首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Takishita K  Koike K  Maruyama T  Ogata T 《Protist》2002,153(3):293-302
The dinoflagellate genus Dinophysis contains species known to cause diarrhetic shellfish poisoning. Although most photosynthetic dinoflagellates have plastids with peridinin, photosynthetic Dinophysis species have cryptophyte-like plastids containing phycobilin rather than peridinin. We sequenced nuclear- and plastid-encoded SSU rDNA from three photosynthetic species of Dinophysis for phylogenetic analyses. In the tree of nuclear SSU rDNA, Dinophysis was a monophyletic group nested with peridinin-containing dinoflagellates. However, in the tree of plastid SSU rDNA, the Dinophysis plastid lineage was within the radiation of cryptophytes and was closely related to Geminigera cryophila. These analyses indicate that an ancestor of Dinophysis, which may have originally possessed peridinin-type plastid and lost it subsequently, adopted a new plastid from a cryptophyte. Unlike dinoflagellates with fully integrated plastids, the Dinophysis plastid SSU rDNA sequences were identical among the three species examined, while there were species-specific base substitutions in their nuclear SSU rDNA sequences. Queries of the DNA database showed that the plastid SSU rDNA sequence of Dinophysis is almost identical to that of an environmental DNA clone of a <10 pm sized plankter, possibly a cryptophyte and a likely source of the Dinophysis plastid. The present findings suggest that these Dinophysis species engulfed and temporarily retained plastids from a cryptophyte.  相似文献   

2.
Gurgel  C.F.  Fredericq  S.  & Norris  J.N. 《Journal of phycology》2000,36(S3):27-27
Dinoflagellates of the genus Dinophysis are agents of Diarrhetic Shellfish Poisoning (DSP). They occur along the French coast and affect shellfish exploitation during most of the year (during spring, summer and autumn). Because this species is difficult to cultivate, very little is known about this organism. The first problem is the species-delineation within this genus which is sometimes unclear based upon the solely on morphological features, in particular for the complex D. acuminata ( D. cf. acuminata,, D. cf. norvegica, D. cf.sacculus , and D. skagii ) or the complex D. sacculus ( D. sacculus and D. pavillardii ). The second problem is its detection in natural samples. French Dinophysis blooms have been reported to be toxic under 100 cells L−1, a concentration which corresponds to less than 1 cell 10-mL−1, as determined by the Utermöhl method of enumeration. Molecular tools may help to resolve these two kind of problems. During one year (spring 1999 to spring 2000), more than 100 fixed samples containing Dinophysis spp. cells were collected along the French coast by the French monitoring network (or REPHY; http://www. ifremer.fr). The genetic diversity of Dinophysis spp. was studied by sequencing and analysis of ribosomal DNA genes. We found that sequences were hightly conserved between species or within the D. acuminata or D. sacculus complex. Two oligonucleotide probes, specific to these complex groups, were designed. Their specificity and sensitivity are actually tested on natural samples by a PCR-based assay. Furthur investigation will include the development of standard molecular diagnostics due to their rapid and sensitive detection in natural samples.  相似文献   

3.
Qiu D  Huang L  Liu S  Lin S 《PloS one》2011,6(12):e29398
The Dinophysis genus is an ecologically and evolutionarily important group of marine dinoflagellates, yet their molecular phylogenetic positions and ecological characteristics such as trophic modes remain poorly understood. Here, a population of Dinophysis miles var. indica was sampled from South China Sea in March 2010. Nuclear ribosomal RNA gene (rDNA) SSU, ITS1-5.8S-ITS2 and LSU, mitochondrial genes encoding cytochrome B (cob) and cytochrome C oxidase subunit I (cox1), and plastid rDNA SSU were PCR amplified and sequenced. Phylogenetic analyses based on cob, cox1, and the nuclear rRNA regions showed that D. miles was closely related to D. tripos and D. caudata while distinct from D. acuminata. Along with morphology the LSU and ITS1-5.8S-ITS2 molecular data confirmed that this population was D. miles var. indica. Furthermore, the result demonstrated that ITS1-5.8S-ITS2 fragment was the most effective region to distinguish D. miles from other Dinophysis species. Three distinct types of plastid rDNA sequences were detected, belonging to plastids of a cryptophyte, a haptophyte, and a cyanobacterium, respectively. This is the first documentation of three photosynthetic entities associated with a Dinophysis species. While the cyanobacterial sequence likely represented an ectosymbiont of the D. miles cells, the detection of the cryptophyte and haptophyte plastid sequences indicates that the natural assemblage of D. miles likely retain more than one type of plastids from its prey algae for temporary use in photosynthesis. The result, together with recent findings of plastid types in other Dinophysis species, suggests that more systematic research is required to understand the complex nutritional physiology of this genus of dinoflagellates.  相似文献   

4.
Observations of two distinct size classes with similar shape in natural populations of Dinophysis Ehrenberg were first reported by Jorgensen in 1923 and intermediate forms exhibiting a continuum between the typical vegetative cell and a putative small cell by Wood in 1954. Focused attention on Dinophysis spp. associated with diarrhetic shellfish intoxications in the last decade has provided new examples of small cells in the genus, sometimes with contours dissimilar from the corresponding vegetative cells; dimorphic individuals; and large/small cell couplets. This work was based on in situ observations during intensive sampling for cell cycle studies of Dinophysis acuminata Claparéde et Lachmann, Dinophysis acuta Ehrenberg, Dinophysis caudata Saville-Kent, and Dinophysis tripos Gourret; on laboratory incubations of D. acuminata; and on a thorough search of documented information on morphological variability of Dinophysis spp. During in situ division, most dividing cells exhibit a normal longitudinal fission, but some (1%–10%) undergo a “depauperating” fission, leading to pairs of dimorphic cells with dissimilar moieties. After separation and sulcal list regeneration, these dimorphic cells become D. skagii Paulsen, D. dens Pavillard, D. diegensis Kofoid, and D. diegensis Kofoid var. curvata-like individuals, which can also be observed forming couplets D. acuminata/D. skagii, D. acuta/D. dens, and D. caudata/D. diegensis attached by their ventral margins. Small cells can grow again to large size, as shown in laboratory incubations of D. acuminata, thus partly explaining observations of thecal intercalary bands, and intermediate forms. The sexual nature of the small cells will not be unequivocally demonstrated until controlled germination of the alleged cyst forms is achieved, and some intermediate forms may correspond to undescribed stages after cyst germination. These observations suggest common patterns in the life cycle of Dinophysis spp. Intraspecific morphological variability of Dinophysis spp. in a given geographic area can largely be attributed to small cell formation, as a response to changing environmental conditions, and may be a part of the sexual cycle of these species. Small cells seem to be able to enlarge, leading to intermediate cell and further vegetative cell formation as part of a three-looped life history pattern in Dinophysis.  相似文献   

5.
Hybridization tests among the four sibling species of the Drosophila melanogaster complex were made to determine the reproductive status of the recently discovered D. sechellia (which is endemic to a few islands and islets of the Seychelles archipelago) with regard to its three close relatives, D. mauritiana (endemic to Mauritius) and Afrotropical strains of the two cosmopolitan species D. melanogaster and D. simulans. Interstrain variation in the ability to hybridize with other species was also analyzed for D. melanogaster and D. simulans. D. mauritiana and D. simulans appear to be more weakly isolated from each other than either species is from D. sechellia. A striking unilateral mating success is observed in the cross of D. sechellia with D. simulans. The most extreme isolation is between D. melanogaster and its three siblings. Variation in the ability of strains to hybridize is observed in heterospecific crosses between D. simulans and either D. melanogaster or D. mauritiana.  相似文献   

6.
Dinophysis is a cosmopolitan genus of marine dinoflagellates, considered as the major proximal source of diarrheic shellfish toxins and the only producer of pectenotoxins (PTX). From three oceanographic expeditions carried out during autumn, spring and late summer along the Argentine Sea (∼38–56°S), lipophilic phycotoxins were determined by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) in size-fractionated plankton samples. Lipophilic toxin profiles were associated with species composition by microscopic analyses of toxigenic phytoplankton. Pectenotoxin-2 and PTX-11 were frequently found together with the presence of Dinophysis acuminata and Dinophysis tripos. By contrast, okadaic acid was rarely detected and only in trace concentrations, and dinophysistoxins were not found. The clear predominance of PTX over other lipophilic toxins in Dinophysis species from the Argentine Sea is in accordance with previous results obtained from north Patagonian Gulfs of the Argentine Sea, and from coastal waters of New Zealand, Chile, Denmark and United States. Dinophysis caudata was rarely found and it was confined to the north of the sampling area. Because of low cell densities, neither D. caudata nor Dinophysis norvegica could be biogeographically related to lipophilic toxins in this study. Nevertheless, the current identification of D. norvegica in the southern Argentine Sea is the first record for the southwestern Atlantic Ocean. Given the typical toxigenicity of this species on a global scale, this represents an important finding for future surveillance of plankton-toxin associations.  相似文献   

7.
Drosophila simulans and D. sechellia are sibling species, the former cosmopolitan and the latter restricted to the Seychelles Islands. We used classical genetic analysis to measure the numbers and effects of genes responsible for reproductive isolation and morphological differences in male genitalia between these species. At least five loci are responsible for male sterility in hybrids, with the strongest effects produced by at least two genes on the X chromosome. At least three (and probably four) loci are responsible for the interspecific difference in the size of the posterior process of the male genital arch. These genetic results, as well as the pattern of morphological divergence between the species, show several parallels with the divergence between D. simulans and its other island relative, D. mauritiana. We also present the DNA sequence of a 4.5 kilobase region containing the alcohol dehydrogenase (Adh) locus of D. sechellia, and combine this with previous data to reconstruct the phylogenies of the three species and their more distant relative D. melanogaster. Both D. mauritiana and D. sechellia are very closely related to D. simulans. Although most phylogenies show the two island species to be independent offshoots of the D. simulans lineage (with D. sechellia the more recent), the branch points are too close to make this conclusion unambiguous. The genetic and evolutionary parallels between the simulans/mauritiana and the simulans/sechellia divergences may therefore represent either a striking evolutionary convergence or a close common ancestry of the island species. A comparison of Adh alleles within species shows that the divergence among them may be almost as large as among alleles from different species. We conclude that many of the nucleotide differences among these species actually represent polymorphisms within common ancestors. It may be difficult to build accurate phylogenies using only a single DNA sequence from each species.  相似文献   

8.
The identification of Dinophysis species with similar morphology but different toxic (Diarrhetic Shellfish Poisoning, DSP) potential is a crucial task in harmful algae monitoring programmes. The taxonomic assignment of Dinophysis species using molecular markers is a difficult task due to extremely low interspecific variability within their nuclear ribosomal genes and intergenic regions. Mitochondrial cox1 gene has been proposed as a better specific marker for Dinophysis species based on its higher resolution for two morphologically related species (Dinophysis acuminata and Dinophysis ovum) of the “Dinophysis acuminata complex”. In this study, the potential of two mitochondrial genes (mt cox1 and cob) to discriminate among six Dinophysis species (field isolates and cultures) associated with DSP events was explored. Neither mt cox1 nor cob genes provided enough resolution for all species of Dinophysis. The cob gene showed very poor resolution and grouped all Dinophysis spp. in a common clade. In contrast, the cox1 phylogeny distinguished 5 clades in the Dinophysiales – the “acuminata complex”, the “caudata group”, “acuta + norvegica” and Phalacromaspp. However, within the “D. acuminata complex” mtcox1 is so far the unique marker that differentiates D. acuminata from other species: isolates of D. ovum and Dinophysis sacculus had almost identical sequences (only four mismatches), but they were well separated from D. acuminata. D. acuminata and Dinophysis skagii (considered a life cycle stage of the former) showed identical cox1 sequences. Probes towards this gene can be useful in Mediterranean and Western Iberia sites where the co-occurrence of close morphotypes of D. acuminata and D. sacculus pose a problem for monitoring analyses. This is the first report on cultures of D. sacculus and its phylogenetic relation with other species of the D. acuminata complex.  相似文献   

9.
Dinoflagellates are a major taxonomic group in marine phytoplankton communities in terms of diversity and biomass. Some species are also important because they form blooms and/or produce toxins that may cause diverse problems. The composition of planktonic dinoflagellates of the orders Prorocentrales and Dinophysiales, in the Veracruz Reef System, were obtained during the period of October 2006 to January 2007. For this, samples were taken from the surface at 10 stations with net of 30 microm mesh, and were analyzed by light and scanning electron microscopy. Each species was described and illustrated, measured and their distribution and ecological data is also given. A total of nine species were found and identified, belonging to four genera: Dinophysis was represented by three species; Prorocentrum by three, Phalacroma by two, and only one species of Ornithocercus was detected. From the samples, four potentially toxin-producer species were found: Dinophysis caudata, D. rapa, Phalacroma rotundata and Prorocentrum micans. The number of species found in this study is low, especially considering the higher numbers observed in other areas of the Gulf of Mexico, where some reports have recorded up to 53 species of the order Dinophysiales and 14 for Prorocentrales. Identification keys for orders, genera and species for the study area are provided with this study.  相似文献   

10.
Red-fluorescent, non-phycobilin-containing plastids were found in the heterotrophic dinoflagellate, Dinophysis mitra. Transmission electron microscopy showed that they contained a three-layer thylakoid, the absence of girdle lamella, and an embedded pyrenoid with thylakoid intrusions. These characteristics all coincide with haptophyte plastids. Phylogenetic analysis of the plastid small-subunit ribosomal DNA (SSU rDNA) revealed that the Dinophysis mitra sequences are distantly related to those of phycobilin-containing Dinophysis species and are positioned within a lineage of haptophytes belonging to Prymnesiophyceae. Because the plastid SSU rDNA sequences of Dinophysis mitra showed significant heterogeneity, despite being derived from a single species, it is highly likely that they were not established as plastids through an evolutionary process but are "kleptoplastids" (temporally stolen plastids) from multiple sources of haptophytes in the environment. We deduced that Dinophysis mitra takes up haptophytes myzocytotically and selectively retains the plastid with surrounding plastidal membranes, whereas other haptophyte cell components are degraded. This represents another type of kleptoplastidy in the Dinophysis species, which mostly harbor cryptophyte plastids, and is the first evidence of kleptoplastidy originating from haptophytes.  相似文献   

11.
广东沿海几种赤潮生物的分类学研究   总被引:23,自引:0,他引:23  
对1997年秋 ̄1998年春广东沿海多次赤潮发生期间的几种优势赤潮藻类进行了形态学和分类学研究。1种为我国首次报道引发赤潮的定革命金藻类(Prymnesiophytes)-球状棕囊藻(Phaeocystis cf.gliobosa)。另有甲藻类7种,其中裸甲藻目(Gymnodiniales)3种:米氏裸甲藻(Gymnodinium cf.mikimotoi)、环节环沟藻(Gyrodinium in  相似文献   

12.
Food vacuoles were found in one species of pho‐totrophic Dinophysis, Dinophysis fortii Pavillard, collected in Okkirai Bay. Under transmission electron microscopy, almost 70% of observed food vacuoles were characterized by membranous profiles and contained large numbers of mitochondria. The mitochondria in the food vacuole had different morphologies from those in the D. fortii cytoplasm. This indicates that these vacuoles are not autolytic accumulation bodies, but ‘true’ food vacuoles. Identification of the origin of the contents failed, but the existence of large amounts of foreign mitochondria implies that the contents in the vacuoles were derived from eukaryotic prey. Other than the observation of the food vacuoles, bacterial cells were observed in the flagellar canal. Because the flagellar canal and connecting pusule sacs had been reported to relate to macromolecule uptake, the prey organisms of D. fortii were assumed to be both eukaryotic and prokaryotic organisms.  相似文献   

13.
14.
Morton RA  Choudhary M  Cariou ML  Singh RS 《Genetica》2004,120(1-3):101-114
Comparison of synonymous and nonsynonymous variation/substitution within and between species at individual genes has become a widely used general approach to detect the effect of selection versus drift. The sibling species group comprised of two cosmopolitan (Drosophila melanogaster and Drosophila simulans) and two island (Drosophila mauritiana and Drosophila sechellia) species has become a model system for such studies. In the present study we reanalyzed the pattern of protein variation in these species, and the results were compared against the patterns of nucleotide variation obtained from the literature, mostly available for melanogaster and simulans. We have mainly focused on the contrasting patterns of variation between the cosmopolitan pair. The results can be summarized as follows: (1) As expected the island species D. mauritiana and D. sechellia showed much less variation than the cosmopolitan species D. melanogaster and D. simulans. (2) The chromosome 2 showed significantly less variation than chromosome 3 and X in all four species which may indicate effects of past selective sweeps. (3) In contrast to its overall low variation, D. mauritiana showed highest variation for X-linked loci which may indicate introgression from its sibling, D. simulans. (4) An average population of D. simulans was as heterozygous as that of D. melanogaster (14.4% v.s. 13.9%) but the difference was large and significant when considering only polymorphic loci (37.2% v.s. 26.1%). (5) The species-wise pooled populations of these two species showed similar results (all loci = 18.3% v.s. 20.0%, polymorphic loci = 47.2% v.s. 37.6%). (6) An average population of D. simulans had more low-frequency alleles than D. melanogaster, and the D. simulans alleles were found widely distributed in all populations whereas the D. melanogaster alleles were limited to local populations. As a results of this, pooled populations of D. melanogaster showed more polymorphic loci than those of D. simulans (48.0% v.s. 32.0%) but the difference was reduced when the comparison was made on the basis of an average population (29.1% v.s. 21.4%). (7) While the allele frequency distributions within populations were nonsignificant in both D. melanogaster and D. simulans, melanogaster had fewer than simulans, but more than expected from the neutral theory, low frequency alleles. (8) Diallelic loci with the second allele with a frequency less than 20% had similar frequencies in all four species but those with the second allele with a frequency higher than 20% were limited to only melanogaster the latter group of loci have clinal (latitudinal) patterns of variation indicative of balancing selection. (9) The comparison of D. simulans/D. melanogaster protein variation gave a ratio of 1.04 for all loci and 1.42 for polymorphic loci, against a ratio of approximately 2-fold difference for silent nucleotide sites. This suggests that the species ratios of protein and silent nucleotide polymorphism are too close to call for selective difference between silent and allozyme variation in D. simulans. In conclusion, the contrasting levels of allozyme polymorphism, distribution of rare alleles, number of diallelic loci and the patterns of geographic differentiation between the two species suggest the role of natural selection in D. melanogaster, and of possibly ancient population structure and recent worldwide migration in D. simulans. Population size differences alone are insufficient as an explanation for the patterns of variation between these two species.  相似文献   

15.
16.
The purpose of the study was to investigate the genetic diversity of Dinophysis species from around the Scottish coast, with a view to an improved understanding of the dynamics and identification of this genus in Scottish waters. Single-cell PCR amplification with direct sequencing was performed on a total of 441 Dinophysis cells isolated from both live and Lugol's fixed plankton net samples. Universal eukaryotic primers were used to amplify the large subunit (LSU) ribosomal RNA (rRNA) gene of the Dinophysis isolates, with a frequency of PCR success of 26% for non-fixed and 48% for fixed samples. From this a total of 30 isolates were selected for this study and the D1–D2 region of the LSU-rRNA gene sequenced for phylogenetic analysis. No significant correlation could be made between geographical location and LSU sequence, although some regional sequence heterogeneity was observed within the Dinophysis acuta species. LSU sequence data was used to design Dinophysis genus specific and Dinophysis clade-specific primers primarily to ensure clean sequences from universal D1–D2 amplicons without a requirement for cloning. Three clade-specific primers designed to a region within the D2 hypervariable region of the LSU-rRNA gene allowed discrimination of Dinophysis acuminata/norvegica from Dinophysis tripos/caudata and Dinophysis fortii/acuta. In two isolates, SC359 (D. tripos) and LC58 (D. acuta), nested PCR products were observed with both the expected clade-specific primer, and Dasd-R2, the D. acuminata/norvegica clade-specific primer. Cloning and sequence analysis suggested that these amplicons were genuine “D. acuminata-like” sequences and their presence, albeit at a low frequency within different Dinophysis species, indicated that individual Dinophysis cells possess heterologous copies of the LSU-rRNA gene that are similar to LSU sequences normally associated with D. acuminata. The nature of the process that generated these hybrid cells, the frequency of such events and their importance is as yet unknown, but may provide a cautionary note for the development of PCR-based species specific detection methods.  相似文献   

17.
The highly repetitive satellite DNA family "ATOC180" is specific for the three closely related species Drosophila obscura, D. ambigua, and D. tristis but does not occur in their closest relatives D. subsilvestris and D. bifasciata. Approximately 10,000 copies/haploid genome of approximately 180-bp repetition units are tandemly arranged in the centromeric heterochromatin of all chromosomes of all three species. Molecular analysis of 29 cloned repeats shows much intra- and interspecific sequence homogeneity. Single nucleotide changes are the main source of variability and distinguish the sequence-, subfamily- and species-specific ATOC180 repeats from each other. Based on these nucleotide differences, phylogenetic dendrograms were constructed and compared with published trees for other traits. The data indicate that the sequences of the ATOC180 satellite DNA family probably arose in a phylogenetically "short period" during the anagenetic evolution of the common ancestor of D. obscura, D. tristis, and D. ambigua, as a consequence of a process of genome reorganization, followed by a "long period" of entirely gradual sequence evolution. For the latter period, an evolutionary rate of 3 x 10(-8) substitutions/site/year was calculated.   相似文献   

18.
Mitochondrial DNA cleavage maps from three chromosomally homosequential species Drosophila simulans, D. mauritiana, and D. sechellia, were established for 12 restriction enzymes. One isofemale strain was studied in D. sechellia (se), 13 in D. simulans, and 17 in D. mauritiana: in the last two species, respectively, three (siI, II, and III) and two (maI and II) cleavage morphs were found. The evolutionary relationships based on mtDNA cleavage map comparisons show that the maI and se mtDNAs are internal branches of the phylogenetic tree of the D. simulans mtDNA. D. mauritiana and D. sechellia species appear to be derived from a population of D. simulans which carried an ancestral form of the current siI mtDNA type. In addition, two cleavage morphs (siIII [only present in D. simulans from Madagascar] and maI) appeared to be identical, although found in different species. We present a speculative interpretation of data on biogeography and hybridization which is consistent with the hypothesis of a recent introgression of mitochondrial DNA of D. simulans from Madagascar into D. mauritiana.  相似文献   

19.
There is consensus surrounding the need to include a third dimension when estimating Species Distribution Models (SDMs), which is of special interest for marine species. Application of the third dimension is, however, rarely available, thus users are obliged to manually combine 2D SDM outputs (i.e., suitability or presence/absence maps) for 3D distribution generation. Herein, the Niche of Occurrence 3D (NOO3D) is presented, which is a new, simple modelling procedure that provides 3D distributions using both 3D occurrence samples and environmental datasets that consist of one layer per depth value. NOO3D performance was evaluated using five virtual marine species to avoid errors associated with real data sets (three pelagic species, with wide, medium, and narrow distributions, respectively, a mesopelagic species and an abyssal species). These virtual species are distributed across the North Atlantic Ocean and were built to a 0.5° x 0.5° resolution and considering 49 depth levels (from 0.43 m to an undersea depth of 5274.7 m). NOO3D results were also compared to those provided by 3D Alpha Shapes and Maximum Entropy (MaxEnt). The True Positive Rate (TPR), or sensitivity, True Negative Rate (TNR), or specificity, False Positive Rate (FPR), or commission error, and False Negative Rate (FNR), or omission error, were employed in order to facilitate comparison between methods. MaxEnt performed best for TPR, TSS and FNR, and Alpha Shape 3D performed best for FPR and TNR. NOO3D was always the second-ranked method for all metrics considered, which indicates that it was the most suitable method. The provided results indicate that NOO3D can be considered a viable alternative in achieving three-dimensional species distribution models.  相似文献   

20.
Two cryophilic Desmotetra species, D. aureospora , sp. nov., and D. antarctica (Fritsch) Ling appear to be unique to the southern hemisphere snow ecosystem, or at least to the Windmill Island region, Antarctica. They have not been encountered in previous extensive studies of the Arctic and northern alpine regions. Also unusual are the higher pH (6.8 and 7.8) and conductivities of 279 μS·cm−1 and 426 μS·cm−1 for habitat conditions of D. antarctica that can be attributed to the influence of penguin guano. Both species are characterized by cells enveloped in individual mucilage layers, 1–3 contractile vacuoles, and a cup-shaped chloroplast containing a diffuse pyrenoid. The cells divided in three planes to form cubical loosely aggregated green cell packages embedded in mucilage. Vegetative cells of the two species cannot be distinguished with certainty; however, their zygospores are very different. Desmotetra aureospora has spherical, smooth-walled, golden zygospores, whereas D. antarctica has pale, yellow green, aereolate zygospores. Mucilage stalk morphology of cells in stationary-phase cultures can also be used to separate the two species. Zygospores of D. antarctica have previously been identified as the snow alga Trochiscia antarctica Fritsch. Both species are currently maintained in culture at the Australian Antarctic Division. The cultures did not grow at temperatures above 15° C. The two species are compared with the soil alga D. stigmatica (Deason) Deason et Floyd, the only other species in the genus, and also with Chlorosarcina stigmatica Deason strain T105. Results show that the three Desmotetra species form a natural group and that the absence or presence of a wall on the zoospore is of dubious value in classifications of green algal taxa above the species level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号