首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Clostridium thermoautotrophicum and C. thermoaceticum contain an anaerobic electron transport chain. It involves hydrogen and carbon monoxide as electron donors and, presumably methylenetetrahydrofolate as physiological electron acceptor. Cytochrome b 554, cytochrome b 559, menaquinone, a flavoprotein, ferredoxin and rubredoxin are parts of the electron transport chain. The electron transport results in the generation of a proton motive force which drives the synthesis of ATP or the uptake of amino acids.  相似文献   

2.
The mechanism of iron transport in Francisella is still a puzzle since none of the sequenced Francisella strains appears to encode a TonB protein, the energy transducer of the proton motive force necessary to act on the bacterial outer membrane siderophore receptor to allow the internalization of iron. In this work we demonstrate using kinetic experiments of radioactive Fe3+ utilization, that iron uptake in Francisella novicida, although with no recognizable TonB protein, is indeed dependent on energy generated by the proton motive force. Moreover, mutants of a predicted outer membrane receptor still transport iron and are sensitive to the iron dependent antimicrobial compound streptonigrin. Our studies suggest that alternative pathways to internalize iron might exist in Francisella.  相似文献   

3.
Corynebacteria are Gram-positive bacteria with a very peculiar cell envelope structure as it is constituted of an inner membrane and an outer membrane-like structure. Protein secretion in Corynebacterium glutamicum was studied in vivo, using the S-layer protein PS2 as a model. We show that different variants of PS2 protein are exported through the whole cell envelope with a half-life ranging between 2 and 4 min, by a two-step mechanism. The first step, which is over after about 1.5 min, is ATP- and proton motive force-dependent and may correspond to translocation across the inner membrane via the 'Sec' machinery. The second step, across the cell wall and the outer mycolate layer, is rapid but independent of energy sources. This very efficient secretion process across the mycolate layer raises the question of the existence in this layer of a specific machinery.  相似文献   

4.
Lactic acid bacteria are able to generate a protonmotive force across the cytoplasmic membrane by various metabolic conversions without involvement of substrate level phosphorylation or proton pump activity. Weak acids like malate and citrate are taken up in an electrogenic process in which net negative charge is translocated into the cell thereby generating a membrane potential. The uptake is either an exchange process with a metabolic end-product (precursor/ product exchange) or a uniporter mechanism. Subsequent metabolism of the internalized substrate drives uptake and results in the generation of a pH gradient due to the consumption of scalar protons. The generation of the membrane potential and the pH gradient involve separate steps in the pathway. Here it is shown that they are nevertheless coupled. Analysis of the pH gradient that is formed during malolactic fermentation and citrate fermentation shows that a pH gradient, inside alkaline, is formed only when the uptake system forms a membrane potential, inside negative. These secondary metabolic energy generating systems form a pmf that consists of both a membrane potential and a pH gradient, just like primary proton pumps do. It is concluded that the generation of a pH gradient, inside alkaline, upon the addition of a weak acid to cells is diagnostic for an electrogenic uptake mechanism translocating negative charge with the weak acid.  相似文献   

5.
A modified metabolic model for mixed culture fermentation (MCF) is proposed with the consideration of an energy conserving electron bifurcation reaction and the transport energy of metabolites. The production of H2 related to NADH/NAD+ and Fdred/Fdox is proposed to be divided in three processes in view of energy conserving electron bifurcation reaction. This assumption could fine‐tune the intracellular redox balance and regulate the distribution of metabolites. With respect to metabolite transport energy, the proton motive force is considered to be constant, while the transport rate coefficient is proposed to be proportional to the octanol–water partition coefficient. The modeling results for a glucose fermentation in a continuous stirred tank reactor show that the metabolite distribution is consistent with the literature: (1) acetate, butyrate, and ethanol are main products at acidic pH, while the production shifts to acetate and propionate at neutral and alkali pH; (2) the main products acetate, ethanol, and butyrate shift to ethanol at higher glucose concentration; (3) the changes for acetate and butyrate are following an increasing hydrogen partial pressure. The findings demonstrate that our modified model is more realistic than previous proposed model concepts. It also indicates that inclusion of an energy conserving electron bifurcation reaction and metabolite transport energy for MCF is sound in the viewpoint of biochemistry and physiology. Biotechnol. Bioeng. 2013; 110: 1884–1894. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
7.
Cytoplasmic membrane vesicles were prepared by a lysozyme-salt treatment from Arthrobacter P1 grown on methylamine as the carbon and energy source. In the presence of an ascorbate-phenazine methosulphate electron donor system, these vesicles accumulated methylamine in unmodified form by an inducible transport system. This system has a high affinity for methylamine (Kapp=20–25 M). The effect of the ionophores valinomycin and nigericin combined with membrane potential () and pH-gradient (pH) measurements demonstrated that methylamine uptake is electrogenic and driven by the . Optimal activity is observed at pH 6.5 and 30°C. Methylamine uptake was not affected by the presence of ammonium ions but was inhibited by the primary amines ethylamine (competitively), propylamine, butylamine and benzylamine. In addition, formaldehyde and acetate, at a concentration of 1 mM, inhibited methylamine uptake almost completely. These compounds were shown to be non-competitive inhibitors. A strong inhibition observed in the presence of plumbagin could be relieved by addition of dithiothreitol. This indicates that the oxidation-reduction state of, probably, carrier dithiol-disulfide-groups is an important factor in methylamine translocation in Arthrobacter P1.  相似文献   

8.
Methanogenic archaea are strictly anaerobic organisms that derive their metabolic energy from the conversion of a restricted number of substrates to methane. H2+CO2 and formate are converted to CH4 via the CO2-reducing pathway, while methanol and methylamines are metabolized by the methylotrophic pathway. A limited number of methanogenic organisms utilize acetate by the aceticlastic pathway. Redox reactions involved in these processes are partly catalyzed by membrane-bound enzyme systems that generate or, in the case of endergonic reactions, use electrochemical ion gradients. The H2:heterodisulfide oxidoreductase, the F420H2:heterodisulfide oxidoreductase and the CO:heterodisulfide oxidoreductase, are novel systems that generate a proton motive force by redox-potential-driven H+ translocation. The methyltetrahydromethanopterin:coenzyme M methyltransferase is a unique, reversible sodium ion pump that couples methyl transfer with the transport of Na+ across the cytoplasmic membrane. Formylmethanofuran dehydrogenase is a reversible ion pump that catalyzes formylation and deformylation, of methanofuran. In summary, the pathways are coupled to the generation of an electrochemical sodium ion gradient and an electrochemical proton gradient. Both ion gradients are used directly for ATP synthesis via membrane integral ATP synthases. The function of the above-mentioned systems and their components in the metabolism of methanogens are described in detail.Abbreviations DCCD N,N dicyclohexylcarbodiimide - F 420 (N-l-Lactyl--l-glutamyl)-l-glutamic acid phosphodiester of 7,8 didemethyl-8-hydroxy-5-deazariboflavin-5-phosphate - H 4MPT Tetrahydromethanopterin - HS-CoM 2-Mercaptoethanesulfonate - HS-HTP 7-Mercaptoheptanoyl-O-phospho-l-threonine - MF Methanofuran - Ms Methanosarcina - Mc Methanococcus - Mb Methanobacterium - SF 6847 3,5-Di-tert-butyl-4-hydroxybenzylidene-malononitrile - Electrochemical sodium ion gradient - Electrochemical proton gradient  相似文献   

9.
Whether humans minimize metabolic energy in gait is unknown. Gradient-based optimization could be used to predict gait without using walking data but requires a twice differentiable metabolic energy model. Therefore, the metabolic energy model of Umberger et al. (2003 Umberger BR, Gerritsen KG, Martin PE. 2003. A model of human muscle energy expenditure. Comput Methods Biomech Biomed Eng. 6(2):99111.[Taylor &; Francis Online] [Google Scholar]) was adapted to be twice differentiable. Predictive simulations of a reaching task and gait were solved using this continuous model and by minimizing effort. The reaching task simulation showed that energy minimization predicts unrealistic movements when compared to effort minimization. The predictive gait simulations showed that objectives other than metabolic energy are also important in gait.  相似文献   

10.
11.
A pulse NMR technique employing low extracellular Mn2+ concentrations has been used in following the effect of variations in extracellular osmolality on water transport through the human red blood cell membrane. We report results including the effect of osmolality on the cell water lifetime (τa) and, for the first time, the effect on the proton spin-spin relaxation of the intracellular water (T2a) and the activation energy for the water transport process. Current results are encouraging in correlating the effects seen in this study with suspected membrane functional changes occurring in both in vivo and in vitro aging and during in vitro preservation attempts.  相似文献   

12.
Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.  相似文献   

13.
The magnitude of the proton motive force (p) and its constituents, the electrical () and chemical potential (-ZpH), were established for chemostat cultures of a protease-producing, relaxed (rel ) variant and a not protease-producing, stringent (rel +) variant of an industrial strain ofBacillus licheniformis (respectively referred to as the A- and the B-type). For both types, an inverse relation of p with the specific growth rate was found. The calculated intracellular pH (pHin) was not constant but inversely related to . This change in pHin might be related to regulatory functions of metabolism but a regulatory role for pHin itself could not be envisaged. Measurement of the adenylate energy charge (EC) showed a direct relation with for glucose-limited chemostat cultures; in nitrogen-limited chemostat cultures, the EC showed an approximately constant value at low and an increased value at higher . For both limitations, the ATP/ADP ratio was directly related to .The phosphorylation potential (G'p) was invariant with . From the values for G'p and p, a variable H+/ATP-stoichiometry was inferred: H+/ATP=1.83+0.52µ, so that at a given H+/O-ratio of four (4), the apparent P/O-ratio (inferred from regression analysis) showed a decline of 2.16 to 1.87 for =0 to max (we discuss how more than half of this decline will be independent of any change in internal cell-volume). We propose that the constancy of G'p and the decrease in the efficiency of energy-conservation (P/O-value) with increasing are a way in which the cells try to cope with an apparent less than perfect coordination between anabolism and catabolism to keep up the highest possible with a minimum loss of growth-efficiency. Protease production in nitrogen-limited cultures as compared to glucose-limited cultures, and the difference between the A- and B-type, could not be explained by a different energy-status of the cells.Abbreviations CCCP carbonylcyanide-p-trichloromethoxyphenylhydrazone - DW dry weight of biomass - F Faraday's constant, 96.6 J/(mV × mol) - Fo chemostat outflow-rate (ml/h) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - G'p phosphorylation potential, the Gibbs energy change for ATP-synthesis from ADP and Pi - G'0p standard Gibbs energy change at specified conditions - H+/ATP number of protons translocated through - ATP synthase in synthesis of one ATP - H+/O protons translocated during transfer of 2 electrons from substrate to oxygen - specific growth rate (1/h) - H+ transmembrane electrochemical proton potential, J/mol - Mb molar weight (147.6 g/mol) of bacteria with general cell formula C6.0H10.8O3.0N1.2 - pHout,in extracellular, intracellular pH - Pi (intracellular) inorganic phosphate - p proton motive force, mV - pH transmembrane pH-difference - transmembrane electrical potential, mV - P/O number of ADP phosphorylated to ATP upon reduction of one O2– to H2O by two electrons transferred through the electron transfer chain - P/O (H+/O) × (H+/ATP)–1 - P/OF, P/ON P/O with the two electrons donated by resp. (NADH + H+) and FADH - q specific rate of consumption or production (mol/g DW × h) - rel +,rel stringent, relaxed genotype - R universal gas constant, 8.36 J/(mol × degree) - T absolute temperature - TPMP+ triphenylmethylphosphonium ion - TPP+ tetraphenyl phosphonium ion - Y growth yield, g DW/mol - Z conversion constant=61.8 mV for 310 K (37 °C) - ZpH transmembrane proton potential or chemical potential, mV  相似文献   

14.

Background

Tumor formation and spread via the circulatory and lymphatic drainage systems is associated with metabolic reprogramming that often includes increased glycolytic metabolism relative to mitochondrial energy production. However, cells within a tumor are not identical due to genetic change, clonal evolution and layers of epigenetic reprogramming. In addition, cell hierarchy impinges on metabolic status while tumor cell phenotype and metabolic status will be influenced by the local microenvironment including stromal cells, developing blood and lymphatic vessels and innate and adaptive immune cells. Mitochondrial mutations and changes in mitochondrial electron transport contribute to metabolic remodeling in cancer in ways that are poorly understood.

Scope of Review

This review concerns the role of mitochondria, mitochondrial mutations and mitochondrial electron transport function in tumorigenesis and metastasis.

Major Conclusions

It is concluded that mitochondrial electron transport is required for tumor initiation, growth and metastasis. Nevertheless, defects in mitochondrial electron transport that compromise mitochondrial energy metabolism can contribute to tumor formation and spread. These apparently contradictory phenomena can be reconciled by cells in individual tumors in a particular environment adapting dynamically to optimally balance mitochondrial genome changes and bioenergetic status.

General Significance

Tumors are complex evolving biological systems characterized by genetic and adaptive epigenetic changes. Understanding the complexity of these changes in terms of bioenergetics and metabolic changes will permit the development of better combination anticancer therapies. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

15.
Pediococcus halophilus possesses phosphoenolpyruvate:mannose phosphotransferase system (man:PTS) as a main glucose transporter. A man:PTS defective (man:PTSd) strain X-160 could, however, utilize glucose. A possible glucose-transport mechanism other than PTS was studied with the strain X-160 and its derivative, man:PTSd phosphofructokinase defective (PFK) strain M-13. Glucose uptake by X-160 at pH 5.5 was inhibited by any of carbonylcyanide m-chlorophenylhydrazone, nigericin, N,N-dicyclohexylcarbodiimide, or iodoacetic acid. The double mutant M-13 could still transport glucose and accumulated intracellularly a large amount of hexose-phosphates (ca. 8 mM glucose 6-phosphate and ca. 2 mM fructose 6-phosphate). Protonophores also inhibited the glucose transport at pH 5.5, as determined by the amounts of accumulated hexose-phosphates (< 4 mM). These showed involvement of proton motive force (P) in the non-PTS glucose transport. It was concluded that the non-PTS glucose transporter operated in concert with hexokinase or glucokinase for the metabolism of glucose in the man:PTSd strain.Abbreviations BM basal medium - BM-G basal medium containing glucose - CM complex medium - man:PTS phosphoenolpyruvate:mannose phosphotransferase system - CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexyl carbodiimide - P proton motive force - pH transmembrane pH gradient - transmembrane electrical potential difference - MNNG N-methyl-N-nitro-N-nitrosoguanidine - PIPES piperazine-N,N-bis(-ethanesulfonic acid) - MES 4-morpholineethanesulfonic acid - G-6-P glucose 6-phosphate - F-6-P fructose 6-phosphate - FDP fructose 1,6-bisphosphate - EMP Embden-Meyerhof-Parnas pathway - PFK phosphofructokinase - GK glucokinase - HK hexokinase - IAA iodoacetic acid - IIman enzyme II component of man:PTS  相似文献   

16.
The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Qi‐site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Qo‐site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate‐grown wild‐type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium‐grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate‐grown plants. Hence the ETC, likely the Q‐cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non‐energy‐conserving electron sink upstream of Complex III.  相似文献   

17.
The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination and regulation of the chlorophyll (Chl) and thylakoid apoprotein biosynthetic pathways. As a working hypothesis we have recently proposed three different Chl-thylakoid apoprotein biosynthesis models: a single-branched Chl biosynthetic pathway (SBP)-single location model, a SBP-multilocation model, and a multibranched Chl biosynthetic pathway (MBP)-sublocation model. The detection of resonance excitation energy transfer between tetrapyrrole precursors of Chl, and several Chl-protein complexes, has made it possible to test the validity of the proposed Chl-thylakoid apoprotein biosynthesis models by resonance excitation energy transfer determinations. In this work, resonance excitation energy transfer techniques that allow the determination of distances separating tetrapyrrole donors from Chl-protein acceptors in green plants by using readily available electronic spectroscopic instrumentation are developed. It is concluded that the calculated distances are compatible with the MBP-sublocation model and incompatible with the operation of the SBP-single location Chl-protein biosynthesis model.  相似文献   

18.
Clostridium sporogenes MD1 grew rapidly with peptides and amino acids as an energy source at pH 6.7. However, the proton motive force (p) was only –25 mV, and protonophores did not inhibit growth. When extracellular pH was decreased with HCl, the chemical gradient of protons (ZpH) and the electrical membrane potential () increased. The p was –125 mV at pH 4.7, even though growth was not observed. At pH 6.7, glucose addition did not cause an increase in growth rate, but increased to –70 mV. Protein synthesis inhibitors also significantly increased . Non-growing, arginine-energized cells had a of –80 mV at pH 6.7 or pH 4.7, but was not detected if the F1F0 ATPase was inhibited. Arginine-energized cells initiated growth if other amino acids were added at pH 6.7, and and ATP declined. At pH 4.7, ATP production remained high. However, growth could not be initiated, and neither nor the intracellular ATP concentration declined. Based on these results, it appears that C. sporogenes MD1 does not need a large p to grow, and p appears to serve as a mechanism of ATP dissipation or energy spilling.Mandatory disclaimer: Proprietary or brand names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product, and exclusion of others that may be suitable.  相似文献   

19.
Membrane vesicles isolated from oxalategrown cells of Pseudomonas oxalaticus accumulated oxalate by an inducible transport system in unmodified form against a concentration gradient. This accumulation was dependent on the presence of a suitable electron donor system such as ascorbate-phenazinemethosulphate. In the presence of this energy source, steady state levels of accumulation of oxalate were 10–20-fold higher than in its absence. The oxalate transport system involved showed a high affinity for oxalate (K m =11 M) and was highly specific. Oxalate transport was not affected by the presence of other dicarboxylic acids, such as malate, succinate and fumarate and only partly inhibited by acetate. The energy requirement for oxalate transport is discussed and it is concluded that this requirement is most likely equivalent to 1 mole of ATP per mole of oxalate.Abbreviation PMS phenazinemethosulphate  相似文献   

20.
Goal, Scope and Background  Assessing future energy and transport systems is of major importance for providing timely information for decision makers. In the discussion of technology options, fuel cells are often portrayed as attractive options for power plants and automotive applications. However, when analysing these systems, the LCA analyst is confronted with methodological problems, particularly with data gaps and the requirement of an anticipation of future developments. This series of two papers aims at providing a methodological framework for assessing future energy and transport systems (Part 1) and applies this to the two major application areas of fuel cells (Part 2). Methods  To allow the LCA of future energy and transport systems forecasting tools like, amongst others, cost estimation methods and process simulation of systems are investigated with respect to the applicability in LCAs of future systems (Part 1). The manufacturing process of an SOFC stack is used as an illustration for the forecasting procedure. In Part 2, detailed LCAs of fuel cell power plants and power trains are carried out including fuel (hydrogen, methanol, gasoline, diesel and natural gas) and energy converter production. To compare it with competing technologies, internal combustion engines (automotive applications) and reciprocating engines, gas turbines and combined cycle plants (stationary applications) are analysed as well. Results and Discussion  Principally, the investigated forecasting methods are suitable for future energy system assessment. The selection of the best method depends on different factors such as required ressources, quality of the results and flexibility. In particular, the time horizon of the investigation determines which forecasting tool may be applied. Environmentally relevant process steps exhibiting a significant time dependency shall always be investigated using different independent forecasting tools to ensure stability of the results. The results of the LCA (Part 2) underline that principally, fuel cells offer advantages in the impact categories which are typically dominated by pollutant emissions, such as acidification and eutrophication, whereas for global warming and primary energy demand, the situation depends on a set of parameters such as driving cycle and fuel economy ratio in mobile applica-tions and thermal/total efficiencies in stationary applications. For the latter impact categories, the choice of the primary en-ergy carrier for fuel production (renewable or fossil) dominates the impact reduction. With increasing efficiency and improving emission performance of the conventional systems, the competition regarding all impact categories in both mobile and stationary applications is getting even stronger. The production of the fuel cell system is of low overall significance in stationary applications, whereas in automotive applications, the production of the fuel cell power train and required materials leads to increased impacts compared to internal combustion engines and thus reduces the achievable environmental impact reduction. Recommendations and Perspectives  The rapid technological and energy economic development will bring further advances for both fuel cells and conventional energy converters. Therefore, LCAs at such an early stage of the market development can only be considered preliminary. It is an essential requirement to accompany the ongoing research and development with iterative LCAs, constantly pointing at environmental hot spots and bottlenecks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号