首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary roots of soybean [Glycine max (L.), cv Harosoy 63] seedlings were inoculated with zoospores from either race 1 (incompatible, host resistant) or race 3 (compatible, host susceptible) of Phytophthora megasperma f. sp. glycinea (Pmg) and the activities of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), isoflavone synthase, and dihydroxypterocarpan 6a-hydroxylase related to phytoalexin (glyceollin) biosynthesis, and of glucose-6-phosphate dehydrogenase (Glc-6-PDH) and glutamate dehydrogenase (Glu-DH) were determined at various times after inoculation. About 2-4 h after inoculation with race 1, the activities of PAL, CHS, and pterocarpan 6a-hydroxylase were higher than after inoculation with race 3 and increased considerably thereafter. In contrast, activities of these enzymes in the compatible interaction were equal to or only slightly higher than in the controls over the entire infection period investigated (2-8 h). Isoflavone synthase did not increase until 7 h after inoculation with race 1. There were no significant differences in activities for Glc-6-PDH and Glu-DH between inoculated roots and controls. The results show that infection of soybean roots with zoospores of Pmg race 1 causes a race:cultivar-specific early induction of enzymes involved in glyceollin synthesis, whereas such an induction does not occur with zoospores of race 3. These findings are in agreement with the race:cultivar-specific accumulation of glyceollin in soybean roots reported previously [M. G. Hahn, A. Bonhoff, and H. Grisebach (1985) Plant Physiol. 77, 591-601].  相似文献   

2.
The intracellular localization of prenyltransferases involved in the biosynthesis of the phytoalexins glyceollin in soybean (Glycine max L.) and phaseollin in French bean (Phaseolus vulgaris L.) has been investigated. By sucrose- and Percoll-gradient centrifugation of microsomes of an elicitor-challenged soybean cell culture, the membranes containing prenyltransferase were separated from the endoplasmic reticulum and shown to be lighter in density. In a continuous Percoll gradient the peak of prenyltransferase activity coincided with the peak of galactolipid synthesis, as determined by incorporation of uridine 5′-diphospho-[14C]galactose (UDP-[14C]galactose). Intact chloroplasts isolated from cupricchloride-treated bean leaves contained both prenyltransferase and UDP-galactose transferase activity. Both activities increased during chloroplast isolation. Fractionation of swollen chloroplasts on a discontinuous sucrose gradient showed prenyltransferase and UDP-galactose transferase activity in the envelope membrane subfraction. It is concluded that in both plants prenyltransferase is located in the envelope membrane of plastids. Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   

3.
Soybean cell cultures were challenged either by glucan elicitor from Phytophthora megasperma f.sp. glycinea or by osmotic stress (0.4 M glucose). Osmotic stress induced production of a microsomal NADPH-dependent flavone synthase (flavone synthase II) which catalyses conversion of (2S)-naringenin to apigenin. In one of our cell-lines this enzyme activity was not detected either in unchallenged cells or in cells treated with glucan elicitor. Inducibility of flavone synthase II by 0.4 M glucose was highest at the end of the linear growth phase. Changes in the activities of a number of other enzymes were determined after treatment of the cells with elicitor or 0.4 M glucose. The activities of phenylalanine ammonialyase, cinnamate 4-hydroxylase, chalcone synthase and dihydroxypterocarpan 6a-hydroxylase all increased with elicitor and with osmoticum, albeit to a different degree. The rise in enzyme activity occurred later with osmoticum than with elicitor. The prenyltransferase involved in glyceollin synthesis was induced strongly by elicitor but only very weakly by osmoticum, whereas isoflavone synthase and NADPH: cytochrome-c reductase were only induced by elicitor. The activity of glucose-6-phosphate dehydrogenase did not change with elicitor or with osmoticum. Different product patterns were also obtained: whereas with elicitor, glyceollin I was the major product, intermediates of the glyceollin pathway (7,4-dihydroxyflavanone, trihydroxypterocarpan) accumulated with osmoticum.  相似文献   

4.
Two cytochrome P450 enzymes, cinnamate 4-hydroxylase (C4H) and 3,9-dihydroxypterocarpan 6a-hydroxylase (D6aH), were isolated from elicitor-challenged soybean (Glycine max) cell cultures (G. Kochs and H. Grisebach, 1989, Arch. Biochem. Biophys. 273, 543-553). An earlier purification protocol was improved by the use of new chromatographic media, leading to a higher yield of enzymatic activity. After separation of C4H from D6aH on hydroxyapatite, the C4H was identified using anti-C4H antibody from Jerusalem artichoke (Helianthus tuberosus) (B. Gabriac et al., 1991, Arch. Biochem. Biophys. 288, 302-309). The two proteins show molecular weights of about 58,000 for C4H and about 55,000 for D6aH on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both enzyme activities are dependent on NADPH:cytochrome P450 reductase and cross-react with their respective antibodies. Both cytochrome P450 subspecies show substrate binding and CO-difference spectra typical for cytochrome P450 and were found to be glycoproteins by their cross-reaction with biotinylated lectins in Western blot. The N-terminal sequence of C4H from soybean shows high similarity to the N-terminus of C4H from Jerusalem artichoke.  相似文献   

5.
A radioimmunoassay for glyceollin I, the major phytoalexin produced by soybean (Glycine max [L.] Merr.), has been developed. Antibodies were raised in rabbits against a glyceollin I-bovine serum albumin conjugate. The antisera were used to establish a radioimmunoassay for glyceollin I using [125I]glyceollin I as the tracer. A logit plot of a standard concentration series yielded a straight line in the range of 1 to 100 picomoles (0.34-34 nanograms) of glyceollin I. The structurally related pterocarpan phytoalexins, glyceollins II and III, glyceollidin II and glycinol, which also accumulate in infected soybean tissue, show a low cross-reactivity in the radioimmunoassay (0.5-5% at 50% displacement of the tracer). Two related isoflavones present constitutively in soybean tissue, daidzein and genistein, have cross-reactivities of less than 0.84% and 1.1%, respectively. The radioimmunoassay permitted the quantitative determination of glyceollin I in 15-micrometer microtome sections of soybean hypocotyl tissue infected with zoospores of Phytophthora megasperma f. sp. glycinea.  相似文献   

6.
Liu S  Norris DM  Hartwig EE  Xu M 《Plant physiology》1992,100(3):1479-1485
The hypocotyl of different soybean genotypes was tested for its inducible phytoalexin (i.e. glyceollin or coumestrol) accumulation and its inducible soybean looper resistance in response to chemical elicitation. A very highly insect-resistant soybean genotype (PI 227687) produced significantly more phytoalexins than a relatively insect-susceptible one (Davis) in response to the same chemical elicitation. The resultant standardized hypocotyl assay allowed quick categorization of unknown soybean genotypes regarding the level of insect resistance in the fully developed plants. Glyceollin was a better indicator of inducible resistance than coumestrol. Elicitor concentration influenced the amount of glyceollin and coumestrol accumulated. Younger seedlings (4-5 d old) responded stronger to chemical elicitation than did older ones (7-10 d old). The elicited accumulation of glyceollin showed a temporal pattern that peaked at 72 h. Accumulation of coumestrol showed a gradual increase. Elicitation of phytoalexins in juvenile soybean plants by sulfhydryl-binding reagents was found to be useful for the prediction of genotypic differences in the level of insect resistance in the fully developed plants.  相似文献   

7.
The antibacterial effect of the soybean phytoalexin glyceollin was assayed using a liquid microculture technique. Log-phase cells of Bradyrhizobium japonicum and Sinorhizobium fredii were sensitive to glyceollin. As revealed by growth rates and survival tests, these species were able to tolerate glyceollin after adaptation. Incubation in low concentrations of the isoflavones genistein and daidzein induced resistance to potentially bactericidal concentrations of glyceollin. This inducible resistance is not due to degradation or detoxification of the phytoalexin. The inducible resistance could be detected in B. japonicum 110spc4 and 61A101, representing the two taxonomically divergent groups of this species, as well as in S. fredii HH103, suggesting that this trait is a feature of all soybean-nodulating rhizobia. Glyceollin resistance was also inducible in a nodD1D2YABC deletion mutant of B. japonicum 110spc4, suggesting that there exists another recognition site for flavonoids besides the nodD genes identified so far. Exudate preparations from roots infected with Phytophthora megasperma f. sp. glycinea exhibited a strong bactericidal effect toward glyceollin-sensitive cells of B. japonicum. This killing effect was not solely due to glyceollin since purified glyceollin at concentrations similar to those present in exudate preparations had a much lower toxicity. However, glyceollin-resistant cells were also more resistant to exudate preparations than glyceollin-sensitive cells. Isoflavonoid-inducible resistance must therefore be ascribed an important role for survival of rhizobia in the rhizosphere of soybean roots.  相似文献   

8.
9.
Hairy roots were initiated from two soybean [Glycine max (L.) Merr.] genotypes with different susceptibility (susceptible 'Spencer' and partially resistant 'PI567.374') to the disease sudden death syndrome (SDS) caused by the soil-borne fungal pathogen Fusarium solani f. sp. glycines (FSG) to study the role of isoflavonoids in the plant response to FSG infection. Hairy root cultures obtained by transformation with Agrobacterium rhizogenes allows normal root growth that can be visually monitored. The principal isoflavones (genistin, daidzin, glycitin and their malonyl conjugates and aglycones) and also isoflavonoid phytoalexins (coumestrol and glyceollin) were measured by HPLC in extracts of the FSG-inoculated and non-inoculated hairy roots. FSG mycelia grew more slowly on inoculated PI567.374 hairy roots than on Spencer hairy roots. The glyceollin content was higher in FSG-inoculated PI567.374 hairy roots than in Spencer hairy roots even though the glyceollin precursor, the isoflavone daidzein, was higher in Spencer. The de novo synthesis of isoflavones and glyceollin was confirmed by [(14)C]Phe incorporation into glyceollin, which was higher both in the FSG-inoculated roots and surrounding medium of the cv. PI567.374 than that of Spencer. Glyceollin was the most inhibitory to FSG growth among eight isoflavonoids tested. The levels of coumestrol, a putative phytoalexin, did not change upon FSG inoculation. The defense response was also elicited by FSG culture filtrates in hairy roots grown in liquid culture. The data obtained indicate that the ability of soybean roots to rapidly produce sufficient amounts of glyceollin in response to FSG infection might be important in providing partial resistance to this fungus.  相似文献   

10.
Soybean hairy roots, transformed with the soybean chalcone synthase (CHS6) or isoflavone synthase (IFS2) genes, with dramatically decreased capacity to synthesize isoflavones were produced to determine what effects these changes would have on susceptibility to a fungal pathogen. The isoflavone and coumestrol concentrations were decreased by about 90% in most lines apparently due to gene silencing. The IFS2 transformed lines had very low IFS enzyme activity in microsomal fractions as measured by the conversion of naringenin to genistein. The CHS6 lines with decreased isoflavone concentrations had 5 to 20-fold lower CHS enzyme activities than the appropriate controls. Both IFS2 and CHS transformed lines accumulated higher concentrations of both soluble and cell wall bound phenolic acids compared to controls with higher levels found in the CHS6 lines indicating alterations in the lignin biosynthetic branch of the pathway. Induction of the soybean phytoalexin glyceollin, of which the precursor is the isoflavone daidzein, by the fungal pathogen Fusarium solani f. sp. glycines (FSG) that causes soybean sudden death syndrome (SDS) showed that the low isoflavone transformed lines did not accumulate glyceollin while the control lines did. The (iso)liquritigenin content increased upon FSG induction in the IFS2 transformed roots indicating that the pathway reactions before this point can control isoflavonoid synthesis. The lowest fungal growth rate on hairy roots was found on the FSG partially resistant control roots followed by the SDS sensitive control roots and the low isoflavone transformants. The results indicate the importance of phytoalexin synthesis in root resistance to the pathogen. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

11.
《Phytochemistry》1995,40(3):739-743
A sensitive gas chromatography-mass spectrometry method is described for detection and quantification of small amounts of phytoalexins, especially glyceollins. This method allowed identification of canescacarpin (glyceollin V) besides appreciable amounts of glyceollin isomers I–III and glyceofuran in unchallenged parts of soybean seedlings. Based on this quantification method the glyceollin content of soybean roots, either untreated, wounded or incubated with a glucan elicitor from Phytophthora sojae, was compared. The proportions of glyceollin isomers in the mixture of compounds were determined in different soybean tissues. Single-ion monitoring revealed the presence of four additional glyceollin isomers with benzofuranoid structure.  相似文献   

12.
Elicitor-challenged soybean (Glycine max) cell cultures were used for detergent solubilization and purification of cytochrome P450 3,9-dihydroxypterocarpan 6a-hydroxylase (D6aH). D6aH was purified to electrophoretic homogeneity from such cells by a five-step procedure. It could be separated from cytochrome P450 cinnamate 4-hydroxylase on hydroxyapatite. This is the first report on separation of two cytochrome P450 enzymes from a higher plant. On sodium dodecyl sulfate polyacrylamide gels D6aH migrated with a Mr about 55,000. For reconstitution experiments soybean NADPH:cytochrome P450 (cytochrome c) reductase was purified to homogeneity. Reconstitution of D6aH in the presence of NADPH was dependent on cytochrome P450 D6aH, the reductase, and lipid. Dilauroylphosphatidylcholine gave higher D6aH activity than soybean lipids (asolectin). The reconstituted D6aH system showed a much higher temperature stability than the microsomal system.  相似文献   

13.
Cell wall preparations (elicitors) from Phytophthora megasperma var. sojae increase C2H4 formation, phenylalanine ammonia lyase activity, and glyceollin accumulation in soybean cotyledons within about 1.5, 3, and 6 hours after treatment, respectively. The immediate precursor of C2H4, 1-aminocyclopropane-1-carboxylic acid, stimulates C2H4 formation like the elicitor within 1.5 hours after administration, whereas phenylalanine ammonia lyase activity and glyceollin concentration remain unchanged. Aminoethoxyvinylglycine, a specific inhibitor of C2H4 formation in higher plants, inhibits elicitor-induced C2H4 formation by about 95% but has no effects on phenylalanine ammonia lyase or glyceollin accumulation. It was concluded that C2H4 is a signal accompanying the specific recognition process which finally leads to the induction of phytoalexin formation, but it is not functioning as a link or messenger in the induction sequence of glyceollin accumulation.  相似文献   

14.
《Plant science》1988,54(3):203-209
Immersion of roots of 2-day-old soybean seedlings (Glycine max cv. Harosoy 63) into solutions of several glucan elicitors caused the accumulation to various degrees of the soybean phytoalexin glyceollin. Laminarin and polytran proved to be more effective elicitors in this system than the glucan elicitor from Phytophthora megasperma f.sp. glycinea (Pmg). Digitonin and tomatin caused, in addition to glyceollin accumulation, the deposition of callose in the rhizodermis. Pretreatment of the soybean roots with laminarin effected an increase in resistance of the seedlings against a compatible race of Pmg.  相似文献   

15.
Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells   总被引:11,自引:0,他引:11  
A glucan elicitor from the cell walls of the fungus Phytophthora megasperma f.sp. glycinea caused increases in the activities of the phytoalexin biosynthetic enzymes, phenylalanine ammonia-lyase and chalcone synthase, and induced the production of the phytoalexin, glyceollin, in soybean (Glycine max) cell suspension cultures when tested in culture medium containing 1.2 mmol/liter Ca2+. Removal of extracellular Ca2+ by treatment with ethylene glycol bis(beta-aminoethyl ether)-N, N'-tetraacetic acid followed by washing the cells with Ca2+-free culture medium abolished the elicitor-mediated phytoalexin response. This suppression was largely reversed on readdition of Ca2+. Elicitor-mediated enhancement of biosynthetic enzyme activities and accumulation of glyceollin was strongly inhibited by La3+; effective concentrations for 50% inhibition were (mumol/liter) 40 for phenylalanine ammonia-lyase, 100 for chalcone synthase, and 30 for glyceollin. Verapamil caused similar effects only at concentrations higher than 0.1 mmol/liter, whereas trifluoperazine and 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate did not affect enzyme induction by the elicitor in the concentration range tested. Uptake of alpha-amino isobutyric acid into soybean cells, which was rapidly inhibited in the presence of the glucan elicitor, was not affected by La3+ nor was uptake inhibition by the elicitor relieved by La3+. The Ca2+ ionophore, A23187, enhanced phytoalexin biosynthetic enzyme activities and glyceollin accumulation in a dose-dependent manner, with 50% stimulation (relative to the elicitor) occurring at about 5 mumol/liter. The results suggest that the glucan elicitor causes changes in metabolite fluxes across the plasma membrane of soybean cells, among which changes in Ca2+ fluxes appear to be important for the stimulation of the phytoalexin response.  相似文献   

16.
信号传导拮抗物对大豆细胞植保素和异黄酮积累的影响   总被引:3,自引:0,他引:3  
磷酸酶的抑制剂花萼海绵诱癌素A、芫菁素和冈田酸都能诱导大豆植保素(大豆素)的积累。相反,激酶的抑制剂K252a几乎完全阻止它们诱导大豆素的合成。与磷酸酶抑制剂相比较,酵母细胞壁激发子(YE)有利于诱导黄苷元、染料木苷等异黄酮中间体的积累,而磷酸酶的抑制剂有利于大豆素的合成。YE和芫菁素还呈现出协同诱导大豆素积累的效果。通过磷脂酶A2的抑制剂与阻止线粒体ATP合酶活性的化合物的分别处理,发现茉莉酸信号传导途径是参与调控大豆植保素合成的重要途径之一,而植保素的合成需要线粒体提供能量。  相似文献   

17.
An NADPH:2'-hydroxydaidzein oxidoreductase (HDR) from elicitor-challenged soybean cell cultures was purified to apparent homogeneity by a five-step procedure. The purification procedure included affinity adsorption on Blue Sepharose and elution of the enzyme with NADP+. It was shown by gel filtration and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis that HDR consists of only one polypeptide, which has a Mr about 34,700. The pH optimum of the reaction was 7.0. Apparent Michaelis constants determined for 2'-hydroxydaidzein, 2'-hydroxyformononetin, and NADPH were, respectively, 50, 60, and 56 microM. A low conversion of 2'-hydroxygenistein to the corresponding isoflavanone was also observed but isoflavones lacking a 2'-hydroxyl group and various other flavonoids did not serve as substrates. Enzymatically derived 2'-hydroxydihydrodaidzein gave a positive CD spectrum at 328 nm, which shows its 3R stereochemistry. Antibodies against HDR were raised in rats.  相似文献   

18.
A glucan elicitor from cell walls of the fungus Phytophthora megasperma f. sp. glycinea, a pathogen of soybean (Glycine max), induced large and rapid increases in the activities of enzymes of general phenylpropanoid metabolism, phenylalanine ammonia-lyase, and of the flavonoid pathway, acetyl-CoA carboxylase and chalcone synthase, in suspension-cultured soybean cells. The changes in phenylalanine ammonia-lyase and chalcone synthase activities were correlated with corresponding changes in the mRNA activities encoding these enzymes, as determined by enzyme synthesis in vitro in a mRNA-dependent reticulocyte lysate. The time courses of the elicitor-induced changes in mRNA activities for both enzymes were very similar with respect to each other. Following the onset of induction, the two mRNA activities increased significantly at 3 h, reached highest levels at 5 to 7 h, and subsequently returned to low values at 10 h. Similar degrees of induction of mRNA activities and of the catalytic activities of phenylalanine ammonia-lyase and chalcone synthase were observed in response to three diverse microbial compounds, the glucan elicitor from P. megasperma, xanthan, an extracellular polysaccharide from Xanthomonas campestris, and endopolygalacturonase from Aspergillus niger. However, whereas the glucan elicitor induced the accumulation of large amounts of the phytoalexin, glyceollin, in soybean cells, endopolygalacturonase induced only low, albeit significant, amounts; xanthan did not enhance glyceollin accumulation under the conditions of this study. This result might imply that enzymes other than phenylalanine ammonia-lyase or chalcone synthase exert an important regulatory function in phytoalexin synthesis in soybean cells.  相似文献   

19.
20.
The glyceollin inhibition of electron transport by isolated soybean and corn mitochondria was similar to that of rotenone, acting at site I between the internal NADH dehydrogenase and coenzyme Q. Coupled state 3 malate oxidation was inhibited by glyceollin and rotenone with apparent Ki values of about 15 and 5 micromolar, respectively. Carbonylcyanide m-chlorophenyl hydrazone uncoupled state 4 malate oxidation was also inhibited by glyceollin and rotenone, but uncoupled succinate and exogenous NADH state 4 oxidation was only slightly inhibited by both compounds. Glyceollin also inhibited ferricyanide reduction with malate as the electron donor, with an apparent Ki of 5.4 micromolar, but failed to inhibit such reduction with succinate or externally added NADH as electron donors. Glyceollin did not inhibit state 4 oxidation of malate, succinate, or exogenous NADH. Glyceollin did not act as a classical uncoupler or as an inhibitor of oxidative phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号