首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cdk5 dysregulation is a major event in the neurodegenerative process of Alzheimer's disease (AD). In vitro studies using differentiated neurons exposed to Aβ exhibit Cdk5-mediated tau hyperphosphorylation, cell cycle re-entry and neuronal loss. In this study we aimed to determine the role of Cdk5 in neuronal injury occurring in an AD mouse model obtained through the intracerebroventricular (icv) injection of the Aβ1–40 synthetic peptide. In mice icv-injected with Aβ, Cdk5 activator p35 is cleaved by calpains, leading to p25 formation and Cdk5 overactivation. Subsequently, there was an increase in tau hyperphosphorylation, as well as decreased levels of synaptic markers. Cell cycle reactivation and a significant neuronal loss were also observed. These neurotoxic events in Aβ-injected mice were prevented by blocking calpain activation with MDL28170 , which was administered intraperitoneally (ip). As MDL prevents p35 cleavage and subsequent Cdk5 overactivation, it is likely that this kinase is involved in tau hyperphosphorylation, cell cycle re-entry, synaptic loss and neuronal death triggered by Aβ. Altogether, these data demonstrate that Cdk5 plays a pivotal role in tau phosphorylation, cell cycle induction, synaptotoxicity, and apoptotic death in postmitotic neurons exposed to Aβ peptides in vivo , acting as a link between diverse neurotoxic pathways of AD.  相似文献   

2.
Glycogen synthase kinase GSK-3β has been identified as one of the major candidates mediating tau hyperphosphorylation at the same sites as those present in tau protein in brain from Alzheimer′s disease (AD) patients. However, the signal transduction pathways involved in the abnormal activation of GSK-3β, have not been completely elucidated. GSK-3β activity is repressed by the canonical Wnt signaling pathway, but it is also modulated through the PI3K/Akt route. Recent studies have suggested that Wnt signaling might be involved in the pathophysiology of AD. On the other hand, modulators of the PI3K pathway might be reduced during aging leading to a sustained activation of GSK-3β, which in turn would increase the risk of tau hyperphosphorylation. The role of Wnt and PI3K signaling inhibition on the extent of tau phosphorylation and neuronal morphology has not been completely elucidated. Thus, in the present investigation we analyzed the effects of different negative modulators of the Wnt and the PI3K pathways on GSK-3β activation and phosphorylation of tau at the PHF-1 epitope in cortical cultured neurons and hippocampal slices from adult rat brain. Changes in the microtubule network were also studied. We found that a variety of Wnt and PI3K inhibitors, significantly increased tau phosphorylation at the PHF-1 site, induced the disarrangement of the microtubule network and the accumulation of tau within cell bodies. These changes correlated with alterations in neuronal morphology. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

3.
Extracellular accumulations of Aβ, hyperphosphorylation of tau and intracellular neurofibrillary tangle formation have been the hallmarks of Alzheimer’s Disease (AD). Although tau and its phosphorylation play a pivotal role in the normal physiology yet its hyperphosphorylation has been a pathological manifestation in neurodegenerative disorders like AD. In this review physiology of tau, its phosphorylation, hyperphosphorylation with the intervention of various kinases, aggregation and formation of paired helical filaments has been discussed. A brief account of various animal models employed to study the pathological manifestation of tau in AD and therapeutic strategies streamlined to counter the tau induced pathology has been given. The reasons for the failure to have suitable animal model to study AD pathology and recent success in achieving this has been included. The role of caspase cascade in tau cleavage has been emphasized. The summary of current studies on tau and the need for future studies has been accentuated.  相似文献   

4.
5.
Tau hyperphosphorylation, amyloid plaques, and neuronal death are major neuropathological features of Alzheimer’s disease (AD) and Prion-related encephalopathies (PRE). Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase, active in post-mitotic neurons, where it regulates survival and death pathways. Overactivation of Cdk5 is conferred by p25, a truncated fragment of the p35 activator formed upon calpain activation. Cdk5 deregulation causes abnormal phosphorylation of microtubule-associated protein tau, leading to neurodegeneration. In this work we investigated the involvement of Cdk5 in the neurodegeneration triggered by amyloid-beta (Aβ) and prion (PrP) peptides, the culprit agents of AD and PRE. As a work model, we used cultured rat cortical neurons treated with Aβ1–40 and PrP106–126 synthetic peptides. The obtained data show that apoptotic neuronal death caused by both the peptides was in part due to Cdk5 deregulation. After peptide treatment, p25 levels were significantly enhanced in a pattern consistent with the augment in calpain activity. Moreover, Aβ1–40 and PrP106–126 increased the levels of tau protein phosphorylated at Ser202/Thr205. Cdk5 (roscovitine) and calpain (MDL28170) inhibitors reverted tau hyperphosphorylation and prevented neuronal death caused by Aβ1–40 and PrP106–126. This study demonstrates, for the first time, that Cdk5 is involved in PrP-neurotoxicity. Altogether, our data suggests that Cdk5 plays an active role in the pathogenesis of AD and PRE.  相似文献   

6.
Several studies have linked estrogens with sphingosine kinase (SphK) activity, enzyme responsible of sphingosine-1-phosphate synthesis (S-1P), however their possible interaction in the nervous system is not documented yet. In the present study, we developed a glutamate toxicity model in SH-SY5Y cells to evaluate the possible effect of the inhibition of SphK activity on the protective capability of 17β-estradiol (E2). Glutamate induced cytoskeletal actin changes associated to cytotoxic stress, significant increase of apoptotic-like nuclear fragmentation, Tau hyperphosphorylation and increase of p25/p35 cleavage. These effects were prevented by E2 pre-treatment during 24 h. Although the inhibition of SphK did not block this protective effect, significantly increased Tau hyperphosphorylation by glutamate, in a way that was not reverted by E2. Our results suggest that the decrease of glutamate-induced Tau hyperphosphorylation by 17β-estradiol requires SphK.  相似文献   

7.
Neurofibrillary tangles (NFTs) consisting of the hyperphosphorylated microtubule-associated protein tau are a defining pathological characteristic of Alzheimer's disease (AD). Hyperphosphorylation of tau is hypothesized to impair the microtubule stabilizing function of tau, leading to the formation of paired helical filaments and neuronal death. Glycogen synthase kinase-3 (GSK-3) has been shown to be one of several kinases that mediate tau hyperphosphorylation in vitro. However, molecular mechanisms underlying overactivation of GSK-3 and its potential linkage to AD-like pathologies in vivo remain unclear. Here, we demonstrate that injection of wortmannin (a specific inhibitor of phosphoinositol-3 kinase) or GF-109203X (a specific inhibitor of protein kinase C) into the left ventricle of rat brains leads to overactivation of GSK-3, hyperphosphorylation of tau at Ser 396/404/199/202 and, most significantly, impaired spatial memory. The effects of wortmannin and GF-109203X are additive. Significantly, specific inhibition of GSK-3 activity by LiCl prevents hyperphosphorylation of tau, and spatial memory impairment resulting from PI3K and PKC inhibition. These results indicate that in vivo inhibition of phosphoinositol-3 kinase and protein kinase C results in overactivation of GSK-3 and tau hyperphosphorylation and support a direct role of GSK-3 in the formation of AD-like cognitive deficits.  相似文献   

8.
Wang Q  Zhang JY  Liu SJ  Li HL 《生理学报》2008,60(4):485-491
阿尔茨海默病(Alzheimer's disease,AD)的病理特征之一是神经元内存在神经原纤维缠结(neurofibrillary tangles,NFTs),后者是由过度磷酸化的微管相关蛋白tau形成的双股螺旋细丝(paired helical filaments,PHFs)构成.为了探讨丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)在微管相关蛋白tau磷酸化中的作用及机制,本实验用0.1 μg/mL、0.2 μg/mL和0.4μg/mL三种不同浓度的MAPK激动剂anisomycin处理小鼠成神经瘤细胞株(mouse neuroblastoma cells,N2a),检测MAPK活性的变化及其与tau蛋白多个AD相关位点过度磷酸化的关系,并检测糖原合酶激酶-3(glycogen synthase kinase-3,GSK-3)和蛋白激酶A(protein kinase A,PKA)的活性变化.结果显示,anisomycin以剂量依赖的方式激活MAPK活性,但免疫印迹结果显示tau蛋白的Ser-198/199/202位点和Ser-396/404位点的过度磷酸化只在anisomycin浓度为0.4 μg/mL时出现,三种浓度的anisomycin均未引起tau蛋白Ser-214位点磷酸化的改变;同时,GSK-3活性在anisomycin为0.1 μg/mL时没有明显变化,当anisomycin浓度升高到0.2 μg/mL和0.4 μg/mL时出现明显增高,而PKA的活性没有明显的改变.使用GSK-3的特异性抑制剂氯化锂(LiCl)则完全阻断MAPK被过度激活导致的tau蛋白磷酸化水平的增高,而同时MAPK活性不受影响.以上结果提示:过度激活MAPK可以导致tau蛋白Ser-198/199/202和Ser-396/404位点过度磷酸化,其机制可能涉及MAPK激活GSK-3的间接作用.  相似文献   

9.
Previously, we reported that isoflavones exert a protective effect against the endoplasmic reticulum (ER) stress-mediated neuronal degeneration, and ER stress-mediated homocysteine toxicity may play an important role in the pathogenesis of neurodegeneration. Therefore, in this study we investigated the effects of isoflavones (genistein and daidzein) against homocysteine-mediated neurotoxicity in SH-SY5Y human neuroblastoma cells. The treatment of cells with either 17β-estradiol or isoflavones significantly protected the cells against homocysteine-mediated apoptosis. Isoflavones repressed homocysteine-mediated ER stress, reflected in the reduced expression of the immunoglobin heavy chain-binding protein mRNA, spliced X-box-protein-1 mRNA and the phosphorylated form of eukaryotic translation initiation factor 2α protein. Homocysteine caused significant increases in intracellular S-adenosylhomocysteine (SAH) and DNA damage. Isoflavones significantly alleviated DNA damage, but did not change SAH levels. Furthermore, the treatment of cells with isoflavones significantly reduced the microtubule-associated protein tau hyperphosphorylation by inactivating glycogen synthase kinase-3β and activating serine/threonine-protein phosphatase 2A. These results clearly demonstrate that isoflavones alleviate the ER stress- and DNA damage-mediated neurodegeneration caused by homocysteine.  相似文献   

10.
Liu Y  Su Y  Sun S  Wang T  Qiao X  Li H  Run X  Liang Z 《Neurochemical research》2012,37(5):935-947
Phosphorylation of the cAMP response element binding protein (CREB) by cAMP-dependent kinase (PKA) is critical to memory formation. However, activation of PKA can also increase tau phosphorylation, which may contribute to memory impairment. Therefore, the regulation of PKA may be part of the mechanism by which glucocorticoids (GCs) influence memory. Additionally, the cellular response to GCs may be affected by the presence of human tau. The goal of this paper was to study GCs-mediated regulation of PKA as well as CREB and tau phosphorylation in wild-type HEK293 cells and HEK293 cells stably expressing human tau441 (HEK293/tau441 cells). By using dexamethasone (DEX) as GCs, we found that DEX induced a tau-dependent selective decrease in the level of PKA RIIβ subunit protein. The observed decrease in RIIβ expression was not due to alterations of mRNA levels and was reversed by inhibiting the proteasome with lactacystin. Moreover, the decrease in RIIβ did not diminish the co-localization of the catalytic subunit of PKA with tau and might contribute to the DEX-induced increase in tau phosphorylation at Ser-214. DEX also induced a tau-dependent decrease in CREB phosphorylation that could not be reversed by activating PKA with forskolin. Taken together, these results show that human tau protein may alter the GCs-mediated regulation of PKA activity and CREB phosphorylation.  相似文献   

11.
Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. The brain is particularly vulnerable to oxidative damage induced by unregulated redox-active metals such as copper and iron, and the brains of AD patients display evidence of metal dyshomeostasis and increased oxidative stress. The colocalisation of copper and amyloid β (Aβ) in the glutamatergic synapse during NMDA-receptor-mediated neurotransmission provides a microenvironment favouring the abnormal interaction of redox-potent Aβ with copper under conditions of copper dysregulation thought to prevail in the AD brain, resulting in the formation of neurotoxic soluble Aβ oligomers. Interactions between Aβ oligomers and copper can further promote the aggregation of Aβ, which is the core component of extracellular amyloid plaques, a central pathological hallmark of AD. Copper dysregulation is also implicated in the hyperphosphorylation and aggregation of tau, the main component of neurofibrillary tangles, which is also a defining pathological hallmark of AD. Therefore, tight regulation of neuronal copper homeostasis is essential to the integrity of normal brain functions. Therapeutic strategies targeting interactions between Aβ, tau and metals to restore copper and metal homeostasis are discussed.  相似文献   

12.
Microtubule-associated protein tau is abnormally hyperphosphorylated in Alzheimer's disease (AD) and other tauopathies and is believed to lead to neurodegeneration in this family of diseases. Here we show that infusion of forskolin, a specific cAMP-dependent protein kinase A (PKA) activator, into the lateral ventricle of brain in adult rats induced activation of PKA by severalfold and concurrently enhanced the phosphorylation of tau at Ser-214, Ser-198, Ser-199, and or Ser-202 (Tau-1 site) and Ser-396 and or Ser-404 (PHF-1 site), which are among the major abnormally hyperphosphorylated sites seen in AD. PKA activation positively correlated to the extent of tau phosphorylation at these sites. Infusion of forskolin together with PKA inhibitor or glycogen synthase kinase-3 (GSK-3) inhibitor revealed that the phosphorylation of tau at Ser-214 was catalyzed by PKA and that the phosphorylation at both the Tau-1 and the PHF-1 sites is induced by basal level of GSK-3, because forskolin activated PKA and not GSK-3 and inhibition of the latter inhibited the phosphorylation at Tau-1 and PHF-1 sites. Inhibition of cdc2, cdk5, or MAPK had no significant effect on the forskolin-induced hyperphosphorylation of tau. Forskolin inhibited spatial memory in a dose-dependent manner in the absence but not in the presence of R(p)-adenosine 3',5'-cyclic monophosphorothioate triethyl ammonium salt, a PKA inhibitor. These results demonstrate for the first time that phosphorylation of tau by PKA primes it for phosphorylation by GSK-3 at the Tau-1 and the PHF-1 sites and that an associated loss in spatial memory is inhibited by inhibition of the hyperphosphorylation of tau. These data provide a novel mechanism of the hyperphosphorylation of tau and identify both PKA and GSK-3 as promising therapeutic targets for AD and other tauopathies.  相似文献   

13.
The utility of the nasal route for the systemic delivery of 17β-estradiol was studied using watersoluble prodrugs of 17β-estradiol. This delivery method was examined to determine if it will result in preferential delivery to the brain. Several alkyl prodrugs of 17β-estradiol were prepared and their physicochemical properties were determined. In vitro hydrolysis rate constants in buffer, rat plasma, and rat brain homogenate were determined by high-performance liquid chromatography. In vivo nasal experiments were carried out on rats. Levels of 17β-estradiol in plasma and cerebral spinal fluid (CSF) were determined with radioimunoassay using a gamma counter. The study revealed that the aqueous solubilities of the prodrugs were several orders of magnitude greater than 17β-estradiol with relatively fast in vitro conversion in rat plasma. Absorption was fast following nasal delivery of the prodrugs with high bioavailability. CSF 17β-estradiol concentration was higher following nasal delivery of the prodrugs compared to an equivalent intravenous dose. It was determined that water-soluble prodrugs of 17β-estradiol can be administered nasally. These prodrugs are capable of producing high levels of estradiol in the CSF and as a result may have a significant value in the treatment of Alzheimer's disease. Published: March 25, 2002.  相似文献   

14.
The abnormal hyperphosphorylation of tau protein is one of the hallmarks of Alzheimer disease and other tauopathies; as yet the exact role of various tau kinases in this pathology is not fully understood. Here, we show that injection of isoproterenol, an activator of cAMP-dependent kinase (PKA), into rat hippocampus bilaterally results in the activation of PKA, calcium/calmodulin-dependent kinase II and cyclin-dependent kinase-5, inhibition of protein phosphatase-2A, hyperphosphorylation of tau at several Alzheimer-like epitopes and a disturbance of spatial memory retention 48 h after the drug injection. These findings suggest the involvement of PKA and PKA-mediated signaling pathway in the Alzheimer-like tau hyperphosphorylation and memory impairment.  相似文献   

15.
Microtubule associated protein tau is abnormally hyperphosphorylated in Alzheimer disease (AD) brain. To investigate the role of protein kinases involved in this lesion, metabolically active slices made from brains of adult rats were treated with or without various specific kinase activators in oxygenated artificial cerebrospinal fluid. The basal kinase activities of protein kinase-A (PKA), CaM Kinase II and GSK-3 were stimulated more than two-fold by isoproterenol, bradykinin and wortmannin, respectively. We found that cdk5 activity was co-stimulated with PKA by isoproterenol. Sequential activation of PKA (+cdk5), CaM Kinase II and GSK-3 produced hyperphosphorylation of tau at Ser-198/Ser-199/Ser-202, Ser-214, Thr-231/Ser-235, Ser-262, Ser-396/Ser-404 and Ser-422 sites. Like AD P-tau, the P-tau from brain slices bound to normal tau and its binding to tubulin was inhibited. These studies suggest that PKA, cdk5, CaM Kinase II and GSK-3 are involved in the regulation of phosphorylation of tau and that AD-type phosphorylation of tau is probably a product of the synergistic action of two or more of these kinases.  相似文献   

16.
Preventing or reducing tau hyperphosphorylation is considered to be a therapeutic strategy in the treatment of Alzheimer’s disease (AD). Rapamycin may be a potential therapeutic agent for AD, because the rapamycin-induced autophagy may enhance the clearance of the hyperphosphorylated tau. However, recent rodent studies show that the protective effect of rapamycin may not be limited in the autophagic clearance of the hyperphosphorylated tau. Because some tau-related kinases are targets of the mammalian target of rapamycin (mTOR), we assume that rapamycin may regulate tau phosphorylation by regulating these kinases. Our results showed that in human neuroblastoma SH-SY5Y cells, treatment with rapamycin induced phosphorylation of the type IIα regulatory (RIIα) subunit of cAMP-dependent kinase (PKA). Rapamycin also induced nuclear translocation of the catalytic subunits (Cat) of PKA and decreases in tau phosphorylation at Ser214 (pS214). The above effects of rapamycin were prevented by pretreatment with the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor U0126. In addition, these effects of rapamycin might not depend on the level of tau expression, because similar results were obtained in both the non-tau-expressing wild type human embryonic kidney 293 (HEK293) cells and HEK293 cells stably transfected with the longest isoform of recombinant human tau (tau441; HEK293/tau441). These findings suggest that rapamycin decreases pS214 via regulation of PKA. Because tau phosphorylation at Ser214 may prime tau for further phosphorylation by other kinases, our findings provide a novel possible mechanism by which rapamycin reduces or prevents tau hyperphosphorylation.  相似文献   

17.
In the present work, potential protective effects of quercitrin (a phytoestrogen) on Aβ-induced neurotoxicity in cultured rat hippocampal neurons were investigated in comparison with 17β-estradiol. Cell viability, oxidative status, and antioxidative potentials were used as comparative parameters. Co-exposure of cultured neurons to Aβ25–35 with either quercitrin or 17β-estradiol (50–100 μM) for 72 h attenuated Aβ25–35-induced neurotoxicity and lipid peroxidation, but not Aβ25–35-induced ROS accumulation. However, only 17β-estradiol counteracted a reduction in glutathione content and only quercitrin counteracted a reduction in glutathione peroxidase activity. Both compounds displayed no effects on superoxide dismutase activity. A specific estrogen receptor antagonist, ICI 182780, did not abolish neuroprotective effects of quercitrin and 17β-estradiol. These findings suggested that quercitrin and 17β-estradiol attenuated Aβ25–35-induced neurotoxicity in a comparable manner. Underlying neuroprotective mechanisms of both compounds were probably not related to estrogen receptor-mediated genomic mechanisms but might involve with their antioxidant and free radical scavenging properties.  相似文献   

18.
Pin1 binds mitotically phosphorylated Thr231–Pro232 and Thr212–Pro213 sites on tau, and a Pin1 deficiency in mice leads to tau hyperphosphorylation. The aim of this study was to determine if the dephosphorylation or inhibition of tau and GSK3β phosphorylation induces the Pin1 phosphorylation. To test this, human SK-N-MC cells were stably transfected with a fusion gene containing neuron-specific enolase (NSE)-controlled APPsw gene(NSE/APPsw), to induce Aβ-42. The stable transfectants were then transiently transfected with NSE/Splice, lacking human tau (NSE/Splice), or NSE/hTau, containing human tau, into the cells. The NSE/Splice- and NSE/hTau-cells were then treated with lithium. We concluded that (i) there was more C99-β APP accumulation than C83-βAPP in APPsw-tansfectant and thereby promoted Aβ-42 production in transfectants. (ii) the inhibition of tau and GSK3β phosphorylations correlated with increase in Pin1 activation in NSE/hTau- cells. Thus, these observations suggest that Pin1 might have an inhibitive role in phosphorylating tau and GSK3β for protecting against Alzheimer’s disease.  相似文献   

19.
Mutations in presenilin (PS) 1 and PS2 genes are associated with early onset (≤65 years) of Alzheimer’s disease (AD). PS1 is involved in γ-secretase mediated cleavage of β-amyloid precursor protein (APP), but its regulation is poorly understood. Sex steroids influence APP cleavage pathways resulting in reduced burden of both intra- and extra-cellular nonamyloidogenic products. As gonadal hormones are implicated in AD and their levels change with age, we have analyzed the effect of 17β-estradiol and testosterone on PS1 expression in the cerebral cortex of adult and old AKR mice of both sexes. Northern and Western-blot analysis revealed that PS1 mRNA and protein expression followed similar pattern of regulation. PS1 expression was downregulated by 17β-estradiol and testosterone in the cerebral cortex of females and adult male, but upregulated in old male mice. Such sex-dependent regulation of PS1 expression during aging by gonadal steroids might account for the PS-related brain functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号