首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quiescence in 9L cells and correlation with radiosensitivity and PLD repair   总被引:4,自引:0,他引:4  
The onset of quiescence, changes in X-ray sensitivity, and changes in capacity for potentially lethal damage (PLD) repair of unfed plateau-phase 9L44 cell cultures have been systematically investigated. The quiescent plateau phase in 9L cells was the result of nutrient deprivation and was not a cell contact effect. Eighty-five to 90% of the plateau-phase cells had a G1 DNA content and a growth fraction less than or equal to 0.15. The cell kinetic shifts in the population were temporally correlated with a developing radioresistance, which was characterized by a larger shoulder in the survival curve of the quiescent cells (Dq = 5.71 Gy) versus exponentially growing cells (Dq = 4.48 Gy). When the quiescent plateau-phase cells were refed, an increase in radiosensitivity resulted which approached that of exponentially growing 9L cells. Delayed plating experiments after irradiation of exponentially growing cells, quiescent plateau-phase cells, and synchronized early to mid-G1-phase cells indicated that while significant PLD repair was evident in all three populations, the quiescent 9L cells had a higher PLD repair capacity. Although data for immediate plating indicated that 9L cells may enter quiescence in the relatively radioresistant mid-G1 phase, the enhanced PLD repair capacity of quiescent cells cannot be explained by redistribution into G1 phase. When the unfed quiescent plateau-phase 9L cells were stimulated to reenter the cell cycle by replating into fresh medium, the first G1 was extended by 6 h compared with the G1 of exponentially growing or refed plateau-phase 9L cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The roles of ornithine decarboxylase (ODC, EC 4.1.1.17) and polyamines in cellular aging were investigated by examining serum-induced changes of these parameters in quiescent IMR-90 human diploid fibroblasts as a function of their population doubling level (PDL) and in human progeria fibroblasts. Serum stimulation caused increases of ODC and DNA synthesis in IMR-90 human diploid fibroblasts, with maximal values occurring, respectively, 10 hr and 22 hr after serum stimulation. Both serum-induced ODC activity and DNA synthesis in IMR-90 cells were found to be inversely related to their PDL. Maximal ODC activity and DNA synthesis in young cells (PDL = approximately 18-22) were, respectively, five-fold and six-fold greater than that in old cells (PDL = approximately 50-55), which in turn were comparable or slightly higher than that in progeria fibroblasts. Polyamine contents (putrescine, spermidine, and spermine) in quiescent IMR-90 cells did not show significant PDL-dependency. The putrescine and spermine contents in quiescent progeria cells were comparable to those in quiescent IMR-90 cells. The spermidine content in quiescent progeria cells, however, was extremely low, less than half of that in quiescent IMR-90 cells. Serum stimulation caused a marked increase in putrescine content in young cells but not in old cells or in progeria cells. The spermidine and the spermine content in IMR-90 cells, either young or old, and in progeria cells did not change significantly after serum stimulation. Our study indicated that aging of IMR-90 human diploid fibroblasts was accompanied by specific changes of polyamine metabolism, namely, the serum-induced ODC activity and putrescine accumulation. These changes were also observed in progeria fibroblasts derived from patients with Hutchinson-Gilford syndrome.  相似文献   

3.
Summary Results of growth history studies on IMR-90 and WI-38 showed that the two cell strains were equivalent in population doublings achieved per life span. However, IMR-90 exhibited higher cell yields in phase II than did WI-38. In addition, entry of IMR-90 cells into phase III occurred more abruptly than in WI-38 cultures. Cell sizing analysis showed that phase II and phase III IMR-90 cell populations contained greater numbers of cells in the small volume categories. At senescence, both cell lines contained similar numbers of cells in all size categories. These data suggest that IMR-90 may not be equivalent in all respects to current stocks of WI-38.  相似文献   

4.
Results of growth history studies on IMR-90 and WI-38 showed that the two cell strains were equivalent in population doublings achieved per life span. However, IMR-90 exhibited higher cell yields in phase II than did WI-38. In addition, entry of IMR-90 cells into phase III occurred more abruptly than in WI-38 cultures. Cell sizing analysis showed that phase II and phase III IMR-90 cell populations contained greater numbers of cells in the small volume categories. At senescence, both cell lines contained similar numbers of cells in all size categories. These data suggest that IMR-90 may not be equivalent in all respects to current stocks of WI-38.  相似文献   

5.
H1 variant synthesis in proliferating and quiescent human cells   总被引:1,自引:0,他引:1  
The synthesis of histone H1 isoprotein species in human cells of several different types and in several different physiological states was studied. Up to five H1 and two H1 degrees isoprotein species could be resolved by two-dimensional electrophoresis. All five H1 isoprotein species were synthesized in exponentially growing cultures of IMR-90 human fibroblasts; in quiescent IMR-90 cells the synthesis of three H1 isoprotein species was greatly decreased while the synthesis of two others was much less affected. When DNA synthesis in exponentially growing cultures of IMR-90 was inhibited, the pattern of H1 isoprotein synthesis became similar to that found in quiescent cultures. Other human cells, isolated from blood, yielded similar results. These results suggest that the pattern of H1 synthesis is the same for cells in non-S phases of the cell cycle and in quiescent cells. Thus for histone H1 in human cells the relationship of the variant synthesis pattern to the growth state and DNA replication is similar to that of the core histone H3 but not that of H2A.  相似文献   

6.
We studied effects of tetrac (tetraiodothyroacetic acid) on survival of GL261, a murine brain tumor cell line, following single doses of 250 kVp x-rays and on repair of damage (sublethal and potentially lethal damage repair; SLDR, PLDR) in both exponential and plateau phase cells. Cells were exposed to 2 μM tetrac (1 h at 37oC) prior to x-irradiation. At varying times after irradiation, cells were re-plated in medium without tetrac. Two weeks later, colonies were counted and results analyzed using either the linear-quadratic (LQ) or single-hit, multitarget (SHMT) formalisms. Tetrac sensitized both exponential and plateau phase cells to x-irradiation, as shown by a decrease in the quasi-threshold dose (Dq), leading to an average tetrac enhancement factor (ratio of SF2 values) of 2.5. Tetrac reduced SLDR in exponential cells by a factor of 1.8. In plateau phase cells there was little expression of SLDR, but tetrac produced additional cell killing at 1-4 h after the first dose. For PLDR expression in exponential cells, tetrac inhibited PLDR by a factor of 1.9, and in plateau phase cells, tetrac decreased PLDR expression by a factor of 3.4. These data show that the decreased Dq value seen after single doses of x-rays with tetrac treatment is also accompanied by a significant decrease in recovery from sublethal and potentially lethal damage.  相似文献   

7.
"Sleeping beauty": quiescence in Saccharomyces cerevisiae.   总被引:1,自引:0,他引:1  
The cells of organisms as diverse as bacteria and humans can enter stable, nonproliferating quiescent states. Quiescent cells of eukaryotic and prokaryotic microorganisms can survive for long periods without nutrients. This alternative state of cells is still poorly understood, yet much benefit is to be gained by understanding it both scientifically and with reference to human health. Here, we review our knowledge of one "model" quiescent cell population, in cultures of yeast grown to stationary phase in rich media. We outline the importance of understanding quiescence, summarize the properties of quiescent yeast cells, and clarify some definitions of the state. We propose that the processes by which a cell enters into, maintains viability in, and exits from quiescence are best viewed as an environmentally triggered cycle: the cell quiescence cycle. We synthesize what is known about the mechanisms by which yeast cells enter into quiescence, including the possible roles of the protein kinase A, TOR, protein kinase C, and Snf1p pathways. We also discuss selected mechanisms by which quiescent cells maintain viability, including metabolism, protein modification, and redox homeostasis. Finally, we outline what is known about the process by which cells exit from quiescence when nutrients again become available.  相似文献   

8.
We have investigated the length of the lag phase (time taken for the first cells to enter S phase) and the kinetics of entry into DNA synthesis after serum restimulation of Swiss mouse 3T3 cell cultures that were allowed to become quiescent under different conditions. Cells were allowed to reach quiescence as a confluent monolayer in medium containing 10% (v/v) calf serum. Alternatively, when serum was reduced to 1% (v/v), cultures became quiescent at about 30% confluency and there was little cell to cell contact. The results show that the lag, or prereplicative phase becomes longer as the time spent in the quiescent state increases. This is the case in both confluent and non-confluent cultures. The rate of entry of cells into the S phase, however, remains the same under all conditions.  相似文献   

9.
We examined X-ray induced potentially lethal damage repair (PLDR) in density inhibited plateau phase cultures of six fibroblast strains derived from patients with hereditary retinoblastoma and two patients with D-deletion retinoblastoma and compared them to three normal controls. PLD was measured in hereditary retinoblastoma (7 Gy exposure) and normal cells (7 and 9 Gy exposure) after 24 h repair time. PLD survival curves were performed at 2-9 Gy on six retinoblastoma and three normal control cell strains. Thus, PLDR was compared at equitoxic survival levels as well as after exposure to equal doses of radiation. Some retinoblastoma strains showed normal PLDR whereas others were possibly deficient. Implications of PLDR for susceptibility to radiation-induced and spontaneous tumours in hereditary retinoblastoma patients are discussed.  相似文献   

10.
Summary The Stationary or Plateau-Phase of commonly used rodent cell lines like the V79 are often assumed to be quiescent (non-mitotic). An analysis of cell turnover in V79 plateau-phase cultures through BrUdR-incorporation combined with FUdR-block and light exposure (S-phase cytocide) revealed such cultures to be in a state of kinetic equilibrium. Even when the state of maximal permissible density was acquired, at least 50% of the population of cells were cycling within the time for one population doubling. Attempts at holding the cells from cycling (through nutrient-depletion and serum-privation) were unsuccessful, although the turnover-rate was reduced. Our assays for X-irradiated clonogenic survivors after attempted holding combined with delayed plating (DP) showed differences in the survival curves for exponentially growing and confluent cultures. Elimination of cycling cells by S-phase cytocide removed these differences. Since a significant fraction of plateau-phase cells are not mitotically quiescent (Q), one must eliminate the proliferating (P) fraction if one wishes to examine the PLDR of the Q cells. For V79 cells, removal of the P cells eliminates the higher survival (usually interpreted as Q cell PLDR) of plateau-phase cells.  相似文献   

11.
The cells of organisms as diverse as bacteria and humans can enter stable, nonproliferating quiescent states. Quiescent cells of eukaryotic and prokaryotic microorganisms can survive for long periods without nutrients. This alternative state of cells is still poorly understood, yet much benefit is to be gained by understanding it both scientifically and with reference to human health. Here, we review our knowledge of one “model” quiescent cell population, in cultures of yeast grown to stationary phase in rich media. We outline the importance of understanding quiescence, summarize the properties of quiescent yeast cells, and clarify some definitions of the state. We propose that the processes by which a cell enters into, maintains viability in, and exits from quiescence are best viewed as an environmentally triggered cycle: the cell quiescence cycle. We synthesize what is known about the mechanisms by which yeast cells enter into quiescence, including the possible roles of the protein kinase A, TOR, protein kinase C, and Snf1p pathways. We also discuss selected mechanisms by which quiescent cells maintain viability, including metabolism, protein modification, and redox homeostasis. Finally, we outline what is known about the process by which cells exit from quiescence when nutrients again become available.  相似文献   

12.
Radiation cell survival data were obtained in vitro for three cell lines isolated from human tumours traditionally considered to be radioresistant--two melanomas and one osteosarcoma--as well as from a diploid skin fibroblast cell line. One melanoma cell line was much more radioresistant than the other, while the osteosarcoma and fibroblast cell lines were more radiosensitive than either. For cells growing exponentially, little potentially lethal damage repair (PLDR) could be demonstrated by comparing survival data for cells in which subculture was delayed by 6 h with those sub-cultured immediately after treatment. For the malignant cells in plateau phase, which in these cells might be better termed 'slowed growth phase', since an appreciable fraction of the cells are still cycling, a small amount of PLDR was observed, but not as much as reported by other investigators in the literature. The normal fibroblasts, which achieved a truer plateau phase in terms of noncycling cells, showed a significantly larger amount of PLDR than the tumour cells.  相似文献   

13.
Growth control is investigated in detail in fed and unfed HeLa-S3 suspension cultures. Two-step acridine orange staining and flow cytometric analysis indicated declines in cellular red fluorescence (proportional to RNA content) of 40-50% between exponential and plateau phase in both culture types. Cellular green fluorescence (DNA content) assessed simultaneously indicates an increment of cells with Gi-DNA content in plateau phase in the unfed cultures, while fed cultures show a brief increment in G1-phase cells in the transition phase followed by a recovery in plateau phase to a value similar to that of exponential cultures. Temporal declines in the 3H-thymidine pulse-labeling index are observed in both culture systems. These data along with the flow cytometry data indicate a distinct G1-arrest in the unfed plateau cultures and suggest a random arrest of cells about the cell cycle in fed plateau cultures. Acidic acridine orange staining and flow cytometric analysis furthermore indicate the occurrence of a quiescent population comprising approximately 345 of the total cells and consisting of both dead and viable cells in plateau phase unfed cultures. In contrast, fed plateau cultures show approximately 14% quiescent, mostly dead cells. Also, both culture systems show temporal declines in the clonogenic index and a longer cell-cycle transit time in plateau phase relative to exponential phase. These findings confirm earlier work which indicates that the environment has a profound influence on the mode of growth control for mammalian cells in vitro.  相似文献   

14.
The radiation sensitivity and potentially lethal damage recovery (PLDR) capacity of A549 human lung carcinoma cells have been studied. For unfed monolayer cultures, radiation sensitivity was greater in plateau phase than in log phase of growth. PLDR was observed when plateau-phase cells were held in their own spent medium postirradiation, such that the dose-response curve with 24 h holding was similar to that for log-phase cells plated immediately after irradiation. The high PLDR capacity of A549 plateau-phase cells (recovery factor between 40 and 70 for 24 h holding after 10 Gy) was reduced 10-fold or more by alkalinizing the pH of the spent medium immediately after irradiation from a value of 6.5 +/- 0.1 to a value of 7.6. Medium alkalinization resulted in an increase in the rate of glycolysis, with subsequent reacidification to a pH of 7.3 within 2 h of the pH adjustment. No change in cell cycle distribution was observed in the plateau-phase cultures up to 32 h after change of medium pH, and no increase in cell density was found after 48 h. A slight increase in the rate of incorporation of radiolabeled thymidine into acid-precipitable material was observed at 4 and 24 h after alkalinization of the medium. While it is not possible at present to define a mechanism for this pH effect, our results demonstrate that, at least for this cell line, variables such as medium pH and glucose concentration can profoundly influence the observation of PLDR.  相似文献   

15.
Hexose uptake and control of fibroblast proliferation   总被引:1,自引:0,他引:1  
The role of glucose uptake in control of cell growth was studied by experimentally varying the rate of glucose uptake and examining the subsequent effect on initiation and cessation of cell proliferation. The rate of glucose uptake was varied by adjusting the concentration of glucose in the culture medium. This permitted analysis of two changes in rate of glucose uptake which are closely related to the regulation of cell growth: (1) the rapid increase in glucose uptake that can be detected within several minutes after mitogenic stimulation of quiescent fibroblasts and (2) the decrease in glucose uptake which accompanies growth to a quiescent state. Quiescent cultures of mouse 3T3, human diploid foreskin and secondary chick embryo cells were switched to fresh serum-containing medium with either the normal amount of glucose or a reduced level that lowered the rate of glucose uptake below the rate characteristic of quiescent control cells. The subsequent increases in cell number were equal in both media, demonstrating that the increase in glucose uptake, commonly observed after mitogenic stimulation, was not necessary for initiation of cell division. Measurements of intracellular D-glucose pools after serum stimulation of quiescent cells revealed that the increase in glucose uptake was not accompanied by a detectable change in the intracellular concentration of glucose. Nonconfluent growing cultures of mouse 3T3, human diploid foreskin and secondary chick embryo cells were switched to low glucose media, lowering the rate of glucose uptake below levels observed for quiescent cells. This did not affect rates of DNA synthesis or cell division over a several-day period. Thus, the decrease in glucose uptake, which usually occurs at about the same time as the decrease in DNA synthesis as cells grow to quiescence, does not cause the decline in cell proliferation. Experiments indicated that there was no set temporal relationship between the decline in glucose uptake and DNA synthesis as cells grew to quiescence. The sequence was variable and probably depended on the cell type as well as culture conditions. Measurements of intracellular D-glucose pools in secondary chick embryo cells demonstrated that the internal concentration of glucose in these cells did not significantly vary during growth to quiescence. Taken together, our results show that these fluctuations in the rate of glucose uptake do not lead to detectable changes in the intracellular concentration of glucose and that they do not control cell proliferation rates under usual culture conditions.  相似文献   

16.
17.
When conditions are unfavorable, virtually all living cells have the capability of entering a resting state termed quiescence or G0. Many aspects of the quiescence program as well as the mechanisms governing the entry and exit from quiescence remain poorly understood. Previous studies using the budding yeast Saccharomyces cerevisiae have shown that upon entry into stationary phase, a quiescent cell population emerges that is heavier in density than nonquiescent cells. Here, we show that total intracellular trehalose and glycogen content exhibits substantial correlation with the density of individual cells both in stationary phase batch cultures and during continuous growth. During prolonged quiescence, trehalose stores are often maintained in favor over glycogen, perhaps to fulfill its numerous stress-protectant functions. Immediately upon exit from quiescence, cells preferentially metabolize trehalose over other fuel sources. Moreover, cells lacking trehalose initiate growth more slowly and frequently exhibit poor survivability. Together, our results support the view that trehalose, which is more stable than other carbohydrates, provides an enduring source of energy that helps drive cell cycle progression upon return to growth.  相似文献   

18.
A temperature sensitive mutant of Rous sarcoma virus (tsNY68) was used to obtain cultures of quiescent virus-infected chicken embryo fibroblasts arrested by serum starvation at the non-permissive temperature. Upon shift to the permissive temperature, these cells enter the replicative cell cycle as evidenced by increases in 2-deoxyglucose uptake, 3H-thymidine incorporation and percent labeled nuclei. These changes occur in the absence of serum and the cells become morphologically transformed within eight to ten hours after the temperature shift. Entry into the S phase temporally resembles that of normal quiescent fibroblasts stimulated with serum. This experimental system was used to examine the proliferative response of transformed cells to serum and purified multiplication-stimulating activity (MSA) during the transition from the resting to the growing state. Data are presented which show that the presence of serum in the medium enhances the proliferative response of quiescent infected cells shifted to the permissive temperature over those shifted in the absence of serum. In contrast, the presence of MSA has no additional effect on the response exhibited by infected cells shifted to the permissive temperature in serum-free medium. Labeled MSA binding experiments show that this lack of response is not due to a loss of MSA receptors on the cell surface since transformed cells are still capable of binding MSA at the same level as normal cells. The results are consistent with the hypothesis that the set of biochemical events initiated by MSA in normal cells are turned on in infected cells shifted to the permissive temperature by the activation of the src gene product.  相似文献   

19.
The effect of a Fibroblast Growth Factor (FGF) on the initiation of DNA synthesis in sparse populations of BALB/c 3T3 cells maintained quiescent in the presence of various serum concentrations has been investigated. The initiation of DNA synthesis, as measured by 3H-thymidine incorporation, is greatest in cultures maintained quiescent in the presence of 0.8% serum. Under these conditions, the cells are on the border between quiescence and growth. The minimal effective dose of FGF needed to increase DNA synthesis is 0.01 ng/ml and plateau values are obtained between 2.5 and 5 ng/ml. At plateau concentrations, FGF is 65% as effective as saturating concentrations of serum in the stimulation of DNA synthesis. When dexamethasone and insulin are present, FGF was 82% as effective. In contrast, cultures maintained in the presence of lower serum concentrations (0.2% and 0.4%) are much less responsive to the FGF. This can be attributed to the lack of supplemental factors which make the cells maximally responsive to growth stimulation and to degenerative changes that take place in the cells. Insulin and the glucocorticoid, dexamethasone, potentiated the response to FGF and delayed the degeneration of cells maintained in low serum.  相似文献   

20.
Aging of IMR-90 human diploid fibroblasts in vitro is accompanied by significant changes of polyamine metabolism, most notably, a 5-fold decrease of serum-induced activity of ornithine decarboxylase, the key enzyme in the biosynthesis of polyamines (Chen, K. Y., Chang, Z. F., and Liu, A. Y.-C. (1986) J. Cell. Physiol. 129, 142-146). In this paper, we employed Northern blot hybridization and affinity radiolabeling techniques to investigate the molecular basis of this age-associated change of ornithine decarboxylase activity. Since the induction of ornithine decarboxylase by serum is a mid-G1 event, we also examined expressions of other cell cycle-dependent genes that are induced before and after the mid-G1 phase to determine if their expressions may also be age-dependent. Our results demonstrated a 3-fold decrease of the amount of active ornithine decarboxylase molecules that can be labeled by alpha-difluoromethyl[3H]ornithine in senescent IMR-90 cells (population doubling level (PDL) = 52) as compared to young cells (PDL = 22). However, the levels and kinetics of induction of ornithine decarboxylase mRNA in both young and senescent IMR-90 cells were found to be identical throughout a 24-h time period after serum stimulation. The time course and the magnitude of the expression of c-myc, an early G1 gene, were quite similar in young and senescent IMR-90 cells and appeared to be PDL-independent. In contrast, the expression of thymidine kinase, a late G1/S gene, was significantly reduced in senescent IMR-90 cells. Levels of thymidine kinase mRNA and thymidine kinase activity in senescent IMR-90 cells were 6- and 8-fold less than those in young cells, respectively. Based on these data, we proposed that impairment of cell cycling in senescent IMR-90 cells may occur at the late G1/S phase and that decreases of ornithine decarboxylase activity and putrescine accumulation during cell senescence may contribute to this impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号