochizuki Lorenzo B. Santarina John M. Stockwin Gabi Mücher Jutta Becker William E. Sweeny Jr. Ellis D. Avner Lisa Guay-Woodford Klaus Zerres Stefan Somlo Gregory G. Germino 《Genomics》1997,41(3):463
Autosomal recessive polycystic kidney disease is one of the most common hereditary renal cystic diseases in children. Genetic studies have recently assigned the only known locus for this disorder, PKHD1, to chromosome 6p21–p12. We have generated a YAC contig that spans 5 cM of this region, defined by the markers D6S1253–D6S295, and have mapped 43 sequence-tagged sites (STS) within this interval. This set includes 20 novel STSs, which define 12 unique positions in the region, and three ESTs. A minimal set of two YACs spans the segment D6S465–D6S466, which contains PKHD1, and estimates of their sizes based on information in public databases suggest that the size of the critical region is <3.1 Mb. Twenty-eight STSs map to this interval, giving an average STS density of <1/150 kb. These resources will be useful for establishing a complete trancription map of the PKHD1 region. 相似文献
6.
Npy1randNpy2r,the genes encoding mouse type 1 and type 2 neuropeptide Y receptors, have been mapped by interspecific backcross analysis. Previous studies have localized the human genes encoding these receptors to chromosome 4q31–q32. We have now assignedNpy1randNpy2rto conserved linkage groups on mouse Chr 8 and Chr 3, respectively, which correspond to the distal region of human chromosome 4q. Using yeast artificial chromosomes, we have estimated the distance between the human genes to be approximately 6 cM. Although ancient tandem duplication events may account for some closely spaced G-protein-coupled receptor genes, the large genetic distance between the human type 1 and type 2 neuropeptide Y receptor genes raises questions about whether this mechanism accounts for their proximity. 相似文献
7.
Koen Kas Eva Röijer Marianne Voz Eva Meyen Göran Stenman Wim J.M. Van de Ven 《Genomics》1997,43(3):349
Pleomorphic adenomas are benign epithelial tumors originating from the major and minor salivary glands. Extensive cytogenetic studies have demonstrated that they frequently show chromosome abnormalities involving chromosome 8, with consistent breakpoints at 8q12. In previous studies, we have shown that these breakpoints are located in a 9-cM interval betweenMOS/D8S285 and D8S260. Here, we describe directional chromosome walking studies starting from D8S260 as well as D8S285. Using the CEPH and ICRF YAC libraries, these studies resulted in the construction of two nonoverlapping YAC contigs of about 2 and 5 Mb, respectively. Initial fluorescencein situhybridization (FISH) analysis suggested that the majority of 8q12 breakpoints clustered within the 2-Mb contig, which was mapped to the centromeric part of chromosome band 8q12. This contig has at least double coverage and consists of 34 overlapping YAC clones. The localization of the YACs was confirmed by FISH analysis. On the basis of mapping data of landmarks with an average spacing of 65 kb as well as restriction enzyme analysis, a long-range physical map was established for the chromosome region spanned by the 2-Mb contig. The relative positions of various known genes and expressed sequence tags within this contig were also determined. Subsequent FISH analyses of pleomorphic adenomas using YACs as well as cosmids revealed that all but two of the 8q12 breakpoints in the primary tumors tested mapped within a 300-kb interval between theMOSproto-oncogene and STS EM156. The target gene affected by the chromosome aberrations mapping within this interval was recently shown to be thePLAG1gene, which encodes a novel zinc finger protein. 相似文献
8.
9.
David L. Saltman Gregory M. Dolganov Janet A. Warrington John J. Wasmuth Michael Lovett 《Genomics》1993,16(3)
The q23-q33 region of human chromosome 5 encodes a large number of growth factors, growth factor receptors, and hormone/neurotransmitter receptors. This is also the general region into which several disease genes have been mapped, including diastrophic dysplasia, Treacher Collins syndrome, hereditary startle disease, the myeloid disorders that are associated with the 5q-syndrome, autosomal-dominant forms of hereditary deafness, and limb girdle muscular dystrophy. We have developed a framework physical map of this region using cosmid clones isolated from the Los Alamos arrayed chromosome 5-specific library. Entry points into this library included 14 probes to genes within this interval and one anonymous polymorphic marker locus. A physical map has been constructed using fluorescence in situ hybridization of these cosmids on metaphase and interphase chromosomes, and this is in good agreement with the radiation hybrid map of the region. The derived order of loci across the region is cen-IL4-IL5-IRF1-IL3-IL9-EGR1-CD14-FGFA-GRL-D5S207-ADRB2-SPARC-RPS14-CSF1R-ADRA1, and the total distance spanned by these loci is approximately 15 Mb. The framework map, genomic clones, and contig expansion within 5q23-q33 should provide valuable resources for the eventual isolation of the clinically relevant loci that reside in this region. 相似文献
10.
Kent Hunter Jessica Greenwood Yun-Liang Yang James M. Cunningham Bruce Birren David Housman 《Genomics》1999,58(3):318-322
Rmc1, the cellular receptor for the polytropic class of murine retroviruses, determines the tissue tropism of the virus and therefore plays a critical role in the pathogenesis of polytropic virus-induced leukemia. Previously we reported the physical mapping of this gene to a 5-cM region of mouse chromosome 1 and the construction of a yeast artificial chromosome (YAC) contig across this region. In this report we describe the refinement of the Rmc1 candidate region to approximately 600 kb and the generation of an integrated somatic cell hybrid, YAC, and bacterial artificial chromosome contig spanning the region. A number of genes and loci were physically ordered along the chromosome, including a recently identified candidate for Rmc1. 相似文献
11.
The TI1/UPK1b gene codes for a protein of the “tetraspan” family and is expressed as a differentiation product of the mammalian urothelium. A partial genomic clone of the human homologue of the TI1/UPK1b gene was isolated and used as probe to localize the human gene to chromosome 3q13.3–q21 byin situhybridization. Using the same probe, aTaqI restriction fragment length polymorphism, with 29% heterozygosity, was identified by Southern analysis. 相似文献
12.
Ahmed Belmouden Marie F. Adam Stéphane Dupont de Dinechin Antoine P. Brézin Philippe Rigault Ilya Chumakov Jean-François Bach Henri-Jean Garchon 《Genomics》1997,39(3):348
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness in industrialized countries. A locus for juvenile-onset POAG,GLC1A,has been mapped to 1q21–q31 in a 9-cM interval. With recombinant haplotypes, we have now reduced theGLC1Ainterval to a maximum of 3 cM, between theD1S452/NGA1/D1S210andNGA5loci. These loci are 2.8 Mb apart on a 4.7-Mb contig that we have completed between theD1S2851andD1S218loci and that includes 96 YAC clones and 48 STSs. The newGLC1Ainterval itself is now covered by 25 YACs, 30 STSs, and 16 restriction enzyme site landmarks. The lack of aNotI site suggests that the region has few CpG islands and a low gene content. This is compatible with its predominant cytogenetic location on the 1q24 G-band. Finally, we have excluded important candidate genes, including genes coding for three ATPases (ATP1B1, ATP2B4, ATP1A2), an ion channel (VDAC4), antithrombine III (AT3), and prostaglandin synthase (PTGS2). Our results provide a basis to identify theGLC1Agene. 相似文献
13.
Christopher Hayes Andreas Rump Matthew R. Cadman Mark Harrison Edward P. Evans Mary F. Lyon Gillian M. Morriss-Kay Andr Rosenthal Steve D. M. Brown 《Genomics》2001,78(3):197
The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0. 4-cM (±0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation. 相似文献
14.
Nicolas Pollet Claire Boccaccio Sophie Dhorne-Pollet Catherine Driancourt Nicole Raynaud Charles Auffray Michelle Hadchouel Michèle Meunier-Rotival 《Genomics》1997,42(3):489
Physical mapping and localization of eSTS markers were used to generate an integrated physical and gene map covering a ∼10-Mb region of human chromosome 20p12 containing the Alagille syndrome (AGS) locus. Seventy-four STSs, 28 of which were derived from cDNA sequences, mapped with an average resolution of 135 kb. The 28 eSTS markers define 20 genes. Six known genes, namely CHGB, BMP2, PLCB1, PLCB4, SNAP, and HJ1, were precisely mapped. Among the genes identified, one maps in the smallest region of overlap of the deletions associated with AGS and could therefore be regarded as a candidate gene for Alagille syndrome. 相似文献
15.
16.
17.
18.
Silvia Speroni Simone Nenci Ivonne Robel Victor B. Luzhkov Bruno Canard 《Journal of molecular biology》2009,387(5):1137-1152
Astroviruses are single-stranded RNA viruses with a replication strategy based on the proteolytic processing of a polyprotein precursor and subsequent release of the viral enzymes of replication. So far, the catalytic properties of the astrovirus protease as well as its structure have remained uncharacterized. In this study, the three-dimensional crystal structure of the predicted protease of human pathogenic astrovirus has been solved to 2.0 Å resolution. The protein displays the typical properties of trypsin-like enzymes but also several characteristic features: (i) a catalytic Asp-His-Ser triad in which the aspartate side chain is oriented away from the histidine, being replaced by a water molecule; (ii) a non-common conformation and composition of the S1 pocket; and (iii) the lack of the typical surface β-ribbons together with a “featureless” shape of the substrate-binding site. Hydrolytic activity assays indicate that the S1 pocket recognises Glu and Asp side chains specifically, which, therefore, are predicted to occupy the P1 position on the substrate cleavage site. The positive electrostatic potential featured by the S1 region underlies this specificity. The comparative structural analysis highlights the peculiarity of the astrovirus protease, and differentiates it from the human and viral serine proteases. 相似文献
19.
CD45-AP is a recently identified phosphorylated protein that specifically associates with the leukocyte-specific transmembrane glycoprotein CD45. The gene for CD45-AP,Ptprcap(protein tyrosine phosphatase, receptor type c polypeptide associated protein), was mapped in mouse by typing the progeny of two multilocus crosses using the mouse CD45-AP cDNA as a Southern hybridization probe. The CD45-AP gene mapped to the centromeric region of Chr 19 proximal to the genesFth, Cd5,andPcna-rs.The gene for the human CD45-AP homologue,PTPRCAP,was localized to chromosome band 11q13.1–q13.3 by fluorescencein situhybridization using human genomic CD45-AP DNA as a hybridization probe. The genetic mapping of thePtprcap/PTPRCAPgenes extends the previously defined synteny conservation of various genes that have been assigned to these regions of the mouse and the human chromosomes. 相似文献
20.
Using pulsed field gel electrophoresis (PFGE) and Southern hybridization techniques, a physical map of Moraxella catarrhalis strain ATCC25238 was constructed to provide basic genetic knowledge of this bacterium that has attracted attention in recent years as a human pathogen. Restriction endonuclease NotI cut the genome into 10 fragments and SmaI into 9, and the molecular size of the genome was estimated to be 1,940 kilobases. Location of the 12 genes participating in the biosynthesis of purine, pyrimidine and nine kinds of amino acids were determined on the circular physical map of the strain. 相似文献