首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unfolding and refolding of pancreatic ribonuclease have been observed by absorbance, fluorescence, and size exclusion chromatographic measurements in solutions of guanidinium chloride continuously maintained at pH 6.0 and 4 degrees C. The spectral measurements were fitted with a minimal number of kinetic phases while the chromatographic measurements were simulated from an explicit mechanism. All of the measurements are consistent with a minimal mechanism involving seven components. The folded components include the native protein and two transiently stable intermediates each having the same hydrodynamic volume. The intermediate having all native peptide isomers has an unfolding midpoint in 3.8 M denaturant while the intermediate having one nonnative peptide isomer has an unfolding midpoint in 1.3 M denaturant. The unfolded protein is distributed among four components having the same hydrodynamic volume but differing peptide isomers. At equilibrium, 10% of the denatured protein has all native isomers, 60% has one nonnative isomer, 5% has a different nonnative isomer, and 25% has both nonnative isomers. In low denaturant concentrations, the dominant component with one nonnative isomer can refold to transiently populate the compact intermediate with the same nonnative isomer.  相似文献   

2.
R B Weinberg 《Biochemistry》1988,27(5):1515-1521
We have investigated the exposure and electronic interaction of tyrosine and tryptophan residues in human apolipoprotein A-IV (apo A-IV). Differential absorption spectroscopy and chemical titration demonstrated that human apo A-IV contains six tyrosine residues, four of which are buried in the hydrophobic interior of the protein and two of which are exposed on the protein surface. Denaturation of the protein by guanidinium chloride caused progressive exposure of the buried tyrosines. The fluorescence emission spectra of apo A-IV were characterized by a blue-shifted tryptophan emission with a low relative quantum yield of 0.37 and a tyrosine emission with a relative quantum yield of 0.62. Fluorescence quenching studies demonstrated a low fractional exposure of tryptophan in the native state. Denaturation of apo A-IV was accompanied by an increase in the relative quantum yield which peaked at the denaturation midpoint. Fluorescence excitation techniques demonstrated energy transfer from tyrosine residues with a transfer efficiency of 0.40 in the native state; the efficiency was conformation dependent and decreased with protein unfolding. Fluorescence studies of tetranitromethane-modified apo A-IV suggested that a significant fraction of energy transfer proceeds from the exposed tyrosine residues. These data demonstrate the existence of intramolecular fluorescence energy transfer and tryptophan quenching in human apolipoprotein A-IV and suggest that the amino terminus of this protein is situated in a hydrophobic domain within energy-transfer range of nonvicinal tyrosine residues.  相似文献   

3.
Equilibrium unfolding-refolding processes of active and proteolytically modified alpha 1-proteinase inhibitor induced by guanidinium chloride were studied. Spectroscopic methods of ultraviolet absorption, fluorescence emission and circular dichroism were used. The functional inhibitor unfolds following a multistate process: a first transition (midpoint at 0.6 M guanidinium chloride) was observed whatever the method used and was attributed to a limited conformational modification of the region including the two tryptophan residues. At higher denaturant concentrations, two other transitions were observed, one in fluorescence (midpoint at 1.7 M guanidinium chloride), attributed to the unfolding of the polypeptide chain in the same region and the other one, observed in circular dichroism and in ultraviolet absorption (midpoint at 2.3 M guanidinium chloride), leading to the totally unfolded protein. Evidence for several intermediates was also obtained with the proteolytically modified inhibitor. If total unfolding is considered, the modified inhibitor was found to be more stable towards the denaturant than the functional form (obtained at 5.5 M and 3.5 M guanidinium chloride, respectively). The unfolding irreversibility observed was attributed to the C-terminal fragment Ser359-Lys394 associated with the main chain of the cleaved inhibitor.  相似文献   

4.
Properties of thrombin- and elastase-modified human antithrombin III   总被引:3,自引:0,他引:3  
P Gettins  B Harten 《Biochemistry》1988,27(10):3634-3639
Proteolytically modified forms of human antithrombin III have been prepared by reaction of native antithrombin with thrombin, human neutrophil elastase, or porcine pancreatic elastase. These forms have two chains disulfide linked and are of the same molecular weight as native antithrombin III. 1H NMR spectroscopy has been used to characterize these proteins and to compare them to one another and to native antithrombin III. The three modified proteins have very similar NMR spectra and histidine residues with identical pH titration parameters, and they undergo the same spectral changes upon binding heparin. They differ from native antithrombin III in all of these respects. In addition, the proteins are much more stable than native antithrombin III. The three modified proteins behave identically as a function of temperature; at 372 K, 44 K above the unfolding temperature for native antithrombin III, the proteins are still folded and possess approximately 70 unexchanged amide protons even after several hours. The unfolding of the heparin binding domain at low concentrations of deuteriated guanidine hydrochloride seen in native thrombin III is absent in the modified forms. It is concluded that the thrombin- and elastase-modified forms of antithrombin have identical structures when allowance is made for the slightly different sites of cleavage by the two types of elastase and by thrombin. This structure is very different from that of native antithrombin III.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The guanidinium chloride- and urea-induced unfolding of FprA, a mycobacterium NADPH-ferredoxin reductase, was examined in detail using multiple spectroscopic techniques, enzyme activity measurements and size exclusion chromatography. The equilibrium unfolding of FprA by urea is a cooperative process where no stabilization of any partially folded intermediate of protein is observed. In comparison, the unfolding of FprA by guanidinium chloride proceeds through intermediates that are stabilized by interaction of protein with guanidinium chloride. In the presence of low concentrations of guanidinium chloride the protein undergoes compaction of the native conformation; this is due to optimization of charge in the native protein caused by electrostatic shielding by the guanidinium cation of charges on the polar groups located on the protein side chains. At a guanidinium chloride concentration of about 0.8 m, stabilization of apo-protein was observed. The stabilization of apo-FprA by guanidinium chloride is probably the result of direct binding of the Gdm+ cation to protein. The results presented here suggest that the difference between the urea- and guanidinium chloride-induced unfolding of FprA could be due to electrostatic interactions stabilizating the native conformation of this protein.  相似文献   

6.
Chemical modifications have demonstrated that the ultraviolet difference spectrum produced when heparin interacts with antithrombin III is due primarily to changes in the tryptophan environment. This is based on the observation that this spectrum could be abolished by treatment of antithrombin III with dimethyl (2-hydroxy-5-nitrobenzyl) sulfonium bromide but not with tetranitromethane. The tryptophan-modified antithrombin III is still capable of binding to thrombin even when it has lost 85% of heparin cofactor activity. A marked decrease in reactivity of tryptophan residues is observed when modification is carried out in the presence of heparin. Evidence is presented that tryptophan is in the heparin binding site.  相似文献   

7.
Heparin cofactor II and antithrombin III are plasma proteins functionally similar in their ability to inhibit thrombin at accelerated rates in the presence of heparin. To further characterize the structural and functional properties of human heparin cofactor II as compared to antithrombin III, we studied the possible significance of arginyl and tryptophanyl residues and the changes in protein structure and activity during guanidinium chloride (GdmCl) denaturation. Both antithrombin and heparin cofactor activities of heparin cofactor II are inactivated by the arginine-specific reagent, 2,3-butanedione. Saturation kinetics are observed during modification and suggest formation of a reversible protease inhibitor-butanedione complex. Quantitation of arginyl residues following butanedione modification shows a loss of about four residues for total inactivation, one of which is essential for antithrombin activity. Arginine-modified heparin cofactor II did not bind to heparin-agarose and implies a role for the other modified arginyl residues during heparin cofactor activity. N-Bromosuccinimide oxidation (20 mol of reagent/mol of protein) of heparin cofactor II results in modification of approximately two tryptophanyl residues with no concomitant loss of heparin cofactor activity. Moreover, there is no enhancement of intrinsic protein fluorescence during heparin binding to the native inhibitor. Circular dichroism measurements show that the structural transition of heparin cofactor II during denaturation is distinctly biphasic, yielding midpoints at 0.6 and 2.6 M GdmCl. Functional protease inhibitory activities are affected to the same extent following denaturation-renaturation at various GdmCl concentrations. The results indicate that arginyl residues are critical for both antithrombin and heparin binding activities. In contrast, tryptophanyl residues are apparently not essential for heparin-dependent interactions. The results also suggest that heparin cofactor II contains two structural domains which unfold at different GdmCl concentrations.  相似文献   

8.
I Bj?rk  E Pol 《FEBS letters》1992,299(1):66-68
Far-ultraviolet circular dichroism and tryptophan fluorescence measurements showed that the reversible unfolding of the cysteine proteinase inhibitor, chicken cystatin, by guanidinium chloride is a two-step process with transition midpoints at approximately 3.4 and approximately 5.4 M denaturant. The partially unfolded intermediate had both far- and near-ultraviolet circular dichroism and fluorescence emission spectra comparable to those of the native protein. The largely retained tertiary structure suggests that the intermediate represents a species in which a separate region of lower stability has been unfolded, rather than an intermediate of the 'molten globule' type. Such a structurally independent region is apparent in the three-dimensional structure of the inhibitor.  相似文献   

9.
The quaternary structure of streptavidin in urea   总被引:2,自引:0,他引:2  
We report on the interactions of urea and guanidinium salts with streptavidin. Gel filtration chromatography in 0, 4, 6, and 7 M urea indicates that the streptavidin tetramer remains intact in urea. Biotin alters the electrophoretic mobility of streptavidin whether or not 6 M urea is present. The intrinsic fluorescence of streptavidin is increased and blue-shifted in 6 M urea. The fluorescence changes indicate the absence of unfolding. A conformational response to urea is possible, but much of the fluorescence change is due to urea binding as a weak biotin analog (Ka approximately 1.3 M-1). The resistance to structural perturbation by urea reflects the structural stability of streptavidin's anti-parallel beta-barrel motif. Unfolding is sluggish in 6 M guanidinium hydrochloride (half-time, approximately 50 days). After guanidinium thiocyanate unfolding, streptavidin can be refolded, but the unfolding and refolding transitions are centered at different concentrations of perturbant. Slow unfolding, with a 15th power dependence on guanidinium thiocyanate concentration, may be partially responsible for the noncoincidence of the unfolding and refolding processes. Nonequilibrium behavior is also seen in 6 M urea, as native streptavidin does not unfold and guanidinium thiocyanate unfolded streptavidin does not refold. Refolding does occur at lower concentrations of urea. Guanidinium thiocyanate only slowly unfolds the biotin-streptavidin complex. In the presence of biotin, unfolded streptavidin does not refold in 6 M guanidinium thiocyanate or in 6 M urea.  相似文献   

10.
Fluorescence, CD, and activity measurements were used to characterize the different conformational states of horseradish peroxidase A1 induced by thermal unfolding. Picosecond time-resolved fluorescence studies showed a three-exponential decay dominated by a picosecond lifetime component resulting from energy transfer from tryptophan to heme. Upon thermal unfolding a decrease in the preexponential factor of the picosecond lifetime and an increase in the quantum yield were observed approaching the characteristics observed for apoHRPA1. The fraction of heme-quenched fluorophore decreased to 0.4 after unfolding as shown by acrylamide quenching. A new unfolding pathway for HRPA1 was proposed and the effect of the low molecular weight solutes trehalose, sorbitol, and melezitose on this pathway was analyzed. Native HRPA1 unfolds with an intermediate between the native and the unfolded conformation. The unfolded conformation can refold to the native state or to a native-like conformation with no calcium ions upon cooling or can give an irreversible denatured state. The refolded conformation with no calcium ions was clearly identified in a second thermal scan in the presence of EDTA and shows secondary and tertiary structures, heme reincorporation in the cavity, and at least 59% of activity. Melezitose stabilized the refolded Ca2+-depleted protein and induced a more complex mechanism for heme disruption. The effect of sorbitol and trehalose were mainly characterized by an increase in the temperature of unfolding.  相似文献   

11.
To probe the functional role of tryptophan 49 in human antithrombin III, a mutant antithrombin, W49K, has been expressed in baby hamster kidney cells. The mutation reduces the affinity for heparin pentasaccharide by 1.8 kcal mol-1 but does not alter the heparin enhancement of the rate of factor Xa inhibition. 1H NMR spectra of W49K antithrombin show that the structure of the protein and the mode of heparin binding appear to be unaltered by the mutation, although tryptophan 49 is perturbed by heparin binding. 19F NMR spectra of 6-fluorotryptophan-substituted antithrombin show that tryptophan 49 is in a solvent-exposed environment. The heparin-induced fluorescence enhancement of W49K antithrombin is significantly different from that of wild-type antithrombin. Pentasaccharide induces only a 24% enhancement of antithrombin fluorescence, while high affinity heparin induces an enhancement of 40%. The results indicate that tryptophan 49 is probably a heparin contact residue but can be mutated without altering the remaining heparin-antithrombin interactions or the heparin-induced conformational change and resultant activation toward Factor Xa. Hydrophobic as well as charge interactions are thus probably involved in the specificity of the antithrombin-heparin pentasaccharide interaction. The lower fluorescence enhancements suggest that the heparin-induced 40% fluorescence enhancement used as the hallmark of activating heparin species is not the best indicator of the structural change in antithrombin that results in enhancement of the rate of proteinase inhibition.  相似文献   

12.
Corrected fluorescence excitation and emission spectra of human antithrombin III have been determined. The fluorescence observed originates almost entirely from tryptophan residues. Reduction of the disulfide bonds followed by carboxymethylation did not change the fluorometric properties of the protein. The binding of heparin to antithrombin III caused a marked fluorescence enhancement by about 30% of the intrinsic protein emission intensity. Various samples of heparin yielded different binding curves. Heparin fractionated by gel filtration seemed to be bound to two sites on antithrombin III with association constants of 0.6-10(6)m-1 and 0.2-10(6)M-1 respectively. Heparin, prepared by affinity chromatography on matrix-bound antithrombin III appeared to be bound to only one site with an association constant of 2.3-10(6)M-1. Under similar conditions heparin caused no increase of the intrinsic protein emission intensity when added to reduced and carboxymethylated antithrombin III. The implications of these findings are discussed.  相似文献   

13.
Johnson DJ  Huntington JA 《Biochemistry》2003,42(29):8712-8719
Antithrombin is activated as an inhibitor of the coagulation proteases through its specific interaction with a heparin pentasaccharide. The binding of heparin induces a global conformational change in antithrombin which results in the freeing of its reactive center loop for interaction with target proteases and a 1000-fold increase in heparin affinity. The allosteric mechanism by which the properties of antithrombin are altered by its interactions with the specific pentasaccharide sequence of heparin is of great interest to the medical and protein biochemistry communities. Heparin binding has previously been characterized as a two-step, three-state mechanism where, after an initial weak interaction, antithrombin undergoes a conformational change to its high-affinity state. Although the native and heparin-activated states have been determined through protein crystallography, the number and magnitude of conformational changes render problematic the task of determining which account for the improved heparin affinity and how the heparin binding region is linked to the expulsion of the reactive center loop. Here we present the structure of an intermediate pentasaccharide-bound conformation of antithrombin which has undergone all of the conformational changes associated with activation except loop expulsion and helix D elongation. We conclude that the basis of the high-affinity state is not improved interaction with the pentasaccharide but a lowering of the global free energy due to conformational changes elsewhere in antithrombin. We suggest a mechanism in which the role of helix D elongation is to lock antithrombin in the five-stranded fully activated conformation.  相似文献   

14.
Iodide is an efficient quencher of antithrombin III intrinsic tryptophan fluorescence. The quenching pattern indicates that about 60% of the tryptophyl fluorescence originates from exposed residues in the multitryptophan-containing protein. In denaturing media all of the tryptophyls are solvent-exposed. The binding of heparin to antithrombin III influences the number of solvent-exposed tryptophan residues. By studying the dependence of the quenching on pH, information regarding the presence of charged residues adjacent to tryptophyls was obtained.  相似文献   

15.
Apomyoglobins from 13 different mammals were examined for resistance to denaturation by guanidinium chloride. Unfolding was followed by circular dichroism and tryptophan fluorescence and analyzed globally using the two-step, three-state mechanism first described by Barrick and Baldwin (Barrick, D., and Baldwin, R. L. (1993) Biochemistry 32, 3790-3796). With one exception, the rise and fall of Trp fluorescence intensity correlates quantitatively with the native to intermediate to unfolded steps seen in the CD curves. Although the O(2) binding properties of the holoproteins are nearly identical, the unfolding transitions of the apomyoglobins show 600-fold differences in resistance to guanidinium chloride denaturation. Apomyoglobins from diving mammals, particularly from sperm whales, are the most stable, whereas the apoproteins from pig, horse, and sheep are the least stable, indicating selective pressure for resistance to denaturation in the whale proteins. Sequence comparisons suggest that the key stabilizing residues in whale globins are Ala(5), His(12), Ile(28), Thr(51), Ala(53), Ala(74), Lys(87), Lys(140), and Ile(142). Combinations of these residues were substituted into pig myoglobin. The resultant multiple mutants showed stabilities approaching that of recombinant sperm whale apomyoglobin. Thus, comparative mutagenesis can be used to increase heme protein stability and improve expression yields in bacteria without compromising function.  相似文献   

16.
The unfolding of the recombinant regulatory subunit of cAMP-dependent protein kinase I was followed by monitoring the intrinsic protein fluorescence. Unfolding proceeds in at least two stages. First, the quenching of fluorescence due to cAMP binding is abolished at relatively low levels of urea (less than 2 M) and is observed as an increase in intensity at 340 nm. The high-affinity binding of cAMP is retained in 3 M urea even though the quenching is lost. The second stage of unfolding, presumably representing unfolding of the polypeptide chain, is seen as a shift in lambda max from 340 to 353 nm. The midpoint concentration, Cm, for this process is 5.0 M. Cyclic AMP binding activity is lost at a half-maximal urea concentration of 3.5 M and precedes the shift in lambda max. Unfolding of the protein in the presence of urea was fully reversible; furthermore, the presence of excess levels of cAMP stabilized the regulatory subunit. A free energy value (delta GDH2O) of 7.1 +/- 0.2 kcal/mol was calculated for the native form of the protein when denaturation was induced with either urea or guanidine hydrochloride. Iodide quenching of tryptophan fluorescence was used to elucidate the number of tryptophan residues accessible during various stages of the unfolding process. In the native cAMP-bound form of the regulatory subunit, only one of the three tryptophans in the regulatory subunit is quenched by iodide while more than two tryptophans can be quenched with iodide in the presence of 3 M urea.  相似文献   

17.
Changes in the conformational state of human plasma fibronectin and several of its fragments were studied by fluorescence emission, intrinsic fluorescence polarization and c.d. spectroscopy under conditions of guanidinium chloride-and temperature-induced unfolding. Fragments were chosen to represent all three types of internal structural homology in the protein. Low concentration (less than 2 M) of guanidinium chloride induced a gradual transition in the intact protein that was not characteristic of any of the isolated domains, suggesting the presence of interdomain interactions within the protein. Intermediate concentrations of guanidinium chloride (2-3 M) and moderately elevated temperatures (55-60 degrees C) induced a highly co-operative structural transition in intact fibronectin that was attributable to the central 110 kDa cell-binding domain. High temperatures (greater than 60 degrees C) produced a gradual unfolding in the intact protein attributable to the 29 kDa N-terminal heparin-binding and 40 kDa collagen-binding domains. Binding of heparin to intact fibronectin and to its N-terminal fragment stabilized the proteins against thermal unfolding. This was reflected in increased delta H for the unfolding transitions of the heparin-bound N-terminal fragment, as well as decreased accessibility to solvent perturbants of internal chromophores in this fragment when bound to heparin. These results help to account for the biological efficacy of the interaction between the fibronectin N-terminal domain and heparin, despite its relatively low affinity.  相似文献   

18.
P Gettins  E W Wooten 《Biochemistry》1987,26(14):4403-4408
The denaturation of human and bovine antithrombin III by guanidine hydrochloride has been followed by 1H NMR spectroscopy. The same unfolding transition seen previously from circular dichroism studies [Villanueva, G. B., & Allen, N. (1983) J. Biol. Chem. 258, 14048-14053] at low denaturant concentration was detected here by discontinuous changes in the chemical shifts of the C(2) protons of two of the five histidines in human antithrombin III and of three of the six histidines in bovine antithrombin III. These two histidines in human antithrombin III are assigned to residue 1 and, more tentatively, to residue 65. Two of the three histidines similarly affected in the bovine protein appear to be homologous to residues in the human protein. This supports the proposal of similar structures for the two proteins. In the presence of heparin, the discontinuous titration behavior of these histidine resonances is shifted to higher denaturant concentration, reflecting the stabilization of the easily unfolded first domain of the protein by bound heparin. From the tentative assignment of one of these resonances to histidine-1, it is proposed that the heparin binding site of antithrombin III is located in the N-terminal region and that this region forms a separate domain from the rest of the protein. The pattern of disulfide linkages is such that this domain may well extend from residue 1 to at least residue 128. Thermal denaturation also leads to major perturbation of these two histidine resonances in human antithrombin III, though stable intermediates in the unfolding were not detected.  相似文献   

19.
The acid-induced unfolding of human platelet profilin (HPP) can be minimally modeled as a three-state process. Equilibrium unfolding studies have been performed on human platelet profilin1 (HPP) and monitored by far-UV circular dichroism, tryptophan fluorescence, ANS binding, and NMR spectroscopy. Far-UV CD measurements obtained by acid titration demonstrate that HPP unfolds via a three-state mechanism (N --> I --> U), with a highly populated intermediate between pH 4 and 5. Approximately 80% of native helical secondary structural content remains at pH 4, as indicated by monitoring the CD signal at 222 nm. The stability (DeltaGH2O) of the native conformation at pH 7.0 (obtained by monitoring the change in tryptophan signal as a function of urea concentration) is 5.56 +/- 0.51 kcal mol-1; however, the DeltaGH2O for the intermediate species at pH 4 is 2.01 +/- 0.47 kcal mol-1. The calculated m-values for the pH 7.0 and pH 4.0 species were 1.64 +/- 0.15 and 1.34 +/- 0.17 kcal mol-1 M-1, respectively, which is an indication that the native and intermediate species are similarly compact. Additionally, translational diffusion measurements obtained by NMR spectroscopy and ANS binding studies are consistent with a globular and compact conformation at both pH 7.0 and 4.0. The pKa values for the two histidine (His) residues located on helix 4 of HPP were determined to be 5.6 and 5.7 pH units. These pKa values coincide with the midpoint of the far-UV CD acid titration curve and suggest that the protonation of one or both His residues may play a role in the formation of the unfolding intermediate. Stable intermediate species populate the 2D 1H-15N HSQC NMR spectra between pH 4 and 5. A number of backbone and side-chain resonances show significant perturbations relative to the native spectrum; however, considerable nativelike tertiary contacts remain. Interestingly, the residues on HPP that are significantly altered at low pH coincide with segments of the G-actin binding surface and poly-l-proline binding interface. The earlier reports that a decrease in pH below 6.0 induces structural alterations in profilin, favoring dissociation of the profilin-actin complex, corresponds with the structural alterations observed in the partially unfolded species. Our findings suggest that a novel mechanism for pH induced disruption of the profilin-G-actin complex involve a nativelike unfolding intermediate of profilin.  相似文献   

20.
The interference of the heparin-neutralizing plasma component S protein (vitronectin) (Mr = 78,000) with heparin-catalyzed inhibition of coagulation factor Xa by antithrombin III was investigated in plasma and in a purified system. In plasma, S protein effectively counteracted the anticoagulant activity of heparin, since factor Xa inhibition was markedly reduced in comparison to heparinized plasma deficient in S protein. Using purified components in the presence of heparin, S protein induced a concentration-dependent reduction of the inhibition rate of factor Xa by antithrombin III. This resulted in a decrease of the apparent pseudo-first order rate constant by more than 10-fold at a physiological ratio of antithrombin III to S protein. S protein not only counteracted the anticoagulant activity of commercial heparin but also of low molecular weight forms of heparin (mean Mr of 4,500). The heparin-neutralizing activity of S protein was found to be mainly expressed in the range 0.2-10 micrograms/ml of high Mr as well as low Mr heparin. S protein and high affinity heparin reacted with apparent 1:1 stoichiometry to form a complex with a dissociation constant KD = 1 X 10(-8) M as determined by a functional assay. As deduced from dot-blot analysis, direct interaction of radiolabeled heparin with S protein revealed a dissociation constant KD = 4 X 10(-8) M. Heparin binding as well as heparin neutralization by S protein increased significantly when reduced/carboxymethylated or guanidine-treated S protein was employed indicating the existence of a partly buried heparin-binding domain in native S protein. Radiolabeled heparin bound to the native protein molecule as well as to a BrCN fragment (Mr = 12,000) containing the heparin-binding domain as demonstrated by direct binding on nitrocellulose replicas of sodium dodecyl sulfate-polyacrylamide gels. Kinetic analysis revealed that the heparin neutralization activity of S protein in the inhibition of factor Xa by antithrombin III could be mimicked by a synthetic tridecapeptide from the amino-terminal portion of the heparin-binding domain. These data provide evidence that the heparin-binding domain of S protein appears to be unique in binding to heparin and thereby neutralizing its anticoagulant activity in the inhibition of coagulation factors by antithrombin III. The induction of heparin binding and neutralization may be considered a possible physiological mechanism initiated by conformational alteration of the S protein molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号