首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial degradation of pentachlorophenol   总被引:16,自引:0,他引:16  
Pentachlorophenol (PCP) was the most prevalent wood preservative for many years worldwide. Its widespread use had led to contamination of various environments. Traditional methods of PCP clean-up include storage in land-fill sites, incineration and abiotic degradation processes such as photodecomposition. Some aerobic and anaerobic microorganisms can degrade PCP under a variety of conditions. Axenic bacterial cultures, Flavobacterium sp., Rhodococcus sp., Arthrobacter sp., Pseudomonas sp., Sphingomonas sp., and Mycobacterium sp., and fungal cultures, Phanerochaete sp. and Trametes sp. exhibit varying rates and extent of PCP degradation. This paper provides some general information on properties of PCP and reviews the influence of nutrient amendment, temperature and pH on PCP degradation by various aerobic and anaerobic microorganisms. Where information is available, proposed degradation pathways, intermediates and enzymes are reviewed.  相似文献   

2.
Coal is one of the major sources of energy, fuel, and other related chemicals. The processes to utilize coal for energy, fuel and other chemicals such as coal combustion, liquefaction, carbonization, and gasification pose a great threat to the environment by emitting toxic particles and CO2 to the atmosphere. Thus, biological beneficiation of coal can be a good strategy to utilize coal with environmental sustainability. Here, we report the screening of microorganisms able to degrade or depolymerize coal. These host strains are potential candidates for the development of biological treatment process of coal. A total of 45 microbial strains were isolated from sludge enriched with coal and were identified based on 16S rRNA sequencing. Four strains of three genera, Cupriavidus sp., Pseudomonas sp., and Alcaligenes sp., were further characterized for their abilities to degrade coal. The degree of coal degradation was analyzed by measuring the increase in absorbance at 450 nm by UV spectroscopy. These microorganisms were also able to increase the pH of the culture media as a response to the acidic nature of coal. Laccase-like activity was also found in these strains when tested for RBBR dye degradation. Since biological degradation of coal through the use of microorganisms is a good alternative to chemical combustion of coal, microbial strains isolated in this study can be potential biological catalysts for coal conversion into valuable chemicals.  相似文献   

3.
Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) are harmful persistent organic pollutants, while the high-molecular-weight (HMW) PAHs are even more detrimental to the environment and human health. However, microbial anaerobic degradation of HMW PAHs has rarely been reported. One facultative anaerobe Pseudomonas sp. JP1 was isolated from Shantou Bay, Shantou, China, which could degrade a variety of HMW PAHs. After 40 days cultivation with strain JP1, anaerobic biodegradation rate of benzo[a]pyrene (BaP), fluoranthene, and phenanthrene was 30, 47, and 5 %, respectively. Consumption of nitrate as the electron acceptor was confirmed by N-(1-naphthyl) ethylenediamine spectrophotometry. Supplementation of sodium sulfite, maltose, or glycine, and in a salinity of 0–20 ‰ significantly stimulated anaerobic degradation of BaP. Lastly, the anaerobic degradation metabolites of BaP by strain JP1 were investigated using GC/MS, and the degradation pathway was proposed. This study is helpful for further studies on the mechanism of anaerobic biodegradation of PAHs.  相似文献   

5.
This paper discusses the results of pentachlorophenol (PCP) anaerobic biodegradation in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor operated under methanogenic and halophylic conditions. The system was inoculated with autochthonous microorganisms taken from a site in the Santos-São Vicente Estuary (state of São Paulo, Brazil) severely contaminated with PCP, phenolic compounds, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and heavy metals. The inoculum was previously enriched for methanogenesis activity by changing glucose concentrations and under halophylic condition. PCP was added to the HAIB reactor as sodium salt (NaPCP) at an initial concentration of 5 mg l?1 and increased to 13, 15, and 21 mg l?1. Organic matter removal efficiency ranged from 77 to 100%. PCP removal efficiency was 100%. Denaturing gradient gel electrophoresis profile showed changes in the structure of Bacteria domain, which was associated with NaPCP and glucose amendments. The diversity of Archaea remained unaltered during the different phases. Scanning electron microscope examinations showed that cells morphologically resembling Methanosarcina and Methanosaeta predominated in the biofilm. These cells were detected by fluorescence in situ hybridization with the Methanosarcinales (MSMX860) specific probe. The results are of great importance in planning the estuary’s restoration by using anaerobic technology and autochthonous microorganisms for bioremediation.  相似文献   

6.
7.
In this study, we investigated chitin hydrolysis by the bacteria inhabiting the ground of the Barents Sea. Four microbial cultures isolated from the ground were described as the genera of Rhodococcus sp., Bacillus sp., Pseudomonas sp., and Acinetobacter sp. Protein complexes with endochitinase and exochitinase activities were purified from the culture liquid. These microorganisms can participate in chitin degradation in sea water. The average molecular weight of the protein fraction with the chitinolytic activity constituted 92–135 kDa. The ratio of the endo-/exochitinase activities of the enzymatic systems was increased in the order Pseudomonas sp. < Bacillus sp. < Acinetobacter sp. < Rhodococcus sp.  相似文献   

8.
Pentachlorophenol (PCP) has been widely used as a pesticide in paddy fields and has imposed negative ecological effect on agricultural soil systems, which are in typically anaerobic conditions. In this study, we investigated the effect of repeated additions of PCP to paddy soil on the microbial communities under anoxic conditions. Acetate was added as the carbon source to induce and accelerate cycles of the PCP degradation. A maximum degradation rate occurred at the 11th cycle, which completely transformed 32.3 μM (8.6 mg L?1) PCP in 5 days. Illumina high throughput sequencing of 16S rRNA gene was used to profile the diversity and abundance of microbial communities at each interval and the results showed that the phyla of Bacteroidates, Firmicutes, Proteobacteria, and Euryarchaeota had a dominant presence in the PCP-dechlorinating cultures. Methanosarcina, Syntrophobotulus, Anaeromusa, Zoogloea, Treponema, W22 (family of Cloacamonaceae), and unclassified Cloacamonales were found to be the dominant genera during PCP dechlorination with acetate. The microbial community structure became relatively stable as cycles increased. Treponema, W22, and unclassified Cloacamonales were firstly observed to be associated with PCP dechlorination in the present study. Methanosarcina that have been isolated or identified in PCP dechlorination cultures previously was apparently enriched in the PCP dechlorination cultures. Additionally, the iron-cycling bacteria Syntrophobotulus, Anaeromusa, and Zoogloea were enriched in the PCP dechlorination cultures indicated they were likely to play an important role in PCP dechlorination. These findings increase our understanding for the microbial and geochemical interactions inherent in the transformation of organic contaminants from iron rich soil, and further extend our knowledge of the PCP-transforming microbial communities in anaerobic soil conditions.  相似文献   

9.
In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.The major issue of planetary protection is to prevent the contamination of extraterrestrial environments by terrestrial biomolecules and life forms. Furthermore, reverse contamination of Earth by extraterrestrial material is also a fundamental concern (1). In order not to affect or even to confound future life detection missions on celestial bodies, which are of interest for their chemical and biological evolution, spacecraft are constructed in so-called clean rooms and are subject to severe cleaning processes and microbiological controls before launch (9). Therefore, these clean rooms are considered extreme environments for microorganisms (47).Detailed planetary protection protocols for missions to Mars were designed for the Viking missions, which were launched in 1975, and about 7,000 samples were taken from the two Viking spacecraft during prelaunch activities in order to determine the cultivable microbial load (37). Besides human-associated bacteria (pathogens and opportunistic pathogens), which were predominant among the microbes detected in these samples, aerobic spore-forming microorganisms (Bacillus) were found frequently on spacecraft and within the facilities.Spores are the resting states of bacteria and are often highly resistant to heat, desiccation, and other abiotic stresses. These multiresistance properties of such spore-forming microorganisms make them perfect candidates for surviving a space flight, and thus, the main focus of attention has been on them. Furthermore, only the detection of aerobic spore-forming bacteria is currently included in space agencies'' planetary protection protocols for the quantitative determination of microbial burden on spacecraft.The presence of extraordinarily (UV-) resistant spores in spacecraft facilities has been reported (31), but it also has been proven that vegetative microbial cells (e.g., Deinococcus radiodurans and Halobacterium sp. strain NRC-1) can resist very harsh conditions, such as extreme doses of (UV and ionizing) radiation and desiccation (8, 11). Recent culture-based and molecular studies have shown that the microbial diversity on spacecraft and within the clean rooms is extraordinarily high and does include extremotolerant bacteria and even archaea (25, 30).The atmospheres of most planets and bodies within the reach of human exploration contain only traces of oxygen (Mars contains 0.13%), probably not enough to support terrestrial aerobic life as we know it (26, 44). Even though Mars'' surface is highly oxidizing and radiation exposed, the Martian subsurface, as well as those of other planets and bodies (like, e.g., Titan), has been discussed as an anaerobic biotope for possible life (4, 40).Therefore, the lack of studies of the existence of anaerobically growing microorganisms in spacecraft-associated clean rooms is quite surprising. One possible reason for this discrepancy might be that the cultivation of anaerobes is challenging. Already in 1969, Hungate published a method for the cultivation of strictly anaerobic methanogenic Archaea (20). Although this technique has undergone a few simplifications during past decades, the cultivation of anaerobes requires specialized and expensive equipment (e.g., anaerobic glove boxes and gas stations), practical experience, and skills in specific methodology. Nevertheless, by the application of anaerobic cultivation strategies, many fascinating microorganisms—such as Nanoarchaeum equitans, the first representative of the new archaeal phylum Nanoarchaeota, or Thermotoga maritima, a hyperthermophilic bacterium growing at up to 90°C (17, 18)—have successfully been isolated from diverse and sometimes extreme biotopes.Generally, there are different types of anaerobic organisms. Facultative anaerobes (like Escherichia coli) are able to adapt their metabolism and can grow under conditions with or without oxygen but prefer aerobic conditions. Aerotolerant anaerobes do not need oxygen for their growth and show no preference, and strict anaerobes (e.g., methanogens) never require oxygen for their reproduction and metabolism. Even more, obligate (strict) anaerobes can be growth inhibited or even killed by oxygen.The presence of anaerobic microorganisms (enriched using the BD GasPak system) in surface samples from U.S. clean rooms has rarely been reported. Members of the facultatively anaerobic genera Paenibacillus and Staphylococcus have been isolated in the course of a study about extremotolerant microorganisms (25). During molecular surveys of U.S. clean rooms, the 16S rRNA genes from strictly anaerobic microorganisms, such as the spore-forming genus Clostridium, have already been detected (29). Nevertheless, the cultivation of these microbes has not yet been successful.With the ExoMars mission impending, the European Space Agency (ESA) is organizing and funding a biodiversity study of the ESA''s clean rooms and the spacecraft therein. The microbiology of these special environments is characterized in detail by a combination of standard procedures, new cultivation approaches, and molecular methods that shall illuminate the presence of planetary protection-relevant microorganisms in these facilities. At the date of sampling, all the clean rooms harbored the Herschel Space Observatory, a spacecraft to be launched together with the Planck satellite in spring 2009, as of this writing. Herschel will be fitted with the largest mirror ever built for a space mission (3.5 m in diameter), and its main goal will be the exploration of the cold universe, i.e., the formation and evolution of proto-galaxies (35). The Herschel Space Observatory does not demand planetary protection requirements, but all clean rooms were in a fully operating state during the construction work. This gave us the opportunity to sample the microbial diversity in these extreme environments without bioburden control but under strict contamination-controlled conditions, with respect to particulates and molecular contamination.This paper presents the results from our attempts to isolate anaerobic and facultatively anaerobic microorganisms from samples of spacecraft and surfaces in European spacecraft-associated clean rooms. For this purpose, we have successfully applied Hungate technology for anaerobic culturing and used an assortment of noncommercial media for the cultivation of a broad variety of microorganisms. Besides the capability of anaerobic growth, many of our isolates revealed special physiological capacities (e.g., nitrogen fixation and autotrophic metabolism) that might be relevant for further planetary protection considerations.  相似文献   

10.
Whey is a liquid waste issued from the transformation of milk into cheese. Whey is a major environmental problem for the dairy industry due to its high organic load, linked to its high content of lactose. It can be valorized by biological processes based on lactose fermentation into different products such as (1) lactic acid (as food additive), (2) 2,3-butanediol (as feedstock to get products such as methyl-ethyl-ketone or 2-butene for the pharmaceutical and chemical industries), (3) biogas (to obtain energy). The production of 2,3-butanediol from saccharides, such as glucose, has been actively studied over previous decades using several types of microorganisms such as Enterobacter aerogenes, Paenibacillus polymyxa, Klebsiella sp., Serratia marcescens and Escherichia coli. Some of these have even been genetically modified to improve the 2,3-butanediol production. The potential whey fermentation process into 2,3-butanediol depends on several operating conditions such as microorganisms, composition of the culture medium, temperature, pH and aeration. This review first presents a summary of the situation of milk and cheese production in Canada and around the world. It also describes the different kinds of whey and their treatment techniques. Finally, this paper describes the production of 2,3-butanediol from saccharides by various microorganisms under different operating conditions.  相似文献   

11.
Methyl tert-butyl ether (MTBE), an octane enhancer and a fuel oxygenate in reformulated gasoline, has received increasing public attention after it was detected as a major contaminant of water resources. Although several techniques have been developed to remediate MTBE-contaminated sites, the fate of MTBE is mainly dependent upon natural degradation processes. Compound-specific stable isotope analysis has been proposed as a tool to distinguish the loss of MTBE due to biodegradation from other physical processes. Although MTBE is highly recalcitrant, anaerobic degradation has been demonstrated under different anoxic conditions and may be an important process. To accurately assess in situ MTBE degradation through carbon isotope analysis, carbon isotope fractionation during MTBE degradation by different cultures under different electron-accepting conditions needs to be investigated. In this study, carbon isotope fractionation during MTBE degradation under sulfate-reducing and methanogenic conditions was studied in anaerobic cultures enriched from two different sediments. Significant enrichment of 13C in residual MTBE during anaerobic biotransformation was observed under both sulfate-reducing and methanogenic conditions. The isotopic enrichment factors () estimated for each enrichment were almost identical (−13.4 to −14.6; r2 = 0.89 to 0.99). A value of −14.4 ± 0.7 was obtained from regression analysis (r2 = 0.97, n = 55, 95% confidence interval), when all data from our MTBE-transforming anaerobic cultures were combined. The similar magnitude of carbon isotope fractionation in all enrichments regardless of culture or electron-accepting condition suggests that the terminal electron-accepting process may not significantly affect carbon isotope fractionation during anaerobic MTBE degradation.  相似文献   

12.
A novel aerobic pentachloronitrobenzene-degrading bacterium, Nocardioides sp. strain PD653, was isolated from an enrichment culture in a soil-charcoal perfusion system. The bacterium also degraded hexachlorobenzene, a highly recalcitrant environmental pollutant, accompanying the generation of chloride ions. Liberation of 14CO2 from [U-ring-14C]hexachlorobenzene was detected in a culture of the bacterium and indicates that strain PD653 is able to mineralize hexachlorobenzene under aerobic conditions. The metabolic pathway of hexachlorobenzene is initiated by oxidative dechlorination to produce pentachlorophenol. As further intermediate metabolites, tetrachlorohydroquinone and 2,6-dichlorohydroquinone have been detected. Strain PD653 is the first naturally occurring aerobic bacteria capable of mineralizing hexachlorobenzene.Hexachlorobenzene (C6Cl6; HCB) is one of the most persistent environmental pollutants. Its average half-life in soil is approximately 9 years (2). When HCB is liberated in environment, it is bioaccumulated in plants, zooplankton, and shellfish. Finally, HCB is accumulated in the human body via the food chain, whereupon its possible toxicity adversely affects human health as a result of long-term exposure and accumulation. Therefore, HCB was listed as one of the 12 persistent organic pollutants in the Stockholm Convention.A number of studies have been attempted to develop cleanup technology for environmental pollutants. Microbial degradation is a promising effective way to remediate environmental pollutants, including persistent organic pollutants. However, heavily chlorinated benzenes, especially HCB, are resistant to microbial degradation. Several studies have been reported on the reductive dechlorination of HCB. Reductive dechlorination of HCB to pentachlorobenzene by cytochrome P-450 was found in rat hepatic microsomes (22). Microbial transformation of HCB to trichlorobenzene and dichlorobenzene by reductive dechlorination was observed in anaerobic sewage sludge and a mixed culture (5, 7). Yeh and Pavlostathis maintained such an HCB-dechlorinating mixed culture for more than 1 year by adding surfactants as carbon sources (30). One of the microorganisms that reductively dechlorinates HCB is “Dehalococcoides” sp. strain CBDB1 (12). Dehalococcoides sp. strain CBDB1 dechlorinated HCB and pentachlorobenzene via dehalorespiration and gave a final end product mixture comprised of 1,3,5-trichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene. These reductive dechlorinating processes take a longer time and leave less-chlorinated compounds such as trichlorobenzene and dichlorobenzene as end products.Strictly aerobic, naturally occurring microorganisms that degrade and completely mineralize HCB have not been found. On the other hand, a microorganism capable of mineralizing pentachlorophenol (PCP), Sphingobium chlorophenolicum strain ATCC 39723, was isolated, and its gene organization involved in PCP metabolism was shown (4). Conversion of HCB to PCP was reported by using the genetically engineered mutant of cytochrome P-450cam (CYP101) (13). Wild-type CYP101 from Pseudomonas putida had low degrading activity for dichlorobenzene and trichlorobenzene but did not decompose more highly chlorinated benzenes. The F87W/Y96F/V247L mutant showed improved di- and trichlorobenzene-degrading activity, but activity toward highly chlorinated benzenes including HCB was still low. The activity upon highly chlorinated benzenes was further improved in the mutant CYP101, F87W/Y96F/L244A/V247L (6). The rate of HCB degradation was increased 200-fold in the mutant. Yan et al. introduced the mutant CYP101 gene into S. chlorophenolicum strain ATCC 39723 by homologous recombination, to produce a complete HCB degrader (28). This genetically engineered bacterium degraded HCB almost completely within 12 h, together with formation of PCP as an intermediate. However, the application of genetically engineered microorganisms in natural areas is strictly restricted in many countries. HCB-degrading aerobes derived from natural sources are still required for remediation of HCB-contaminated areas.We describe here isolation and identification of a novel aerobic soil bacterial species capable of aerobically mineralizing HCB. The characterization of metabolites caused by oxidative removal of the chlorine groups from HCB is also described.  相似文献   

13.
Twenty-two 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterial isolates were collected from agricultural soils at three sites in China. Sequence analysis of the 16S rRNA genes indicated that the isolates were phylogenetically grouped into four categories: Ochrobactrum anthropi, in the Alpha- class of the phylum Proteobacteria (3 out of 22 isolates), Cupriavidus sp., of the Betaproteobacteria (3 out of 22), Pseudomonas sp. and Stenotrophomonas sp., which are Gammaproteobacteria (7 out of 22), and Bacillus sp., of the phylum Firmicutes (9 out of 22). Primers were designed to amplify the conserved domain of tfdA, which is known to be involved in the degradation of 2,4-D. Results showed that the tfdA genes of all 22 strains were most similar to that of Cupriavidus necator JMP134, which belongs to the 2,4-D/α-ketoglutarate dioxygenase TfdA protein family, indicating that the JMP134-type tfdA gene is likely to be almost universal among the 2,4-D-degrading bacteria isolated from China. Degradation abilities of these 22 strains were investigated in assays using 2,4-D as the sole source of carbon and energy. Thirteen strains degraded >60 % of the available 2,4-D (500 mg l?1) over a 1-week incubation period, while a further nine Bacillus sp. strains degraded 50–81 % of the available 2,4-D. None of these nine strains degraded other selected herbicides, such as mecoprop, 2-methyl-4-chlorophenoxyacetic acid, quizalofop, and fluroxypyr. This is the first report of 2,4-D-degradation by Bacilli.  相似文献   

14.
An anaerobic consortium degrading pentachlorophenol (PCP) by methanogenic fermentation was enriched from PCP-contaminated soils. In a semi-continuous reactor, PCP biodegradation was unstable and necessitated periodic additions of unacclimated anaerobic sludge waste to restore the activity. In continuous-flow reactors, PCP degradation activity was more stable when a mixture of glucose and sodium formate was used as secondary carbon source instead of glucose. The analysis of the chlorophenol intermediates suggested that the main pathway of PCP dechlorination was PCP 2,3,5,6-tetrachlorophenol 2,3,5-trichlorophenol 3,5-dichlorophenol 3-chlorophenol phenol. In a laboratory-scale continuous-upflow fixed-film column reactor, a PCP removal of more than 99% was achieved at a PCP loading rate of 60 mol (1 reactor volume)–1 day–1 for a hydraulic retention time of 0.7 day. Analysis of culture samples taken at different levels in the reactor have shown that, at this PCP loading rate, only the lower part of the reactor was active. 3-chlorophenol and 3,5- and 3,4-dichlorophenol were detected at the different levels of the reactor. A study of the microorganisms in the biofilm was carried out by scanning electron microscopy and suggested that the microorganisms involved in the consortium were present as a well-structured arrangement. Methanosaeta-like microorganisms were observed mainly at the base of the biofilm whereas, at the surface, a larger diversity of morphotypes was observed in which coccoid or small rod organisms were dominant. This work shows the importance of the design and the control of the operation parameters on the efficiency of the fixed-film reactor.  相似文献   

15.
Microbial enhanced oil recovery (MEOR) is an emerging oil extraction technology that utilizes microorganisms to facilitate recovery of crude oil in depleted petroleum reservoirs. In the present study, effects of wheat bran utilization were investigated on stimulation of indigenous MEOR. Biostimulation conditions were optimized with the response surface methodology. The co-application of wheat bran with KNO3 and NH4H2PO4 significantly promoted indigenous MEOR (IMEOR) and exhibited sequential aerobic (O-), facultative (An-) and anaerobic (A0-) metabolic stages. The surface tension of fermented broth decreased by approximately 35%, and the crude oil was highly emulsified. Microbial community structure varied largely among and in different IMEOR metabolic stages. Pseudomonas sp., Citrobacter sp., and uncultured Burkholderia sp. dominated the O-, An- and early A0-stages. Bacillus sp., Achromobacter sp., Rhizobiales sp., Alcaligenes sp. and Clostridium sp. dominated the later A0-stage. This study illustrated occurrences of microbial community succession driven by wheat bran stimulation and its industrial potential.  相似文献   

16.
Apanteles sp.group ultor [Hym.: Braconidae] is the dominant and most widely distributed parasite ofEctomyelois ceratoniae (Zeller). The parasitization percent was increased from 10 % during April to 35 % at the end of the pomegranate fruiting season at October. Female parasite preferred to infest the host larvae at the age of, 2–3 days than 7 day old. The average number of host larvae parasitized by single female parasite was 58 under the rearing conditions of 27±2 °C., 55±10% RH and photoperiod of 16 h light per day. Parasites other thanA. spgroup ultor were:Bracon hebetor Say.,Ascogaster sp., andPhanerotoma sp. [Braconidae];Nemeritis canescens Grav. [Ichneumonidae];Brachymeria sp., andB. aegyptiaca Masi [Chalcididae]; and the secondary parasitePerilampus tristis Mayr [Perilampidae].  相似文献   

17.
DNA isolated from a greenhouse soil (Nanjing, Jiangsu Province, China) was suitable for PCR amplification of gene segment coding for the 16S rRNA. Diverse PCR products were characterized by cloning and sequencing, and analysis of bacterial colonies showed the presence over 26 phyla. The most bacteria belonged to Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria and Planctomycetes. Furthermore, after the enrichment procedure of DBP-degrading microorganisms, 4 strains were isolated from the soil sample with di-n-butyl phthalate (DBP) biodegradability, and they were identified to be Rhizobium sp., Streptomyces sp., Pseudomonas sp. and Acinetobacter sp. Analysis of the degradation products by LC-MS led to identification of metabolites of DBP in strain LMB-1 (identified as Rhizobium sp.) which suggests that DBP was degraded through β-oxidation, demethylation, de-esterification and cleavage of aromatic ring.  相似文献   

18.
Ocean acidification (OA) from rising atmospheric carbon dioxide (CO2) is threatening the future of coral reef ecosystems. Mounting experimental evidence suggests that OA negatively impacts fundamental life functions of scleractinian corals, including growth and sexual reproduction. Although regeneration is regarded as a chief life function in scleractinian corals and essential to maintain the colony’s integrity, the effect of OA on regeneration processes has not yet been investigated. To evaluate the effects of OA on regeneration, the common Indo-Pacific corals Porites sp., Favia favus, Acropora eurystoma, and Stylophora pistillata were inflicted with lesions (314–350 mm2, depending on species) and incubated in different pCO2: (1) ambient seawater (400 µatm, pH 8.1), (2) intermediate (1,800 µatm, pH 7.6), and (3) high (4,000 µatm, pH 7.3) for extended periods of time (60–120 d). While all coral species after 60 d had significantly higher tissue regeneration in ambient conditions as compared to the intermediate and high treatments, reduction in regeneration rate was more pronounced in the slow-growing massive Porites sp. and F. favus than the relatively fast-growing, branching S. pistillata and A. eurystoma. This coincided with reduced tissue biomass of Porites sp., F. favus, and A. eurystoma in higher pCO2, but not in S. pistillata. Porites sp., F. favus, and S. pistillata also experienced a decrease in Symbiodinium density in higher pCO2, while in A. eurystoma there was no change. We hypothesize that a lowered regenerative capacity under elevated pCO2 may be related to resource trade-offs, energy cost of acid/base regulation, and/or decrease in total energy budget. This is the first study to demonstrate that elevated pCO2 could have a compounding influence on coral regeneration following injury, potentially affecting the capacity of reef corals to recover following physical disturbance.  相似文献   

19.
R. D. Goeden 《BioControl》1973,18(4):439-448
A total of 50 species of phytophagous insects were collected from Russian thistle (Salsola iberica Sennen & Pau),S. kali L.,S. tragus L., and their apparent hybrids in Turkey during June and July, 1970. These collections contained many new host-plant and locality records forSalsola insects. Among the natural enemies detected and thought to warrant further consideration as agents worth importing for the biological control of Russian thistle in California were:Piesma salsolae (Becker) (Hemiptera-Heteroptera: Piesmatidae); Coleophora klimenoschiella Toll (Lepidoptera: Coleophoridae); an unidentified species ofPhycitidae (Lepidoptera), and an undeterminedLixus sp. (Coleoptera: Curculionidae). Coleophora parthenica Meyrick, scheduled for initial release in California for the biological control of Russian thistle in early-1973, also is reported for the first time from Turkey.  相似文献   

20.
The following rodents and marsupials from the Western Highlands of Papua New Guinea have been examined for helminths: Anisomys imitator, Melomys spp., Pogonomelomys ruemmleri, Rattus spp., Echymipera kalubu and Peroryctes raffrayanus. Two new species and a number of new host records are reported. Echinostoma echymiperae n. sp., a digenean from the intestine of Echymipera kalubu, is characterised by the number of collar spines, the body armature and the shape and position of the gonads. Vampirolepis peroryctis n. sp., a cestode from the intestine of Peroryctes raffrayanus, is characterised by the length of the rostellar hooks, the shape of the ovary, the arrangement of the testes in a triangle and the extent of the cirrus-sac. Hymenolepis aklei, H. bradleyi, H. antechini, H. bettongiae, H. cercarteti, H. isoodontis and H. potoroi are transferred to Vampirolepis as new combinations. E. kalubu is a new host for Linstowia semoni and Pogonomelomys ruemmleri is a new host for Hymenolepis diminuta. V. peroryctis is the first platyhelminth to be reported from Peroryctes raffrayanus and Raillietina (Raillietina) sp. the second to be reported from the genus Melomys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号