首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang LI  Lin YS  Liu KH  Jong AY  Shen WC 《PloS one》2011,6(4):e19162
Cryptococcus neoformans is a ubiquitously distributed human pathogen. It is also a model system for studying fungal virulence, physiology and differentiation. Light is known to inhibit sexual development via the evolutionarily conserved white collar proteins in C. neoformans. To dissect molecular mechanisms regulating this process, we have identified the SSN8 gene whose mutation suppresses the light-dependent CWC1 overexpression phenotype. Characterization of sex-related phenotypes revealed that Ssn8 functions as a negative regulator in both heterothallic a-α mating and same-sex mating processes. In addition, Ssn8 is involved in the suppression of other physiological processes including invasive growth, and production of capsule and melanin. Interestingly, Ssn8 is also required for the maintenance of cell wall integrity and virulence. Our gene expression studies confirmed that deletion of SSN8 results in de-repression of genes involved in sexual development and melanization. Epistatic and yeast two hybrid studies suggest that C. neoformans Ssn8 plays critical roles downstream of the Cpk1 MAPK cascade and Ste12 and possibly resides at one of the major branches downstream of the Cwc complex in the light-mediated sexual development pathway. Taken together, our studies demonstrate that the conserved Mediator protein Ssn8 functions as a global regulator which negatively regulates diverse physiological and developmental processes and is required for virulence in C. neoformans.  相似文献   

2.
Cryptococcus neoformans is an opportunistic fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. The fungal cell wall is an excellent target for antifungal therapies as it is an essential organelle that provides cell structure and integrity, it is needed for the localization or attachment of known virulence factors, including the polysaccharide capsule, melanin, and phospholipase, and it is critical for host-pathogen interactions. In C. neoformans, chitosan produced by the enzymatic removal of acetyl groups from nascent chitin polymers has been implicated as an important component of the vegetative cell wall. In this study, we identify four putative chitin/polysaccharide deacetylases in C. neoformans. We have demonstrated that three of these deacetylases, Cda1, Cda2, and Cda3, can account for all of the chitosan produced during vegetative growth in culture, but the function for one, Fpd1, remains undetermined. The data suggest a model for chitosan production in vegetatively growing C. neoformans where the three chitin deacetylases convert chitin generated by the chitin synthase Chs3 into chitosan. Utilizing a collection of chitin/polysaccharide deacetylase deletion strains, we determined that during vegetative growth, chitosan helps to maintain cell integrity and aids in bud separation. Additionally, chitosan is necessary for maintaining normal capsule width and the lack of chitosan results in a "leaky melanin" phenotype. Our analysis indicates that chitin deacetylases and the chitosan made by them may prove to be excellent antifungal targets.  相似文献   

3.
Cell wall integrity is crucial for fungal growth, development and stress survival. In the model yeast Saccharomyces cerevisiae, the cell integrity Mpk1/Slt2 MAP kinase and calcineurin pathways monitor cell wall integrity and promote cell wall remodelling under stress conditions. We have identified the Cryptococcus neoformans homologue of the S. cerevisiae Mpk1/Slt2 MAP kinase and have characterized its role in the maintenance of cell integrity in response to elevated growth temperature and in the presence of cell wall synthesis inhibitors. C. neoformans Mpk1 is required for growth at 37 degrees C in vitro, and this growth defect is suppressed by osmotic stabilization. C. neoformans mutants lacking Mpk1 are attenuated for virulence in the mouse model of cryptococcosis. Phosphorylation of Mpk1 is induced in response to perturbations of cell wall biosynthesis by the antifungal drugs nikkomycin Z (a chitin synthase inhibitor), caspofungin (a beta-1,3-glucan synthase inhibitor), or FK506 (a calcineurin inhibitor), and mutants lacking Mpk1 display enhanced sensitivity to nikkomycin Z and caspofungin. Lastly, we show that calcineurin and Mpk1 play complementing roles in regulating cell integrity in C. neoformans. Our studies demonstrate that pharmacological inhibition of the cell integrity pathway would enhance the activity of antifungal drugs that target the cell wall.  相似文献   

4.
In eukaryotes the complex processes of development, differentiation, and proliferation require carefully orchestrated changes in cellular morphology. Single-celled eukaryotes provide tractable models for the elucidation of signaling pathways involved in morphogenesis. Here we describe a pathway regulating cell polarization and separation in the human pathogenic fungus Cryptococcus neoformans. An insertional mutagenesis screen identified roles for the ARF1, CAP60, NDH1, KIC1, CBK1, SOG2, and TAO3 genes in establishing normal colony morphology. ARF1 and CAP60 are also required for capsule production, a virulence factor, and ARF1 confers resistance to the antifungal fluconazole. KIC1, CBK1, SOG2, and TAO3 are homologues of genes conserved in other eukaryotes; in Saccharomyces cerevisiae they constitute components of the RAM (regulation of Ace2p activity and cellular morphogenesis) signaling pathway. A targeted deletion of a fifth component of RAM (MOB2) conferred identical phenotypes to kic1, cbk1, sog2, or tao3 mutations. Characterization of these genes in C. neoformans revealed unique features of the RAM pathway in this organism. Loss of any of these genes caused constitutive hyperpolarization instead of the loss of polarity seen in S. cerevisiae. Furthermore, sensitivity to the drugs FK506 and cyclosporin A demonstrates that the RAM pathway acts in parallel with the protein phosphatase calcineurin in C. neoformans but not in S. cerevisiae. These results indicate that conserved signaling pathways serve both similar and divergent cellular roles in morphogenesis in these divergent organisms.  相似文献   

5.
The genes involved in the cellular response to DNA damage are crucial for ensuring DNA integrity during spermatogenesis. In this issue of Cell Stem Cell, Takubo et al. (2008) show that ATM, a key kinase of the DNA damage response, is also involved in maintaining the stem cell potential of undifferentiated spermatogonia.  相似文献   

6.
The claudins     
The claudin multigene family encodes tetraspan membrane proteins that are crucial structural and functional components of tight junctions, which have important roles in regulating paracellular permeability and maintaining cell polarity in epithelial and endothelial cell sheets. In mammals, the claudin family consists of 24 members, which exhibit complex tissue-specific patterns of expression. The extracellular loops of claudins from adjacent cells interact with each other to seal the cellular sheet and regulate paracellular transport between the luminal and basolateral spaces. The claudins interact with multiple proteins and are intimately involved in signal transduction to and from the tight junction. Several claudin mouse knockout models have been generated and the diversity of phenotypes observed clearly demonstrates their important roles in the maintenance of tissue integrity in various organs. In addition, mutation of some claudin genes has been causatively associated with human diseases and claudin genes have been found to be deregulated in various cancers. The mechanisms of claudin regulation and their exact roles in normal physiology and disease are being elucidated, but much work remains to be done. The next several years are likely to witness an explosion in our understanding of these proteins, which may, in turn, provide new approaches for the targeted therapy of various diseases.  相似文献   

7.
Laccases are thought to be important to the virulence of many fungal pathogens by producing melanin, a presumed oxygen radical scavenger. A laccase in Cryptococcus neoformans has been shown to synthesize melanin and contributes to the virulence and the survival in macrophages of this fungal pathogen. One C. neoformans laccase gene, LAC1, previously called CNLAC1, has been extensively studied, and we describe a homologous gene, LAC2, that is found 8 kb away from LAC1 in the genome. In this study we report a role for both laccases, in addition to the thiol peroxidase, Tsa1, in oxidative and nitrosative stress resistance mechanisms of C. neoformans. With use of real-time PCR, similar changes in expression of the two laccase genes occur in response to oxidative and nitrosative stresses, but only the regulation of the LAC2 gene during stress is influenced by Tsa1. Both laccases contribute to melanin production using L-dopa as a substrate and are differentially localized in the cell based on green fluorescent protein fusions. A single deletion of either LAC1 or LAC2 alone had no effect on sensitivity to H2O2 or nitric oxide. However, deletion of either LAC1 or LAC2 in combination with a TSA1 deletion resulted in a slight peroxide sensitivity, and a lac2Delta tsa1Delta deletion strain was sensitive to nitric oxide stress. In addition, the deletion of both laccases reduces survival of C. neoformans in primary macrophages. Based on our expression and functional analysis, we propose a novel model for the interaction of these two systems, which are both important for virulence.  相似文献   

8.
9.
10.
Cryptococcus neoformans is a fungal pathogen that is responsible for life-threatening disease, particularly in the context of compromised immunity. This organism makes extensive use of mannose in constructing its cell wall, glycoproteins, and glycolipids. Mannose also comprises up to two-thirds of the main cryptococcal virulence factor, a polysaccharide capsule that surrounds the cell. The glycosyltransfer reactions that generate cellular carbohydrate structures usually require activated donors such as nucleotide sugars. GDP-mannose, the mannose donor, is produced in the cytosol by the sequential actions of phosphomannose isomerase, phosphomannomutase, and GDP-mannose pyrophosphorylase. However, most mannose-containing glycoconjugates are synthesized within intracellular organelles. This topological separation necessitates a specific transport mechanism to move this key precursor across biological membranes to the appropriate site for biosynthetic reactions. We have discovered two GDP-mannose transporters in C. neoformans, in contrast to the single such protein reported previously for other fungi. Biochemical studies of each protein expressed in Saccharomyces cerevisiae show that both are functional, with similar kinetics and substrate specificities. Microarray experiments indicate that the two proteins Gmt1 and Gmt2 are transcribed with distinct patterns of expression in response to variations in growth conditions. Additionally, deletion of the GMT1 gene yields cells with small capsules and a defect in capsule induction, while deletion of GMT2 does not alter the capsule. We suggest that C. neoformans produces two GDP-mannose transporters to satisfy its enormous need for mannose utilization in glycan synthesis. Furthermore, we propose that the two proteins have distinct biological roles. This is supported by the different expression patterns of GMT1 and GMT2 in response to environmental stimuli and the dissimilar phenotypes that result when each gene is deleted.  相似文献   

11.
12.
Cell wall integrity is crucial for fungal growth, survival, and pathogenesis. Responses to environmental stresses are mediated by the highly conserved Pkc1 protein and its downstream components. In this study, we demonstrate that both oxidative and nitrosative stresses activate the PKC1 cell integrity pathway in wild-type cells, as measured by phosphorylation of Mpk1, the terminal protein in the PKC1 phosphorylation cascade. Furthermore, deletion of PKC1 shows that this gene is essential for defense against both oxidative and nitrosative stresses; however, other genes involved directly in the PKC1 pathway are dispensable for protection against these stresses. This suggests that Pkc1 may have multiple and alternative functions other than activating the mitogen-activated protein kinase cascade from a “top-down” approach. Deletion of PKC1 also causes osmotic instability, temperature sensitivity, severe sensitivity to cell wall-inhibiting agents, and alterations in capsule and melanin. Furthermore, the vital cell wall components chitin and its deacetylated form chitosan appear to be mislocalized in a pkc1Δ strain, although this mutant contains wild-type levels of both of these polymers. These data indicate that loss of Pkc1 has pleiotropic effects because it is central to many functions either dependent on or independent of PKC1 pathway activation. Notably, this is the first time that Pkc1 has been implicated in protection against nitrosative stress in any organism.  相似文献   

13.
Phenotypic analysis of genes encoding yeast zinc cluster proteins   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

14.
Chitin is an essential component of the cell wall of many fungi. Chitin also can be enzymatically deacetylated to chitosan, a more flexible and soluble polymer. Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. In this work, we show that both chitin and chitosan are present in the cell wall of vegetatively growing C. neoformans yeast cells and that the levels of both rise dramatically as cells grow to higher density in liquid culture. C. neoformans has eight putative chitin synthases, and strains with any one chitin synthase deleted are viable at 30 degrees C. In addition, C. neoformans genes encode three putative regulator proteins, which are homologs of Saccharomyces cerevisiae Skt5p. None of these three is essential for viability. However, one of the chitin synthases (Chs3) and one of the regulators (Csr2) are important for growth. Cells with deletions in either CHS3 or CSR2 have several shared phenotypes, including sensitivity to growth at 37 degrees C. The similarity of their phenotypes also suggests that Csr2 specifically regulates chitin synthesis by Chs3. Lastly, both chs3Delta and the csr2Delta mutants are defective in chitosan production, predicting that Chs3-Csr2 complex with chitin deacetylases for conversion of chitin to chitosan. These data suggest that chitin synthesis could be an excellent antifungal target.  相似文献   

15.
16.
Large-scale screening of genetic and chemical-genetic interactions was used to examine the assembly and regulation of beta-1,3-glucan in Saccharomyces cerevisiae. Using the set of deletion mutants in approximately 4600 nonessential genes, we scored synthetic interactions with genes encoding subunits of the beta-1,3-glucan synthase (FKS1, FKS2), the glucan synthesis regulator (SMI1/KNR4), and a beta-1,3-glucanosyltransferase (GAS1). In the resulting network, FKS1, FKS2, GAS1, and SMI1 are connected to 135 genes in 195 interactions, with 26 of these genes also interacting with CHS3 encoding chitin synthase III. A network core of 51 genes is multiply connected with 112 interactions. Thirty-two of these core genes are known to be involved in cell wall assembly and polarized growth, and 8 genes of unknown function are candidates for involvement in these processes. In parallel, we screened the yeast deletion mutant collection for altered sensitivity to the glucan synthase inhibitor, caspofungin. Deletions in 52 genes led to caspofungin hypersensitivity and those in 39 genes to resistance. Integration of the glucan interaction network with the caspofungin data indicates an overlapping set of genes involved in FKS2 regulation, compensatory chitin synthesis, protein mannosylation, and the PKC1-dependent cell integrity pathway.  相似文献   

17.
The YycFG two-component system is the only signal transduction system in Bacillus subtilis known to be essential for cell viability. This system is highly conserved in low-G+C gram-positive bacteria, regulating important processes such as cell wall homeostasis, cell membrane integrity, and cell division. Four other genes, yycHIJK, are organized within the same operon with yycF and yycG in B. subtilis. Recently, it was shown that the product of one of these genes, the YycH protein, regulated the activity of this signal transduction system, whereas no function could be assigned to the other genes. Results presented here show that YycI and YycH proteins interact to control the activity of the YycG kinase. Strains carrying individual in-frame deletion of the yycI and yycH coding sequences were constructed and showed identical phenotypes, namely a 10-fold-elevated expression of the YycF-dependent gene yocH, growth defects, as well as a cell wall defect. Cell wall and growth defects were a direct result of overregulation of the YycF regulon, since a strain overexpressing YycF showed phenotypes similar to those of yycH and yycI deletion strains. Both YycI and YycH proteins are localized outside the cytoplasm and attached to the membrane by an N-terminal transmembrane sequence. Bacterial two-hybrid data showed that the YycH, YycI, and the kinase YycG form a ternary complex. The data suggest that YycH and YycI control the activity of YycG in the periplasm and that this control is crucial in regulating important cellular processes.  相似文献   

18.
Translation is an important step in gene expression. The initiation of translation is phylogenetically diverse, since currently five different initiation mechanisms are known. For bacteria the three initiation factors IF1 – IF3 are described in contrast to archaea and eukaryotes, which contain a considerably higher number of initiation factor genes. As eukaryotes and archaea use a non-overlapping set of initiation mechanisms, orthologous proteins of both domains do not necessarily fulfill the same function. The genome of Haloferax volcanii contains 14 annotated genes that encode (subunits of) initiation factors. To gain a comprehensive overview of the importance of these genes, it was attempted to construct single gene deletion mutants of all genes. In 9 cases single deletion mutants were successfully constructed, showing that the respective genes are not essential. In contrast, the genes encoding initiation factors aIF1, aIF2γ, aIF5A, aIF5B, and aIF6 were found to be essential. Factors aIF1A and aIF2β are encoded by two orthologous genes in H. volcanii. Attempts to generate double mutants failed in both cases, indicating that also these factors are essential. A translatome analysis of one of the single aIF2β deletion mutants revealed that the translational efficiency of the second ortholog was enhanced tenfold and thus the two proteins can replace one another. The phenotypes of the single deletion mutants also revealed that the two aIF1As and aIF2βs have redundant but not identical functions. Remarkably, the gene encoding aIF2α, a subunit of aIF2 involved in initiator tRNA binding, could be deleted. However, the mutant had a severe growth defect under all tested conditions. Conditional depletion mutants were generated for the five essential genes. The phenotypes of deletion mutants and conditional depletion mutants were compared to that of the wild-type under various conditions, and growth characteristics are discussed.  相似文献   

19.
Lee SC  Heitman J 《Eukaryotic cell》2012,11(6):783-794
The human basidiomycetous fungal pathogen Cryptococcus neoformans serves as a model fungus to study sexual development and produces infectious propagules, basidiospores, via the sexual cycle. Karyogamy is the process of nuclear fusion and an essential step to complete mating. Therefore, regulation of nuclear fusion is central to understanding sexual development of C. neoformans. However, our knowledge of karyogamy genes was limited. In this study, using a BLAST search with the Saccharomyces cerevisiae KAR genes, we identified five C. neoformans karyogamy gene orthologs: CnKAR2, CnKAR3, CnKAR4, CnKAR7 (or CnSEC66), and CnKAR8. There are no apparent orthologs of the S. cerevisiae genes ScKAR1, ScKAR5, and ScKar9 in C. neoformans. Karyogamy involves the congression of two nuclei followed by nuclear membrane fusion, which results in diploidization. ScKar7 (or ScSec66) is known to be involved in nuclear membrane fusion. In C. neoformans, kar7 mutants display significant defects in hyphal growth and basidiospore chain formation during both a-α opposite and α-α unisexual reproduction. Fluorescent nuclear imaging revealed that during kar7 × kar7 bilateral mutant matings, the nuclei congress but fail to fuse in the basidia. These results demonstrate that the KAR7 gene plays an integral role in both opposite-sex and unisexual mating, indicating that proper control of nuclear dynamics is important. CnKAR2 was found to be essential for viability, and its function in mating is not known. No apparent phenotypes were observed during mating of kar3, kar4, or kar8 mutants, suggesting that the role of these genes may be dispensable for C. neoformans mating, which demonstrates a different evolutionary trajectory for the KAR genes in C. neoformans compared to those in S. cerevisiae.  相似文献   

20.
Anti-apoptotic Bcl-2 family proteins, which inhibit the mitochondrial pathway of apoptosis, are involved in the survival of various hematopoietic lineages and are often dysregulated in hematopoietic malignancies. However, their involvement in the megakaryocytic lineage is not well understood. In the present paper, we describe the crucial anti-apoptotic role of Mcl-1 and Bcl-xL in this lineage at multistages. The megakaryocytic lineage-specific deletion of both, in sharp contrast to only one of them, caused apoptotic loss of mature megakaryocytes in the fetal liver and systemic hemorrhage, leading to embryonic lethality. ABT-737, a Bcl-xL/Bcl-2/Bcl-w inhibitor, only caused thrombocytopenia in adult wild-type mice, but further induced massive mature megakaryocyte apoptosis in the Mcl-1 knockout mice, leading to severe hemorrhagic anemia. All these phenotypes were fully restored if Bak and Bax, downstream apoptosis executioners, were also deficient. In-vitro study revealed that the Jak pathway maintained Mcl-1 and Bcl-xL expression levels, preventing megakaryoblastic cell apoptosis. Similarly, both were involved in reticulated platelet survival, whereas platelet survival was dependent on Bcl-xL due to rapid proteasomal degradation of Mcl-1. In conclusion, Mcl-1 and Bcl-xL regulate the survival of the megakaryocytic lineage, which is critically important for preventing lethal or severe hemorrhage in both developing and adult mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号