首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thermostable tailspike endorhamnosidase of bacteriophage P22 has been investigated by laser Raman spectroscopy to determine the protein's secondary structure and the basis of its thermostability. The conformation of the native tailspike, determined by Raman amide I and amide III band analyses, is 52 to 61% beta-sheet, 24 to 27% alpha-helix, 15 to 21% beta-turn and 0 to 10% other structure types. The secondary structure of the wild-type tailspike, as monitored by the conformation-sensitive Raman amide bands, was stable to 80 degrees C, denatured reversibly between 80 and 90 degrees C, and irreversibly above 90 degrees C. The purified native form of a temperature-sensitive folding mutant (tsU38) contains secondary structures virtually identical to those in the wild-type in aqueous solution at physiological conditions (0.05 M-Na+ (pH 7.5], at both permissive (20 degrees C) and restrictive (40 degrees C) temperatures. This supports previous results showing that the mutational defect at 40 degrees C affects intermediates in the folding pathway rather than the native structure. At temperatures above 60 degrees C the wild-type and mutant forms were distinguishable: the reversible and irreversible denaturation thresholds were approximately 15 to 20 degrees C lower in the mutant than in the wild-type protein. The irreversible denaturation of the mutant tailspikes led to different aggregation/polymerization products from the wild-type, indicating that the mutation altered the unfolding pathway. In both cases only a small percentage of the native secondary structure was altered by irreversible thermal denaturation, indicating that the aggregated states retain considerable native structure.  相似文献   

2.
The extent and strength of the hydrogen bond networks in rubredoxins from the hyperthermophile Pyrococcus furiosus (PfRd), and its mesophilic analogue Clostridium pasteurianum (CpRd), are examined and compared using NMR spectroscopy. NMR parameters examined in this study include through-hydrogen bond (h3)J(NC)(') scalar couplings and (1)H, (13)C, and (15)N chemical shifts, as well as covalent (1)J(NH) and (1)J(NC)(') scalar couplings. These parameters have allowed the characterization in solution of 12 hydrogen bonds in each protein. Despite a 83% sequence homology and a low RMSD for the backbone heavy atoms (0.648 A) in the crystalline state, subtle, but definite, changes have been identified in the detailed hydrogen-bonding patterns. CpRd shows an increased number of hydrogen bonds in the triple-stranded beta-sheet and an additional hydrogen bond in the multiple-turn segment including residues 14-32. On the other hand, PfRd exhibits an overall strengthening of N-H...O=C hydrogen bonds in the loops involved at the metal binding site as well as evidence for an additional NH...S(Cys) hydrogen bond involving the alanine residue 44. These data, as well as temperature dependence of the NMR parameters, suggest that the particular NMR hydrogen bond pattern found in the hyperthermophile rubredoxin leads to an increased stabilization at the metal binding pocket. It seems to result from a subtle redistribution of hydrogen-bonding interactions between the triple-stranded beta-sheet and the actual metal binding site.  相似文献   

3.
The effects of metal ions on the thermal denaturation and Mg2+ binding of native spinach ferredoxin and its acetylated derivative were investigated. The denaturation of ferredoxin in a metal-free solution at 40 degrees C was quickly prevented by the addition of Mg2+ or Na+ at appropriate concentrations. The metal concentrations required for 50% protection from thermal denaturation were 1.54 x 10(-4) M Mg2+ or 8.0 x 10(-3) M Na+ for native ferredoxin and 1.05 x 10(-3) M Mg2+ or 6.0 x 10(-2) M Na+ for acetylated ferredoxin. It was also found that native ferredoxin in the presence of over 20 mM Mg2+ was almost completely protected from thermal denaturation at 40 degrees C. The D-form which has been observed in acetylated ferredoxin by Masaki et al. (1977) (J. Biochem. 81, 1-9) was confirmed to be present in native ferredoxin at high temperature (49 degrees C) and is suggested to be an important form in the denaturation processes of the ferredoxin molecule.  相似文献   

4.
Reversible denaturation of the soybean Kunitz trypsin inhibitor   总被引:6,自引:0,他引:6  
The soybean Kunitz trypsin inhibitor (SKTI) is a beta-sheet protein with unusual stability to chemical and thermal denaturation. Different spectroscopic criteria were used to follow the thermal denaturation and renaturation of SKTI. Upon heating to 70 degrees C, changes in UV difference spectra showed increased absorbance at 292 and 297 nm, attributable to perturbation of aromatic residues. Cooling the protein resulted in restoration of the native spectrum unless reduced with dithiothreitol. Far- and near-UV CD spectra also indicate thermal unfolding involving the core tryptophan and tyrosine residues. Both CD and UV-absorbance data suggest a two-state transition with the midpoint at approximately 65 degrees C. CD data along with the increased fluorescence intensity of the reporter fluorophore, 1-anilino-8-naphthalenesulfonate with SKTI, between 60 and 70 degrees C, are consistent with a transition of the native inhibitor to an alternate conformation with a more molten state. Even after heating to 90 degrees C, subsequent cooling of SKTI resulted in >90% of native trypsin inhibition potential. These results indicate that thermal denaturation of SKTI is readily reversible to the native form upon cooling and may provide a useful system for future protein folding studies in the class of disordered beta-sheet proteins.  相似文献   

5.
Modak R  Sinha S  Surolia N 《The FEBS journal》2007,274(13):3313-3326
The unfolding pathways of the two forms of Plasmodium falciparum acyl carrier protein, the apo and holo forms, were determined by guanidine hydrochloride-induced denaturation. Both the apo form and the holo form displayed a reversible two-state unfolding mechanism. The analysis of isothermal denaturation data provides values for the conformational stability of the two proteins. Although both forms have the same amino acid sequence, and they have similar secondary structures, it was found that the - DeltaG of unfolding of the holo form was lower than that of the apo form at all the temperatures at which the experiments were done. The higher stability of the holo form can be attributed to the number of favorable contacts that the 4'-phosphopantetheine group makes with the surface residues by virtue of a number of hydrogen bonds. Furthermore, there are several hydrophobic interactions with 4'-phosphopantetheine that firmly maintain the structure of the holo form. We show here for the first time that the interactions between 4'-phosphopantetheine and the polypeptide backbone of acyl carrier protein stabilize the protein. As Plasmodium acyl carrier protein has a similar secondary structure to the other acyl carrier proteins and acyl carrier protein-like domains, the detailed biophysical characterization of Plasmodium acyl carrier protein can serve as a prototype for the analysis of the conformational stability of other acyl carrier proteins.  相似文献   

6.
In the presence of 0.5 M NaCl at pH 7.1, the Ca(2+)-free apo form of recombinant bovine alpha-lactalbumin (BLA) is sufficiently stabilised in its native state to give well-resolved NMR spectra at 20 degrees C. The (1)H and (15)N NMR resonances of native apo-BLA have been assigned, and the chemical-shifts compared with those of the native holo protein. Large changes observed between the two forms of BLA are mainly limited to the Ca(2+)-binding region of the protein. These data suggest that Na(+) stabilises the native apo state through the screening of repulsive negative charges, at the Ca(2+)-binding site or elsewhere, rather than by a specific interaction at the vacant Ca(2+)-binding site. The hydrogen exchange protection of residues in the Ca(2+)-binding loop and the C-helix is reduced in the apo form compared to that in the holo form. This indicates that the dynamic behaviour of this region of the protein is substantially increased in the absence of the bound Ca(2+). Real-time NMR experiments show that the rearrangements of the structure associated with the conversion of the holo to apo form of the protein do not involve the detectable population of partially unfolded intermediates. Rather, the conversion appears to involve local reorganisations of the structure in the vicinity of the Ca(2+)-binding site that are coupled to the intrinsic fluctuations in the protein structure.  相似文献   

7.
The stability of the substrate-binding region of human inducible Hsp70 was studied by a combination of spectroscopic and calorimetric methods. Thermal denaturation of the protein involves four accessible states: the native state, two largely populated intermediates, and the denatured state, with transition temperatures of 52.8, 56.2 and 71.2 degrees C, respectively, at pH 6.5. The intermediate spectroscopic properties resemble those of molten globules but they still retain substantial enthalpy and heat capacity of unfolding. Moreover, the similar heat capacities of the first intermediate and the native state suggests that the hydrophobic core of the intermediate would be highly native-like and that its formation would involve an increased disorder in localized portions of the structure rather than formation of a globally disordered state. The structure of the C-terminal of Hsp70 is destabilized as the pH separates from neutrality. The intermediates become populated under heat shock conditions at acidic and basic pHs. Denaturation by guanidine chloride also indicated that the protein undergoes a sequential unfolding process. The free energy change associated to the loss of secondary structure at 20 degrees C (pH 6.5) is 3.1 kcal.mol(-1) at high salt conditions. These values agree with the free energy changes estimated from differential scanning calorimetry for the transition between the second intermediate and the final denatured state.  相似文献   

8.
The de novo design and biophysical characterization of two 60-residue peptides that dimerize to fold as parallel coiled-coils with different hydrophobic core clustering is described. Our goal was to investigate whether designing coiled-coils with identical hydrophobicity but with different hydrophobic clustering of non-polar core residues (each contained 6 Leu, 3 Ile, and 7 Ala residues in the hydrophobic core) would affect helical content and protein stability. The disulfide-bridged P3 and P2 differed dramatically in alpha-helical structure in benign conditions. P3 with three hydrophobic clusters was 98% alpha-helical, whereas P2 was only 65% alpha-helical. The stability profiles of these two analogs were compared, and the enthalpy and heat capacity changes upon denaturation were determined by measuring the temperature dependence by circular dichroism spectroscopy and confirmed by differential scanning calorimetry. The results showed that P3 assembled into a stable alpha-helical two-stranded coiled-coil and exhibited a native protein-like cooperative two-state transition in thermal melting, chemical denaturation, and calorimetry experiments. Although both peptides have identical inherent hydrophobicity (the hydrophobic burial of identical non-polar residues in equivalent heptad coiled-coil positions), we found that the context dependence of an additional hydrophobic cluster dramatically increased stability of P3 (Delta Tm approximately equal to 18 degrees C and Delta[urea](1/2) approximately equal to 1.5 M) as compared with P2. These results suggested that hydrophobic clustering significantly stabilized the coiled-coil structure and may explain how long fibrous proteins like tropomyosin maintain chain integrity while accommodating polar or charged residues in regions of the protein hydrophobic core.  相似文献   

9.
The thermal stability of a series of recently obtained mutants of fibritin from bacteriophage T4 (a superhelical fibrous homotrimer with parallel-packed subunits each containing 486 amino acid residues) progressively truncated from the subunit N-end was studied during incubation at 40-90 degrees C in the presence of a surfactant (2% SDS). The mutant fibritins, G, B, C, and E, contained 443, 276, 231, and 120 amino acid residues, respectively. One more truncated mutant (fibritin S1, 108 amino acid residues) was obtained. The 2% SDS-PAGE showed that the migration mobilities of all these proteins corresponded to apparent molecular masses substantially greater than those of the preliminarily heated samples (3 min at 100 degrees C). The heating of the intact fibritin and the mutant G at 50-70 degrees C for 10 min resulted in the formation of a form with an apparent molecular mass higher than 200 kDa. This form probably represented a trimeric protein with a partly denatured N-terminal part. Fibritins B and C were more stable and were only partly denatured into monomers even at 70-90 degrees C. The short mutants E and S1 dissociated into monomers at temperatures from 45 to 50 degrees C. The denaturation of mutants B, C, E, and S1 proceeded in one stage without formation of any intermediate form. The stability of the trimeric molecules of native fibritin under PAGE denaturing conditions and the behavior of the intact protein during heating in the temperature range of 50-70 degrees C might be used for the identification of fibritin intermediate forms upon folding in vivo. The refolding capability was found for fibritin and its mutants denatured by heating at low temperatures in the presence of 2% SDS.  相似文献   

10.
We have previously determined the crystal structure of a novel pentagonal ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) from the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Here we have carried out biochemical studies to identify the necessities and/or advantages of this intriguing pentagonal structure. The structure indicated the presence of three neighboring residues (Glu-63, Arg-66, and Asp-69), participating in ionic interactions within unique dimer-dimer interfaces. We constructed three single mutant proteins (E63S, R66S, and D69S) and one triple mutant protein (E63S/R66S/D69S) by replacing the charged residues with serine. The wild type (WT) and all mutant proteins were purified and subjected to gel permeation chromatography at various temperatures. WT and D69S proteins were decameric at all temperatures examined between 30 and 90 degrees C. The majority of E63S and R66S were decamers at 30 degrees C but were found to gradually disassemble with the elevation in temperature. E63S/R66S/D69S was found in a dimeric form even at 30 degrees C. An interesting correlation was found between the subunit assembly and thermostability of the proteins. Circular dichroism and differential scanning calorimetry analyses indicated that the denaturation temperatures of dimeric enzymes (E63S, R66S, and E63S/R66S/D69S) were approximately 95 degrees C, whereas those of the enzymes retaining a decameric structure (WT and D69S) were approximately 110 degrees C. Disassembly into tetramer or dimer units did not alter the slopes of the Arrhenius plots, indicating that the decameric structure had no effect on catalytic performance per se. The results indicate that the decameric assembly of Tk-Rubisco contributes to enhance the thermostability of the enzyme. Taking into account the growth temperature of strain KOD1 (65-100 degrees C), the decameric structure of Tk-Rubisco can be considered essential for the stable presence of the enzyme in the host cells. This study provides an interesting example in which the thermostability of a protein can be enhanced by formation of a unique quaternary structure not found in mesophilic enzymes.  相似文献   

11.
We here compare thermal unfolding of the apo and holo forms of Desulfovibrio desulfuricans flavodoxin, which noncovalently binds a flavin mononucleotide (FMN) cofactor. In the case of the apo form, fluorescence and far-UV circular dichroism (CD) detected transitions are reversible but do not overlap (T(m) of 50 and 60 degrees C, respectively, pH 7). The thermal transitions for the holo form follow the same pattern but occur at higher temperatures (T(m) of 60 and 67 degrees C for fluorescence and CD transitions, respectively, pH 7). The holoprotein transitions are also reversible and exhibit no protein concentration dependence (above 10 microM), indicating that the FMN remains bound to the polypeptide throughout. Global analysis shows that the thermal reactions for both apo and holo forms proceed via an equilibrium intermediate that has approximately 90% nativelike secondary structure and significant enthalpic stabilization relative to the unfolded states. Incubation of unfolded holoflavodoxin at high temperatures results in FMN dissociation. Rebinding of FMN at these conditions is nominal, and therefore, cooling of holoprotein heated to 95 degrees C follows the refolding pathway of the apo form. However, FMN readily rebinds to the apoprotein at lower temperatures. We conclude that (1) a three-state thermal unfolding behavior appears to be conserved among long- and short-chain, as well as apo and holo forms of, flavodoxins and (2) flavodoxin's thermal stability (in both native and intermediate states) is augmented by the presence of the FMN cofactor.  相似文献   

12.
To understand the structural basis of thermostability, we have determined the solution structure of a thermophilic ribosomal protein L30e from Thermococcus celer by NMR spectroscopy. The conformational stability of T. celer L30e was measured by guanidine and thermal-induced denaturation, and compared with that obtained for yeast L30e, a mesophilic homolog. The melting temperature of T. celer L30e was 94 degrees C, whereas the yeast protein denatured irreversibly at temperatures >45 degrees C. The two homologous proteins also differ greatly in their stability at 25 degrees C: the free energy of unfolding was 45 kJ/mole for T. celer L30e and 14 kJ/mole for the yeast homolog. The solution structure of T. celer L30e was compared with that of the yeast homolog. Although the two homologous proteins do not differ significantly in their number of hydrogen bonds and the amount of solvent accessible surface area buried with folding, the thermophilic T. celer L30e was found to have more long-range ion pairs, more proline residues in loops, and better helix capping residues in helix-1 and helix-4. A K9A variant of T. celer L30e was created by site-directed mutagenesis to examine the role of electrostatic interactions on protein stability. Although the melting temperatures of the K9A variant is approximately 8 degrees C lower than that of the wild-type L30e, their difference in T(m) is narrowed to approximately 4.2 degrees C at 0.5 M NaCl. This salt-dependency of melting temperatures strongly suggests that electrostatic interactions contribute to the thermostability of T. celer L30e.  相似文献   

13.
The reversible folding destabilization of hen lysozyme has been confirmed by a melting temperature (T(m)) decrease in aqueous poly(ethylene glycol) (PEG). The percent denatured, extracted from the histidine 15 C2H (H15 C2H) native and denatured peak areas from 500-MHz one-dimensional proton nuclear magnetic resonance (1D (1)H NMR) spectra in D(2)O, was analyzed through denaturation temperatures at 0% and 20% (w/w) PEG 1000. The lysozyme (3.5 mM) T(m) decreased by 4.2 degrees C and 7.1 degrees C in 20% (w/w) PEG 1000 at pH 3.8 and 3.0, respectively. The T(m) decreased with increasing lysozyme concentration. Additionally, the temperature-induced resonance migrations of 17 protons from 8 residues indicate that the native lysozyme structure undergoes temperature-induced conformational changes. The changes were essentially identical in both 0% and 20% (w/w) PEG 1000 at both pH 3.0 and 3.8. This small, local restructuring of the hydrophobic box region may be a manifestation of temperature-dependent solution hydrophobicity, whereas active-site cleft fluctuations may be due to the inherent active-site flexibility. The lysozyme structure in PEG at 35 degrees C was determined to be essentially native from the (1)H nuclear Overhauser effect spectroscopy (NOESY) fingerprint regions. Additionally, lysozyme chemical shifts, from 1D spectra, in PEG 200, 300, and 1000 at 35 degrees C and various concentrations were essentially identical, further confirming that the conformation remains native in various PEG solutions. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
Vibrational Raman optical activity (ROA) spectra of the calcium-binding lysozyme from equine milk in native and nonnative states are measured and compared with those of the homologous proteins hen egg white lysozyme and bovine alpha-lactalbumin. The ROA spectrum of holo equine lysozyme at pH 4.6 and 22 degrees C closely resembles that of hen lysozyme in regions sensitive to backbone and side chain conformations, indicating similarity of the overall secondary and tertiary structures. However, the intensity of a strong positive ROA band at approximately 1340 cm(-1), which is assigned to a hydrated form of alpha helix, is more similar to that in the ROA spectrum of bovine alpha-lactalbumin than hen lysozyme and may be associated with the greater flexibility and calcium-binding ability of equine lysozyme and bovine alpha-lactalbumin compared with hen lysozyme. In place of a strong sharp positive ROA band at approximately 1300 cm(-1) in hen lysozyme that is assigned to an alpha helix in a more hydrophobic environment, equine lysozyme shows a broader band centered at approximately 1305 cm(-1), which may reflect greater heterogeneity in some alpha-helical sequences. The ROA spectrum of apo equine lysozyme at pH 4.6 and 22 degrees C is almost identical to that of the holo protein, which indicates that loss of calcium has little influence on the backbone and side chain conformations, including the calcium-binding loop. From the similarity of their ROA spectra, the A state at pH 1.9 and both 2 and 22 degrees C and the apo form at pH 4.5 and 48 degrees C, which are partially folded denatured (molten globule or state A) forms of equine lysozyme, have similar structures that the ROA suggests contain much hydrated alpha helix. The A state of equine lysozyme is shown by these results to be more highly ordered than that of bovine alpha-lactalbumin, the ROA spectrum of which has more features characteristic of disordered states. A positive tryptophan ROA band at approximately 1551 cm(-1) in the native holo protein disappears in the A state, which is probably due to the presence of nonnative conformations of the tryptophans associated with a previously identified cluster of hydrophobic residues.  相似文献   

15.
Recently defined family of intrinsically disordered proteins (IDP) includes proteins lacking rigid tertiary structure meanwhile fulfilling essential biological functions. Here we show that apo-state of pike parvalbumin (alpha- and beta-isoforms, pI 5.0 and 4.2, respectively) belongs to the family of IDP, which is in accord with theoretical predictions. Parvalbumin (PA) is a 12-kDa calcium-binding protein involved into regulation of relaxation of fast muscles. Differential scanning calorimetry measurements of metal-depleted form of PA revealed the absence of any thermally induced transitions with measurable denaturation enthalpy along with elevated specific heat capacity, implying the lack of rigid tertiary structure and exposure of hydrophobic protein groups to the solvent. Calcium removal from the PAs causes more than 10-fold increase in fluorescence intensity of hydrophobic probe bis-ANS and is accompanied by a decrease in alpha-helical content and a marked increase in mobility of aromatic residues environment, as judged by circular dichroism spectroscopy (CD). Guanidinium chloride-induced unfolding of the apo-parvalbumins monitored by CD showed the lack of fixed tertiary structure. Theoretical estimation of energetics of the charge-charge interactions in the PAs indicated their pronounced destabilization upon calcium removal, which is in line with sequence-based predictions of disordered protein chain regions. Far-UV CD studies of apo-alpha-PA revealed hallmarks of cold denaturation of the protein at temperatures below 20 degrees C. Moreover, a cooperative thermal denaturation transition with mid-temperature at 10-15 degrees C is revealed by near-UV CD for both PAs. The absence of detectable enthalpy change in this temperature region suggests continuous nature of the transition. Overall, the theoretical and experimental data obtained show that PA in apo-state is essentially disordered nevertheless demonstrates complex denaturation behavior. The native rigid tertiary structure of PA is attained upon association of one (alpha-PA) or two (beta-PA) calcium ions per protein molecule, as follows from calorimetric and calcium titration data.  相似文献   

16.
To understand the molecular basis of the thermostability of a thermophilic serine protease aqualysin I from Thermus aquaticus YT-1, we introduced mutations at Pro5, Pro7, Pro240 and Pro268, which are located on the surface loops of aqualysin I, by changing these amino acid residues into those found at the corresponding locations in VPR, a psychrophilic serine protease from Vibrio sp. PA-44. All mutants were expressed stably and exhibited essentially the same specific activity as wild-type aqualysin I at 40 degrees C. The P240N mutant protein had similar thermostability to wild-type aqualysin I, but P5N and P268T showed lower thermostability, with a half-life at 90 degrees C of 15 and 30 min, respectively, as compared to 45 min for the wild-type enzyme. The thermostability of P7I was decreased even more markedly, and the mutant protein was rapidly inactivated at 80 degrees C and even at 70 degrees C, with half-lives of 10 and 60 min, respectively. Differential scanning calorimetry analysis showed that the transition temperatures of wild-type enzyme, P5N, P7I, P240N and P268T were 93.99 degrees C, 83.45 degrees C, 75.66 degrees C, 91.78 degrees C and 86.49 degrees C, respectively. These results underscore the importance of the proline residues in the N- and C-terminal regions of aqualysin I in maintaining the integrity of the overall protein structure at elevated temperatures.  相似文献   

17.
Two exposed amino acid residues confer thermostability on a cold shock protein   总被引:14,自引:0,他引:14  
Thermophilic organisms produce proteins of exceptional stability. To understand protein thermostability at the molecular level we studied a pair of cold shock proteins, one of mesophilic and one of thermophilic origin, by systematic mutagenesis. Although the two proteins differ in sequence at 12 positions, two surface-exposed residues are responsible for the increase in stability of the thermophilic protein (by 15.8 kJ mol-1 at 70 degrees C). 11.5 kJ mol-1 originate from a predominantly electrostatic contribution of Arg 3 and 5.2 kJ mol-1 from hydrophobic interactions of Leu 66 at the carboxy terminus. The mesophilic protein could be converted to a highly thermostable form by changing the Glu residues at positions 3 and 66 to Arg and Leu, respectively. The variation of surface residues may thus provide a simple and powerful approach for increasing the thermostability of a protein.  相似文献   

18.
19.
To provide a framework for understanding the hyperthermostability of some rubredoxins, a comprehensive analysis of the thermally induced denaturation of rubredoxin (Rd) from the mesophile, Clostridium pasteurianum was undertaken. Rds with three different metals in its M(SCys)4 site (M = Fe3+/2+, Zn2+, or Cd2+) were examined. Kinetics of metal ion release were monitored anaerobically at several fixed temperatures between 40 and 100 degrees C, and during progressive heating of the iron-containing protein. Both methods gave a thermal stability of metal binding in the order Fe2+ < Fe3+ < Zn2+ < Cd2+. The temperature at which half of the iron was released from the protein in temperature ramp experiments was 69 degrees C for Fe2+ Rd and 83 degrees C for Fe3+ Rd. Temperature-dependent changes in the protein structure were monitored by differential scanning calorimetry, tryptophan fluorescence, binding of a fluorescent hydrophobic probe, and 1H NMR. Major but reversible structural changes, consisting of swelling of the hydrophobic core and opening of a loop region, were found to occur at temperatures (50-70 degrees C) much lower than those required for loss of the metal ion. For the three divalent metal ions, the results suggest that the onset of the reversible, lower-temperature structural changes is dependent on the size of the MS4 site, whereas the final, irreversible loss of metal ion is dependent on the inherent M-SCys bond strength. In the case of Fe3+ Rd, stoichiometric Fe3+/cysteine-ligand redox chemistry also occurs during metal ion loss. The results indicate that thermally induced unfolding of the native Cp Rd must surmount a significant kinetic barrier caused by stabilizing interactions both within the protein and within the M(SCys)4 site.  相似文献   

20.
Identification and evaluation of factors important for thermostability in proteins is a growing research field with many industrial applications. This study investigates the effects of introducing a novel disulfide bond and engineered electrostatic interactions with respect to the thermostability of holo azurin from Pseudomonas aeruginosa. Four mutants were selected on the basis of rational design and novel temperature-dependent atomic displacement factors from crystal data collected at elevated temperatures. The atomic displacement parameters describe the molecular movement at higher temperatures. The thermostability was evaluated by optical spectroscopy as well as by differential scanning calorimetry. Although azurin has a high inherent stability, the introduction of a novel disulfide bond connecting a flexible loop with small alpha-helix (D62C/K74C copper-containing mutant), increased the T(m) by 3.7 degrees C compared with the holo protein. Furthermore, three mutants were designed to introduce electrostatic interactions, K24R, D23E/K128R, and D23E/K128R/K24R. Mutant K24R stabilizes loops between two separate beta-strands and D23E/K128R was selected to stabilize the C-terminus of azurin. Furthermore, D23E/K128R/K24R was selected to reflect the combination of the electrostatic interactions in D23E/K128R and K24R. The mutants involving electrostatic interactions had a minor effect on the thermostability. The crystal structures of the copper-containing mutants D62C/K74C and K24R have been determined to 1.5 and 1.8 A resolution. In addition the crystal structure of the zinc-loaded mutant D62C/K74C has also been completed to 1.8 A resolution. These structures support the selected design and provide valuable information for evaluating effects of the modifications on the thermostability of holo azurin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号