首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribonucleoprotein complex formation during pre-mRNA splicing in vitro.   总被引:36,自引:9,他引:27       下载免费PDF全文
The ribonucleoprotein (RNP) structures of the pre-mRNA and RNA processing products generated during in vitro splicing of an SP6/beta-globin pre-mRNA were characterized by sucrose gradient sedimentation analysis. Early, during the initial lag phase of the splicing reaction, the pre-mRNA sedimented heterogeneously but was detected in both 40S and 60S RNP complexes. An RNA substrate lacking a 3' splice site consensus sequence was not assembled into the 60S RNP complex. The two splicing intermediates, the first exon RNA species and an RNA species containing the intron and the second exon in a lariat configuration (IVS1-exon 2 RNA species), were found exclusively in a 60S RNP complex. These two splicing intermediates cosedimented under a variety of conditions, indicating that they are contained in the same RNP complex. The products of the splicing reaction, accurately spliced RNA and the excised IVS1 lariat RNA species, are released from the 60S RNP complex and detected in smaller RNP complexes. Sequence-specific RNA-factor interactions within these RNP complexes were evidenced by the preferential protection of the pre-mRNA branch point from RNase A digestion and protection of the 2'-5' phosphodiester bond of the lariat RNA species from enzymatic debranching. The various RNP complexes were further characterized and could be distinguished by immunoprecipitation with anti-Sm and anti-(U1)RNP antibodies.  相似文献   

2.
Immature oocytes from Xenopus laevis contain a 42S ribonucleoprotein particle (RNP) containing 5S RNA, tRNA, a 43 kDa protein, and a 48 kDa protein. A particle containing 5S RNA and the 43 kDa protein (p43-5S) liberated from the 42S particle upon brief treatment with urea can be purified by anion exchange chromatography. The purified p43-5S RNA migrates as a distinct species during electrophoresis on native polyacrylamide gels. Radiolabeled 5S RNA can be incorporated into the p43-5S complex by an RNA exchange reaction. The resulting complexes containing labeled 5S RNA have a mobility on polyacrylamide gels identical to that of purified p43-5S RNPs. RNP complexes containing 5S RNA labeled at either the 5' or 3' end were probed with a variety of nucleases in order to identify residues protected by p43. Nuclease protection assays performed with alpha-sarcin indicate that p43 binds primarily helices I, II, IV, and V of 5S RNA. This is the same general binding site observed for TFIIIA on 5S RNA. Direct comparison of the binding sites of p43 and TFIIIA with T1 and cobra venom nucleases reveals striking differences in the protection patterns of these two proteins.  相似文献   

3.
When Escherichia coli 30-S ribosomal subunits are hydrolysed under mild conditions, two ribonucleoprotein fragments of unequal size are produced. Knowledge of the RNA sequences contained in these hydrolysis products was required for the experiments described in the preceding paper, and the RNA sub-fragments have therefore been examined by oligonucleotide analysis. Two well-defined small fragments of free RNA, produced concomitantly with the ribonucleoprotein fragments, were also analysed. The larger ribonucleoprotein fragment, containing predominantly proteins S4, S5, S8, S15, S16 (17) and S20, contains a complex mixture of RNA sub-fragments varying from about 100 to 800 nucleotides in length. All these fragments arose from the 5'-terminal 900 nucleotides of 16-S RNA, corresponding to the well-known 12-S fragment. No long-range interactions could be detected within this RNA region in these experiments. The RNA from the smaller ribonucleoprotein fragment (containing proteins S7, S9 S10, S14 and S19) has been described in detail previously, and consists of about 450 nucleotides near the 3' end of the 16-S RNA, but lacking the 3'-terminal 150 nucleotides. The two small free RNA fragments (above) partly account for these missing 150 nucleotides; both fragments arose from section A of the 16-S RNA, but section J (the 3'-terminal 50 nucleotides) was not found. This result suggests that the 3' region of 16-S RNA is not involved in stable interactions with protein.  相似文献   

4.
An SP6/mouse insulin RNA precursor containing two exons and one intron can be spliced in a partially purified nuclear extract isolated from MOPC-315 mouse myeloma cells. We have detected the putative RNA splicing intermediate (intron-3'exon) in a lariat form, the excised intron in a lariat form, and the mRNA spliced product. The in vitro splicing reaction of gel-purified RNA precursors requires ATP and Mg2+ and was accompanied by the formation of a 60-40S ribonucleoprotein complex. The formation of the 60S complex requires ATP. At least two Sm snRNPs containing U1 and U2 RNAs are components of the 60-40S complex. The assemble of those snRNPs occurs early during the splicing reaction and it requires ATP and intron containing pre-mRNAs.  相似文献   

5.
6.
The 5' ends of U1, U2, U3, U4, and U5 small nuclear RNAs (snRNA) are capped by a structure which contains N2,N2-7-trimethylguanosine (m2,2,7 G). m2,2,7 G was used as hapten to raise antibodies in rabbits, and these antibodies were linked to Sepharose. When deproteinized RNA was passed through this antibody column, these snRNA species were retained by the column. Conversely, 4 S, 5 S, 5.8 S, U6, and 7 S RNA, whose 5' termini do not contain m2,2,7 G, were not recognized. After a nuclear extract was loaded on the column, U1 RNA and some U2 RNA were retained. Therefore, the 5' ends of at least U1 RNA are accessible when this RNA species is in small nuclear ribonucleoprotein particle (snRNP) form. This is of interest, since it has been proposed that the 5' terminus sequence of U1 RNA may hybridize with splice junctions in heterogeneous nuclear ribonucleoprotein particles (hnRNP) during mRNA splicing. The retention of m2,2,7 G-containing RNA species by these antibodies is not due to association of snRNAs or snRNPs with heterogeneous nuclear RNA (hnRNA) or hnRNP (and antibody recognition of 7-monomethylguanosine residues in hnRNA), since the reaction still occurs after removal of hnRNA or hnRNP by sucrose gradient centrifugation.  相似文献   

7.
8.
A ribonucleoprotein complex whose RNA complement consists exclusively of small nuclear RNA species (snRNA) has been purified from particles containing heterogenous nuclear RNA (hnRNP) from HeLa cells. This was accomplished by taking advantage of their ability to band at a density of about 1.43 g/cm3 in plain cesium chloride as well as in cesium chloride gradients containing 0.5% sarkosyl without prior aldehyde fixation. After these two steps of equilibrium density centrifugation, these snRNPs were still largely contaminated by free proteins (and especially phosphoproteins). A final step of purification by velocity sedimentation in a sucrose gradient containing 0.5 M cesium chloride and 0.5% sarkosyl was efficient in completely eliminating all free proteins. U1, U2, U4, U5 and U6 species according to the nomenclature of Lerner et al. (Nature, (1980) 283, 220-224) were found in these purified snRNPs, while a significant part of U6 and a small amount of U2 were found in the bottom fraction. 5S species behaved entirely as free RNA and is presumably a contaminant of cytoplasmic origin. Electrophoresis of proteins from snRNP labeled in vivo with (35S) methionine, revealed four bands with migrations corresponding to molecular weights ranging between 10,000 and 14,000 daltons.  相似文献   

9.
Ribonucleoprotein particles have been isolated from duck erythroblast nuclei using a procedure designed to produce maximal cytoplasmic dispersion with minimal release of endogenous hydrolytic enzymes. The RNA extracted from the purified nuclear ribonucleoprotein fraction is shown to contain globin messenger RNA sequences at a concentration comparable to that present in total nuclear RNA. The polypeptide composition of this fraction revealed by electrophoresis in two dimensions is complex, consisting of at least 65 acidic species and 21 basic species. Several lines of evidence suggest that these are authentic components of nuclear ribonucleoprotein. The so-called 'core' proteins of nuclear ribonucleoprotein which were previously shown to migrate as a single band on low-pH urea gels, and as six bands on sodium dodecyl sulphate gels are here shown to be considerably more complex being resolved by two-dimensional electrophoresis into a group of 15 basic and 6 more and less neutral polypeptides. Isoelectric focusing of nuclear ribonucleoprotein under non-denaturing conditions suggests that these latter species are not uniformly distributed along the pre-messenger RNA molecule.  相似文献   

10.
Nuclear RNA-protein complexes containing small molecular weight RNAs were isolated from hepatic nuclei of Rana catesbeiana tadpoles and frogs according to a procedure normally used for the isolation of heterogeneous nuclear ribonucleoprotein complexes from other eukaryotic tissues. Preliminary characterization of the tadpole nuclear RNP indicated a particle size of 50--70 S in sucrose density gradients and a buoyant density of 1.40 gm/ml in CsCl gradients. When analyzed on SDS-polyacrylamide gels, this complex was observed to contain at least 40 polypeptides ranging in molecular weight from 15,000 to 200,000. Nuclear RNA-protein complexes were also isolated from adult frog hepatic nuclei by the same protocol and the RNA moiety which had been purified from the frog complex was compared with the nuclear RNA isolated from the tadpole particles. Electrophoretic analysis of the nuclear RNA-protein-associated RNA revealed minor qualitative and quantitive differences in the more than 25 discrete bands (4--9 S) associated with each particle. Base analysis of tadpole and frog nuclear RNA revealed a nucleotide composition of approximately 50% adenosine plus uridine nucleotides, with an unusually high content of cytosine residues (approximately 30%). Comparison of the two RNA samples demonstrated a large increase in the adenosine content of frog unclear RNA, and the presence of a minor base in frog nuclear RNA which was absent in the tadpole sample. These results indicated that changes in the RNA content of the amphibian nuclear RNP complex had occurred during bullfrog development.  相似文献   

11.
12.
13.
Antibodies to the Sm antigen are closely associated with the rheumatic disease systemic lupus erythematosus (SLE). The Sm antigen exists in the cell as part of a ribonucleoprotein complex containing at least 10 polypeptides and five small nuclear RNA. The major immunoreactive Sm species are three polypeptides of m.w. 27,000, 26,000, and 13,000. By using an MRL/1 mouse, a strain which spontaneously produces a disease with many of the characteristics of human SLE, we have produced an anti-Sm hybridoma specific for the 13,000 m.w. Sm polypeptide. This monoclonal antibody is sufficient to allow for the rapid bulk isolation of the entire class of Sm snRNP, and can be used sequentially with an anti-(U1)RNP monoclonal antibody to subfractionate the Sm snRNP particles.  相似文献   

14.
Chicken bone marrow cells transformed by reticuloendotheliosis virus (REV) produce in the cytoplasm a ribonucleoprotein (RNP) complex which has a sedimentation value of approximately 80 to 100S and a density of 1.23 g/cm3. This RNP complex is not derived from the mature virion. An endogenous RNA-directed DNA polymerase activity is associated with the RNP complex. The enzyme activity was completely neutralized by anti-REV DNA polymerase antibody but not by anti-avian myeloblastosis virus DNA polymerase antibody. The DNA product from the endogenous RNA-directed DNA polymerase reaction of the RNP complex hybridized to REV RNA but not to avian leukosis virus RNA. The RNA extracted from the RNP hybridized only to REV-specific complementary DNA synthesized from an endogenous DNA polymerase reaction of purified REV. The size of the RNA in the RNP is 30 to 35S, which represents the subunit size of the genomic RNA. No 60S mature genomic RNA was found within the RNP complex. The significance of finding the endogenous DNA polymerase activity in the viral RNP in infected cells and the maturation process of 60S virion RNA of REV are discussed.  相似文献   

15.
A ribonucleoprotein particle containing about 20% ribonucleic acid (RNA), and containing little if any phospholipid or glucosamine, was recovered in high yield after treatment of Schmidt-Ruppin strain of Rous sarcoma virus and B77 virus with the nonionic detergent Nonidet P-40. This structure, which probably derives from the internal ribonucleoprotein filament described in electron microscopy studies, contained 80 to 90% of the viral 60 to 70S RNA and only about 10% of the protein present in intact virions. It sedimented in glycerol density gradients at approximately 130S and had a buoyant density in sucrose of about 1.34 g/ml. Studies with (32)P-labeled virus indicated that the ribonucleoprotein particle contained approximately 30 4S RNA molecules per 10(7) daltons of high-molecular-weight viral RNA. Intact virions contained about 70 4S RNA molecules per 10(7) daltons of high-molecular-weight RNA. Electrophoretic studies in dodecyl sulfate-containing polyacrylamide gels showed that the ribonucleoprotein particle contained only 5 of the 11 polypeptides found in the virion; of these the major component was a polypeptide weighing 14,000 daltons.  相似文献   

16.
In Drosophila, two nuclear proteins of approximately 26,000 and 14,000 molecular weight are recognized by a human autoimmune antibody for mammalian ribonucleoprotein (RNP) particles that contain U1 small nuclear RNA. The antibody-selected Drosophila RNP contains, in addition to these two proteins, a single RNA species that has been identified as U1 by hybridization with a cloned Drosophila U1 DNA probe. Small nuclear RNP isolated from human cells under the same conditions as used for Drosophila and selected by the anti-U1 RNP-specific antibody contains eight proteins, two of which are similar in molecular weight to the two Drosophila U1 RNP proteins. Thus, even though the nucleotide sequences of Drosophila and human U1 RNA are about 72% homologous, and the corresponding RNPs are both recognized by the same human autoantibody, Drosophila U1 RNP appears to have a simpler protein complement than its mammalian counterpart. The two Drosophila U1 RNA-associated proteins are synthesized at normal or slightly increased rates during the heat shock response and are incorporated into antibody-recognizable RNP complexes. This raises the possibility that U1 RNP is an indispensable nuclear element for cell survival during heat shock.  相似文献   

17.
Various species of rapidly labelled, informational ribonucleoproteins can be isolated from homogenates of newt oocytes. Polyribosome-associated ribonucleoprotein can be separated from heterogeneous nuclear ribonucleoprotein and free cytoplasmic ribonucleoprotein by sucrose gradient centrifugation. The polyribosome-associated ribonucleoprotein can be released from the ribosome complex by treatment with low concentrations of EDTA and has the following properties: 1. It is rapidly labelled with [3H]uridine under condition (incubation of oocytes for 4 h and less at 20 degrees C) where there is no detectable labelling of ribosomal subunits. 2. It is heterogeneous in size, consisting of particles most of which sediment between 40 S and 80 S. 3. Its sedimentation coefficient is related directly to the size of the polyribosomal complex from which it is derived. 4. Its density ranges from 1.35 g/cm3 to 1.55 g/cm3 irrespective of size. This indicates protein to RNA ratios of 4:1 to 2:1. 5. It is active, when complexed with ribosomes, in cell-free protein synthesis. It is concluded that this polyribosome-associated ribonucleoprotein is functional messenger and its role in oocyte maturation is discussed.  相似文献   

18.
Polyadenylation of messenger RNA precursors requires the nucleotide sequence AAUAAA and two factors: poly(A) polymerase and a specificity factor termed cleavage and polyadenylation factor (CPF). We have purified CPF from calf thymus and from HeLa cells to near homogeneity. Four polypeptides with molecular masses of 160, 100, 73, and 30 kDa cofractionate with CPF activity. Glycerol gradient centrifugation and gel filtration indicate that these four proteins form one large complex with a sedimentation constant of 12 S, a Stokes radius near 100 A, and a native molecular mass near 500 kDa. Purified CPF binds specifically to an RNA that contains the AAUAAA sequence. Mutation of the AAUAAA sequence inhibits CPF binding as well as polyadenylation. Purified CPF contains only trace amounts of RNA and does not react with antibodies against common epitopes of small nuclear ribonucleoprotein particles. Thus, contrary to previous indications, CPF does not appear to be a small nuclear ribonucleoprotein particle.  相似文献   

19.
Proteins S4, S16/S17 and S20 of the 30 S ribosomal subunit of Escherichia coli+ associate with specific binding sites in the 16 S ribosomal RNA. A systematic investigation of the co-operative interactions that occur when two or more of these proteins simultaneously attach to the 16 S RNA indicate that their binding sites lie near to one another. The binding site for S4 has previously been located within a 550-nucleotide RNA fragment of approximately 9 S that arises from the 5′-terminal portion of the 16 S RNA upon limited hydrolysis with pancreatic ribonuclease. The 9 S RNA was unable to associate with S20 and S16/S17, however, either alone or in combination. A fragment of similar size and nucleotide sequence, termed the 9 S1 RNA, has been isolated following ribonuclease digestion of the complex of 16 S RNA with S20 and S16/S17. The 9 S1 RNA bound not only S4, but S20 and S16/S17 as well, although the fragment complex was stable only when both of the latter protein fractions were present together. Nonetheless, measurements of binding stoichiometry demonstrated the interactions to be specific under these conditions. A comparison of the 9 S and 9 S1 RNAs by electrophoresis in polyacrylamide gels containing urea revealed that the two fragments differ substantially in the number and distribution of hidden breaks. Contrary to expectation, the RNA in the ribonucleoprotein complex appeared to be more accessible to ribonuclease than the free 16 S RNA as judged by the smaller average length of the sub-fragments recovered from the 9 S1 RNA. These results suggest that the binding of S4, S16/S17 and S20 brings about a conformational alteration within the 5′ third of the 16 S RNA.To delineate further the portions of the RNA chain that interact with S4, S16/S17 and S20, specific fragments encompassing subsequences from the 5′ third of the 16 S RNA were sought. Two such fragments, designated 12 S-I and 12 S-II, were purified by polyacrylamide gel electrophoresis from partial T1 ribonuclease digests of the 16 S RNA. The two RNAs, which contain 290 and 210 nucleotides, respectively, are contiguous and together span the entire 5′-terminal 500 residues of the 16 S RNA molecule. When tested individually, neither 12 S-I nor 12 S-II bound S4, S16/S17 or S20. If heated together at 40 °C in the presence of Mg2+ ions, however, the two fragments together formed an 8 S complex which associated with S4 alone, with S16/S17 + S20 in combination, and with S4 + S16/S17 + S20 when incubated with an un fractionated mixture of 30 S subunit proteins. These results imply that each fragment contains part of the corresponding binding sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号