首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Raman spectra of the parallel-stranded duplex formed from the deoxyoligonucleotides 5'-d-[(A)10TAATTTTAAATATTT]-3' (D1) and 5'-d[(T)10ATTAAAATTTATAAA]-3' (D2) in H2O and D2O have been acquired. The spectra of the parallel-stranded DNA are then compared to the spectra of the antiparallel double helix formed from the deoxyoligonucleotides D1 and 5'-d(AAATATTTAAAATTA-(T)10]-3' (D3). The Raman spectra of the antiparallel-stranded (aps) duplex are reminiscent of the spectra of poly[d(A)].poly[d(T)] and a B-form structure similar to that adopted by the homopolymer duplex is assigned to the antiparallel double helix. The spectra of the parallel-stranded (ps) and antiparallel-stranded duplexes differ significantly due to changes in helical organization, i.e., base pairing, base stacking, and backbone conformation. Large changes observed in the carbonyl stretching region (1600-1700 cm-1) implicate the involvement of the C(2) carbonyl of thymine in base pairing. The interaction of adenine with the C(2) carbonyl of thymine is consistent wtih formation of reverse Watson-Crick base pairing in parallel-stranded DNA. Phosphate-furanose vibrations similar to those observed for B-form DNA of heterogenous sequence and high A,T content are observed at 843 and 1092 cm-1 in the spectra of the parallel-stranded duplex. The 843-cm-1 band is due to the presence of a sizable population of furanose rings in the C2'-endo conformation. Significant changes observed in the regions from 1150 to 1250 cm-1 and from 1340 to 1400 cm-1 in the spectra of the parallel-stranded duplex are attributed to variations in backbone torsional and glycosidic angles and base stacking.  相似文献   

2.
Isoguanine (2-hydroxyladenine) is a product of oxidative damage to DNA and has been shown to cause mutation. It is also a potent inducer of parallel-stranded DNA duplex structure. The structure of the parallel-stranded DNA duplex (PS-duplex) 5'-d(TiGiCAiCiGiGAiCT) + 5'-d(ACGTGCCTGA), containing the isoguanine (iG) and 5-methyl-isocytosine (iC) bases, has been determined by NMR refinement. All imino protons associated with the iG:C, G:iC, and A:T (except the two terminal A:T) basepairs are observed at 2 degrees C, consistent with the formation of a stable duplex suggested by the earlier Tm measurements [Sugiyama, H., S. Ikeda, and I. Saito. 1996. J. Am. Chem. Soc. 118:9994-9995]. All basepairs are in the reverse Watson-Crick configuration. The structural characteristics of the refined PS-duplex are different from those of B-DNA. The PS duplex has two grooves with similar width (7.0 A) and depth (7.7 A), in contrast to the two distinct grooves (major groove width 11.7 A, depth 8.5 A, and minor groove width 5.7 A, depth 7.5 A) of B-DNA. The resonances of the amino protons of iG and C are clearly resolved and observable, but those of the G and iC are very broad and difficult to observe. Several intercalators with different complexities, including ethidium, daunorubicin, and nogalamycin, have been used to probe the flexibility of the backbone of the (iG, iC)-containing PS-duplex. All of them produce drug-induced UV/vis spectra identical to their respective spectra when bound to B-DNA, suggesting that those drugs bind to the (iG, iC)-containing PS-duplex using similar intercalation processes. The results may be useful in the design of intercalator-conjugated oligonucleotides for antisense applications. The study presented in this paper augments our understanding of a growing number of parallel-stranded DNA structures, including the G-quartet, the i-motif, and the unusual homo basepaired parallel-stranded double helix. Their possible relevance is discussed.  相似文献   

3.
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5′-most A–A base pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.  相似文献   

4.
We have investigated the conformational potentials of several DNA oligonucleotides containing sequences related to 5'-CGA in neutral pH and low pH (< 5.0) conditions. One-dimensional proton NMR spectra show that d(CGATCG), d(TCGATCGA), and d(CGATCGATCG) exhibit new sets of resonances at low pH (approximately 3.8-4.4), when compared to those from the neutral pH samples. The low pH form and the neutral pH form are in slow equilibrium. Analyses of the data suggest that these sequences under low pH conditions adopt structures distinct from B-DNA. Two-dimensional nuclear Overhauser effect spectroscopy (2D NOESY) data from the DNA hexamer d(CGATCG) of the neutral and low pH samples were used to analyze their respective structures in solution. An iterative NOE spectral-driven refinement procedure, SPEDREF [Robinson, H., & Wang, A. H.-J. (1992) Biochemistry 31, 3524-3533], was used to show that the neutral pH structure is close to canonical B-DNA. In contrast, analysis of the low pH form using the 2D NOESY data suggests that its structure is consistent with a right-handed parallel-stranded (PS) double helix with symmetrical non-Watson-Crick (C+:C, G:G, A:A, T:T) homo base pairs. Supporting evidence for the PS helix includes the asymmetric inversion-recovery relaxation times associated with the two ends of the helix. The structure is favored by the 5'-CGA sequence in which the cytosines provide the C+:C pairing for the nucleation step and the GpA step is significantly stabilized by the interstrand G-A stacking interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The oligonucleotides 5'-d(TTTTCTTTTG) and 5'-d(AAAAGAAAAG) were cross-linked with a trans-[Pt(NH3)2]2+ entity via the N7 positions of the 3'-end guanine bases to give parallel-stranded (ps) DNA. At pH 4.2, CD and NMR spectroscopy indicate the presence of Hoogsteen base pairing. In addition, temperature-dependent UV spectroscopy shows an increase in melting temperature for the platinated duplex (35 degrees C) as compared to the non-platinated, antiparallel-stranded duplex formed from the same oligonucleotides (21 degrees C). A monomer-dimer equilibrium for the platinated 20mer is revealed by gel electrophoresis. At pH 4.2, addition of a third strand of composition 5'-d(AGCTTTTCTTTTAG) to the ps duplex leads to the formation of a triple helix with two distinct melting points at 38 degrees C (platinum cross-linked Hoogsteen part) and 21 degrees C (Watson-Crick part), respectively.  相似文献   

6.
DNA oligonucleotides can form multi-stranded structures such as a duplex, triplex, and quadruplex, while the double helical structure is generally considered as the canonical structure of DNA oligonucleotides. Guanine-rich or cytosine-rich oligonucleotides, which are observed in telomere, centromere, and other biologically important sequences in vivo, can form four-stranded G-quadruplex and I-motif structures in vitro. In this study, we have investigated the effects of pH and cation on the structures and their stabilities of d(G4T4G4) and d(C4A4C4). The CD spectra and thermal melting curves of DNAs at various pHs demonstrated that acidic conditions induced a stable I-motif structure of d(C4A4C4), while the pH value did not affect the G-quadruplex structure and stability of d(G4T4G4). The CD spectra of the 1:1 mixture of d(G4T4G4) and d(C4A4C4) indicated that the acidic conditions inhibit the duplex formation between d(G4T4G4) and d(C4A4C4). Isothermal titration calorimetry measurements of the duplex formation at various pHs also quantitatively indicated that the acidic conditions inhibit the duplex formation. On the other hand, the CD spectra and thermal melting curves of DNAs in the absence and presence of Ca2+ indicated that Ca2+ induces a parallel G-quadruplex structure of d(G4T4G4) and then inhibits the duplex formation. These results lead to the conclusion that both the pH and coexisting cation can induce and regulate the structural polymorphisms the oligonucleotides in which they form the G-quadruplex, I-motif, and duplex depending on the conditions. Thus, the results reported here indicate pivotal roles of pH and coexisting cations in biological processes by regulating the conformational switching between the duplex and quadruplexes structures of the guanine-rich or cytosine-rich oligonucleotides in vivo.  相似文献   

7.
DNA dodecamers have been designed with two cytosines on each end and intervening A and T stretches, such that the oligomers have fully complementary A:T base pairs when aligned in the parallel orientation. Spectroscopic (UV, CD and IR), NMR and molecular dynamics studies have shown that oligomers having the sequences d(CCATAATTTACC) and d(CCTATTAAATCC) form a parallel-stranded duplex when dissolved at 1:1 stoichiometry in aqueous solution. This is due to the C:C+ clamps on either end and extensive mismatches in the antiparallel orientation. The structure is stable at neutral and acidic pH. At higher temperatures, the duplex melts into single strands in a highly cooperative fashion. All adenine, cytosine and thymine nucleotides adopt the anti conformation with respect to the glycosidic bond. The A:T base pairs form reverse Watson–Crick base pairs. The duplex shows base stacking and NOEs between the base protons T(H6)/A(H8) and the sugar protons (H1′/H2′/H2″) of the preceding nucleotide, as has been observed in antiparallel duplexes. However, no NOEs are observed between base protons H2/H6/H8 of sequential nucleotides, though such NOEs are observed between T(CH3) and A(H8). A three-dimensional structure of the parallel-stranded duplex at atomic resolution has been obtained using molecular dynamics simulations under NMR constraints. The simulated structures have torsional angles very similar to those found in B-DNA duplexes, but the base stacking and helicoid parameters are significantly different.  相似文献   

8.
A 30 base pair parallel-stranded (ps) duplex ps-L1.L2 composed of two adjoined purine-purine and purine-pyrimidine sequence blocks has been characterized thermodynamically and spectroscopically. The 5'-terminal 15 residues in both strands ('left-half') consisted of the alternating d(GA)7G sequence that forms a ps homoduplex secondary structure stabilized by d(G.G) and d(A.A) base pairs. The 3'-terminal 15 positions of the sequence ('right-half') were combinations of A and T with complementary reverse Watson-Crick d(A.T) base pairing between the two strands. The characteristics of the full length duplex were compared to those of the constituent left and right halves in order to determine the compatibility of the two ps helical forms. The thermal denaturation curves and hyperchromicity profiles of all three duplexes determined by UV absorption spectroscopy were characteristic of ps-DNA, in accordance with previous studies. The thermodynamic properties of the 30 bp duplex corresponded within experimental error to the linear combination of the two 15-mers. Thus, the Tm and delta HvH of ps-L1.L2 in 10 mM MgCl2, derived from analyses according to a statistical mechanical formulation for the helix-coil transition, were 43 degrees C and 569 kJ mol-1, compared to 21 degrees C, 315 kJ mol-1 (ps-F5.F6) and 22 degrees C, 236 kJ mol-1 (ps-GA15). The UV absorption and CD spectra of ps-L1.L2 and the individual 15-mer ps motifs were also compared quantitatively. The sums of the two constituent native spectra (left+right halves) accurately matched that of the 30 bp duplex, with only small deviations in the 195-215 nm (CD) and 220-240 nm (absorption) regions. Based on analysis by native gel electrophoresis, the sequences studied formed duplex structures exclusively; there were no indications of higher order species. Chemical modification with diethyl pyrocarbonate showed no hyperreactivity of the junctional bases, indicating a smooth transition between the two parallel-stranded conformations. We conclude that under given salt conditions, oligonucleotides with normal primary chemical structures can readily form a parallel-stranded double helix based on blocks of very disparate non-canonical purine-purine and purine-pyrimidine base pairs and without perceptible destabilization at the junction. There are biological implications of these findings in relation to genetic structure and expression.  相似文献   

9.
In contrast to shorter homologs which only form a single-stranded nucleic acid alpha-helix in acid solution at [Na+]</=0.02 M Na+, d(A-G)20,30 form in addition a parallel-stranded duplex with (A+.A+) and (G.G) base pairs and interstrand dA+...PO2-ionic and dA+NH2... O=P H-bonds. Under conditions where duplex prevails over alpha-helix, the contribution of the base-backbone interactions to stability varies directly with [H+] and inversely with [Na+], just as in poly(A+.A+). These duplexes are characterized by intense circular dichroism and a large cooperative thermally-induced hyperchromic transition that is dependent on oligomer concentration. Dimethylsulfate reactivity of the dG residues indicates G.G and therefore dA+.dA+rather than dA+.G base pairs. At much higher ionic strength (Na+>/=0.2 M) the protonated base-backbone interactions are so weakened that duplex stability becomes increasingly dependent upon H-bonded base pairing and stacking and almost independent of pH. Between pH 6 and 8 this duplex structure is devoid of protonated dA residues and shows positive dependence of T m on ionic strength similar to that of DNA.  相似文献   

10.
The infrared spectra of three different 25-mer parallel-stranded DNAs (ps-DNA) have been studied. We have used ps-DNAs containing either exclusively dA x dT base pairs or substitution with four dG x dC base pairs and have them compared with their antiparallel-stranded (aps) reference duplexes in a conventional B-DNA conformation. Significant differences have been found in the region of the thymine C = O stretching vibrations. The parallel-stranded duplexes showed characteristic marker bands for the C2 = O2 and C4 = O4 carbonyl stretching vibrations of thymine at 1685 cm-1 and 1668 cm-1, respectively, as compared to values of 1696 cm-1 and 1663 cm-1 for the antiparallel-stranded reference duplexes. The results confirm previous studies indicating that the secondary structure in parallel-stranded DNA is established by reversed Watson--Crick base pairing of dA x dT with hydrogen bonds between N6H...O2 and N1...HN3. The duplex structure of the ps-DNA is much more sensitive to dehydration than that of the aps-DNA. Interaction with three drugs known to bind in the minor groove of aps-DNA--netropsin, distamycin A and Hoechst 33258--induces shifts of the C = O stretching vibrations of ps-DNA even at low ratio of drug per DNA base pair. These results suggest a conformational change of the ps-DNA to optimize the DNA-drug interaction. As demonstrated by excimer fluorescence of strands labeled with pyrene at the 5'-end, the drugs induce dissociation of the ps-DNA duplex with subsequent formation of imperfectly matched aps-DNA to allow the more favorable drug binding to aps-DNA. Similarly, attempts to form a triple helix of the type d(T)n.d(A)n.d(T)n with ps-DNA failed and resulted in the dissociation of the ps-DNA duplex and reformation of a triple helix based upon an aps-DNA duplex core d(T)10.d(A)10.  相似文献   

11.
This paper reports on a combined two-dimensional NMR and energy minimization computational characterization of the conformation of the N-(deoxyguanosyl-8-yl)aminofluorene adduct [(AF)G] positioned across adenosine in a DNA oligomer duplex as a function of pH in aqueous solution. This study was undertaken on the d[C1-C2-A3-T4-C5-(AF)G6-C7-T8-A9-C10-C11].[G12-G13-T14 -A15-G16-A17-G18- A19-T20-G21-G22] complementary undecamer [(AF)G 11-mer duplex]. The modification of the single G6 on the pyrimidine-rich strand was accomplished by reaction of the oligonucleotide with N-acetoxy-2-(acetylamino)fluorene and subsequent deacetylation under alkaline conditions. The HPLC-purified modified strand was annealed with the unmodified purine-rich strand to generate the (AF)G 11-mer duplex. The exchangeable and nonexchangeable protons are well resolved and narrow in the NMR spectra of the (AF)G 11-mer duplex so that the base and the majority of sugar nucleic acid protons, as well as several aminofluorene ring protons, have been assigned following analysis of two-dimensional NOESY and COSY data sets at pH 6.9, 30 degrees C in H2O and D2O solution. The NOE distance constraints establish that the glycosidic torsion angle is syn at (AF)G6 and anti at A17, which results in the aminofluorene ring being positioned in the minor groove. A very large downfield shift is detected at the H2' sugar proton of (AF)G6 associated with the (AF)G6[syn].A17[anti] alignment in the (AF)G 11-mer duplex. The NMR parameters demonstrate formation of Watson-Crick C5.G18 and C7.G16 base pairs on either side of the (AF)G6[syn].A17[anti] modification site with the imino proton of G18 more stable to exchange than the imino proton of G16. Several nonexchangeable aminofluorene protons undergo large downfield shifts as do the imino and H8 protons of G16 on lowering of the pH from neutrality to acidic values for the (AF)G 11-mer duplex. Both the neutral and acidic pH conformations have been defined by assigning the NOE constraints in the [C5-(AF)G6-C7].[G16-A17-G18] segment centered about the modification site and incorporating them in distance constrained minimized potential energy calculations in torsion angle space with the DUPLEX program. A series of NOEs between the aminofluorene protons and the DNA sugar protons in the neutral pH conformation establish that the aminofluorene ring spans the minor groove and is directed toward the G16-A17-G18 sugar-phosphate backbone on the partner strand.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Alternating (C-T)n sequences are involved in the H-DNA structure associated with (GA)n.(CT)n sequences. Low pH values facilitate H-DNA formation. We have undertaken a detailed analysis of the structural consequences of the (C-T)n sequence as a function of pH. The structures of three DNA oligonucleotides, d(CT)4, d(TC)4 and d(TC)15, have been studied by NMR. We found that their conformations are polymorphic and pH dependent. There are at least three major conformational species: an antiparallel-stranded (APS) duplex with entirely C:T base pairs at pH 7, an antiparallel-stranded (APS) duplex with entirely C+:T base pairs at pH 3, and a possible parallel-stranded (PS) duplex with C+:C and T:T base pairs near pH 5. In the intermediate pH range, the APS duplex may have varying numbers of C+:T and C:T base pairs, and there may be a fast exchange going on between APS duplex species involving these two kinds of base pairs. However, the transition between the APS and PS duplexes is slow. Structural refinement of the two octamers, d(TC)4 and d(CT)4, at pH = 6.9 and pH = 3 using 2D-NOE data suggests that the molecules are likely in the duplex form at 5 degrees C. We lack evidence that the structure at pH 3 is a PS structure with T nucleotides residing in the exterior of the helix. Titration of the longer oligonucleotide, d(TC)15, showed a prominent pKa of approximately 6, approaching the value of 7.0 obtained from the titration of poly-(dC).  相似文献   

13.
The vacuum UV CD spectra of G.G.C triplexes.   总被引:1,自引:1,他引:0       下载免费PDF全文
Vacuum UV circular dichroism (CD) spectra were measured down to 175 nm for d(C)10, d(G)10, the d(G)10.d(C)10 duplex, and the d(G)10.d(G)10.d(C)10 triplex. A CD difference spectrum was calculated for d(G)10.d(C)10 giving the change in CD induced by forming the duplex from d(G)10 and d(C)10. The d(G)10.d(G)10.d(C)10 CD difference spectrum gave the CD induced by triplex formation from binding of d(G)10 to the d(G)10.d(C)10 duplex. In the near-UV, the d(G)10.d(C)10 and d(G)10.d(G)10.d(C)10 difference spectra resembled the difference spectrum for poly[r(G).r(C)] (Biopolymers 29, 325-333). This similarity may be an indication of similar purine base stacking. The d(G)10.d(G)10.d(C)10 vacuum UV difference spectrum had a negative band at 195 nm and a positive band at 180 nm, making it similar to difference spectra for homopolymer triplexes containing T.A.T and U.A.U triplets (Nucl. Acids Res. 19, 2275-2280). The appearance of these bands in difference spectra should be good indicators of triplex formation. The complementary oligonucleotides c-mycI d(CCCCACCCTCCC) and c-mycII d(GGGAGGGTGGGG) are part of the regulatory sequences of the human c-myc gene. G.G.C rich triplexes formed by binding c-mycII or c-mycIII d(GGGGTGGGTGGG) to the c-mycI.c-mycII duplex had CD difference spectra similar to that of d(G)10.d(G)10.d(C)10 in both the vacuum UV and near UV regions, indicating similar triplet structures.  相似文献   

14.
G K Smith  J Jie  G E Fox    X Gao 《Nucleic acids research》1995,23(21):4303-4311
DNA triplet repeats, 5'-d(CTG)n and 5'-d(CAG)n, are present in genes which have been implicated in several neurodegenerative disorders. To investigate possible stable structures formed by these repeating sequences, we have examined d(CTG)n, d(CAG)n and d(CTG).d(CAG)n (n = 2 and 3) using NMR and UV optical spectroscopy. These studies reveal that single stranded (CTG)n (n > 2) forms stable, antiparallel helical duplexes, while the single stranded (CAG)n requires at least three repeating units to form a duplex. NMR and UV melting experiments show that the Tm increases in the order of [(CAG)3]2 < [(CTG)3]2 << (CAG)3.(CTG)3. The (CTG)3 duplex is stable and exhibits similar NMR spectra in solutions containing 0.1-4 M NaCl and at a pH range from 4.6 to 8.8. The (CTG)3 duplex, which contains multiple-T.T mismatches, displays many NMR spectral characteristics similar to those of B-form DNA. However, unique NOE and 1H-31P coupling patterns associated with the repetitive T.T mismatches in the CTG repeats are discerned. These results, in conjunction with recent in vitro studies suggest that longer CTG repeats may form hairpin structures, which can potentially cause interruption in replication, leading to dynamic expansion or deletion of triplet repeats.  相似文献   

15.
DNA-based biosensor for monitoring pH in vitro and in living cells   总被引:1,自引:0,他引:1  
DNA is a promising material for the construction of a biosensor or bioindicator because its structure is sensitive to the binding of cofactors. In the current studies, we found that a combination of two DNA oligonucleotides, 5'-TCTTTCTCTTCT-3' and 5'-AGAAAGAGAAGA-3', exhibit a novel structural transition from a Watson-Crick antiparallel duplex to a parallel Hoogsteen duplex as the pH changes from pH 7.0 to 5.0. By labeling this DNA for fluorescence resonance energy transfer, we were able to develop a sensitive pH indicator that can detect changes between pH 7.0 and 5.0. Moreover, using DNA-based hairpin parallel-stranded duplex in conjunction with fluorescence microscopy, we were able to observe the pH changes in living cells during apoptosis as an easily detected change in color. These results indicate that the DNA-based pH indicator should be useful for detecting pH changes between pH 7.0 and 5.0 in living cells.  相似文献   

16.
Parallel-stranded DNA can be formed from alternating AT segments and is not restricted exclusively to homooligomeric AT sequences. DNA oligonucleotides 3'-d(AT)nxC4(AT)n-3' (where x indicates the location of the 5'-5' phosphodiester linkage) form parallel-stranded hairpin structures at micromolar strand concentration for n = 4 or 5 but not for n = 6, 7. The spectral properties of the parallel-stranded structures are similar to those of the hairpin structures containing homooligomeric AT stems. However, parallel-stranded structures formed in alternating AT segments are significantly less stable than either their corresponding antiparallel control or the homooligomeric parallel AT hairpins as evidenced by their lower helix-coil transition enthalpy, melting temperature, and stability constant. This results in a remarkable polymorphism which is most pronounced for 3'-d(AT)5xC4(AT)5-3'. This oligonucleotide can exist as a parallel-stranded hairpin, coil, or concatameric antiparallel structure(s), depending on temperature and strand concentration. These results suggest simple guidelines for the design of parallel-stranded DNA. In addition, we present a model for the assessment of the stability of parallel-stranded duplex structures formed from AT base pairs based on their sequence.  相似文献   

17.
P K Lin  D M Brown 《Nucleic acids research》1989,17(24):10373-10383
The synthesis of the deoxynucleoside derived from the base P, 6H,8H-3,4-dihydro-pyrimido[4,5-c] [4,5-c] [1,2]oxazin-7-one, 2, and its introduction by established phosphoramidite and H-phosphonate chemistry into oligonucleotides is described. The melting transition temperatures (Tm) of a range of heptadecamer duplexes containing P/A and P/G base-pairs are compared with corresponding ones having N4-methoxycytosine (M) 1 and mismatched normal bases. P/A and P/G pairs allow closely similar duplex stabilities and have the potential to reduce the multiplicity of probes and primers based on amino acid sequences by removing the T/C degeneracy.  相似文献   

18.
We have observed the existence of a parallel complementary region between two Drosophila DNA sequences, fragments of the suffix [(1986) EMBO J, 5, 2341-2347] and a 5'-non-coding sequence of the alcohol dehydrogenase gene [(1983) Cell 33, 125-133]. The region includes approximately 40 bp, 76% of which are complementary in the same polarity. Synthetic complementary 16 bp oligonucleotides corresponding to this region which were bound by the 5'-ends through a 1.6-hexanediol bridge form a duplex which displays both melting and annealing as judged by UV absorbance. Anti parallel complementary 16 bp long oligonucleotides bound by the 5'-3' ends through the same bridge and a single-strand sequence were used as controls. The Hoechst 33,258 drug binds to this parallel duplex of DNA; however, the properties of such a complex testify against the B-form of the duplex.  相似文献   

19.
Triplex and duplex formation of two deoxyribohexadecamers d-A-(G-A)-G (a) and d-C-(T-C)-T (b) have been studied by UV, CD, fluorescence, and proton NMR spectroscopy. Optical studies of a and b at dilute concentrations (microM range) yielded results similar to those seen for polymers of the same sequence, indicating that these hexadecamers have properties similar to the polymers in regard to triplex formation. The CD spectra of concentrated NMR samples (mM range) are similar to those observed at optical concentrations at both low and high pH, making possible a correlation between CD and NMR studies. In NMR spectra, two imido NH-N hydrogen bonded resonance envelopes at 12.6 and 13.7 ppm indicate that only the duplex conformation is present at pH greater than 7.7. Four new NH-N hydrogen-bonded resonance envelopes at 12.7, 13.5, 14.2, and 14.9 ppm are observed under acidic conditions (pH 5.6) and the two original NH-N resonances gradually disappear as the pH is lowered. Assignment of these four peaks to Watson-Crick G.C. Hoogsteen T.A Watson-Crick A.T, and Hoogsteen C+.G hydrogen-bonded imidos, respectively, confirm the formation of triple-stranded DNA NMR results also show that triplex is more stable than duplex at the same salt condition and that triplex melts to single strands directly without going through a duplex intermediate. However, in the melting studies, a structural change within the triple-stranded complex is evident at temperatures significantly below the major helix-to-coil transition. These studies demonstrate the feasibility of using NMR spectroscopy and oligonucleotide model compounds a and b for the study of DNA triplex formation.  相似文献   

20.
Human telomeric DNA composed of (TTAGGG/CCCTAA)n repeats may form a classical Watson-Crick double helix. Each individual strand is also prone to quadruplex formation: the G-rich strand may adopt a G-quadruplex conformation involving G-quartets whereas the C-rich strand may fold into an i-motif based on intercalated C*C+ base pairs. Using an equimolar mixture of the telomeric oligonucleotides d[AGGG(TTAGGG)3] and d[(CCCTAA)3CCCT], we defined which structures existed and which would be the predominant species under a variety of experimental conditions. Under near-physiological conditions of pH, temperature and salt concentration, telomeric DNA was predominantly in a double-helix form. However, at lower pH values or higher temperatures, the G-quadruplex and/or the i-motif efficiently competed with the duplex. We also present kinetic and thermodynamic data for duplex association and for G-quadruplex/i-motif unfolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号