首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

While the abundance of available sequenced genomes has led to many studies of regional heterogeneity in mutation rates, the co-variation among rates of different mutation types remains largely unexplored, hindering a deeper understanding of mutagenesis and genome dynamics. Here, utilizing primate and rodent genomic alignments, we apply two multivariate analysis techniques (principal components and canonical correlations) to investigate the structure of rate co-variation for four mutation types and simultaneously explore the associations with multiple genomic features at different genomic scales and phylogenetic distances.  相似文献   

2.
3.

Aim

Whether intraspecific spatial patterns in body size are generalizable across species remains contentious, as well as the mechanisms underlying these patterns. Here we test several hypotheses explaining within-species body size variation in terrestrial vertebrates including the heat balance, seasonality, resource availability and water conservation hypotheses for ectotherms, and the heat conservation, heat dissipation, starvation resistance and resource availability hypotheses for endotherms.

Location

Global.

Time period

1970–2016.

Major taxa studied

Amphibians, reptiles, birds and mammals.

Methods

We collected 235,905 body size records for 2,229 species (amphibians = 36; reptiles = 81; birds = 1,545; mammals = 567) and performed a phylogenetic meta-analysis of intraspecific correlations between body size and environmental variables. We further tested whether correlations differ between migratory and non-migratory bird and mammal species, and between thermoregulating and thermoconforming ectotherms.

Results

For bird species, smaller intraspecific body size was associated with higher mean and maximum temperatures and lower resource seasonality. Size–environment relationships followed a similar pattern in resident and migratory birds, but the effect of resource availability on body size was slightly positive only for non-migratory birds. For mammals, we found that intraspecific body size was smaller with lower resource availability and seasonality, with this pattern being more evident in sedentary than migratory species. No clear size–environment relationships were found for reptiles and amphibians.

Main conclusions

Within-species body size variation across endotherms is explained by disparate underlying mechanisms for birds and mammals. Heat conservation (Bergmann's rule) and heat dissipation are the dominant processes explaining biogeographic intraspecific body size variation in birds, whereas in mammals, body size clines are mostly explained by the starvation resistance and resource availability hypotheses. Our findings contribute to a better understanding of the mechanisms behind species adaptations to the environment across their geographic distributions.  相似文献   

4.

Background  

Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade.  相似文献   

5.

Background  

Sequence periodicity with a period close to the DNA helical repeat is a very basic genomic property. This genomic feature was demonstrated for many prokaryotic genomes. The Escherichia coli sequences display the period close to 11 base pairs.  相似文献   

6.

Background  

Protein-protein interactions are critical for cellular functions. Recently developed computational approaches for predicting protein-protein interactions utilize co-evolutionary information of the interacting partners, e.g., correlations between distance matrices, where each matrix stores the pairwise distances between a protein and its orthologs from a group of reference genomes.  相似文献   

7.

Background

An increasing number of microbial genomes are being sequenced and deposited in public databases. In addition, several closely related strains are also being sequenced in order to understand the genetic basis of diversity and mechanisms that lead to the acquisition of new genetic traits. These exercises have necessitated the requirement for visualizing microbial genomes and performing genome comparisons on a finer scale. We have developed GenomeViz to enable rapid visualization and subsequent comparisons of several microbial genomes in an interactive environment.

Results

Here we describe a program that allows visualization of both qualitative and quantitative information from complete and partially sequenced microbial genomes. Using GenomeViz, data deriving from studies on genomic islands, gene/protein classifications, GC content, GC skew, whole genome alignments, microarrays and proteomics may be plotted. Several genomes can be visualized interactively at the same time from a comparative genomic perspective and publication quality circular genome plots can be created.

Conclusions

GenomeViz should allow researchers to perform visualization and comparative analysis of up to eight different microbial genomes simultaneously.
  相似文献   

8.

Aim

To assess the abiotic correlations between indicator species and others in the community. Additionally, we evaluated the importance of environmental variables in driving the co-occurrence patterns of the coexisting riparian bird species within a threatened aquatic and terrestrial system.

Location

Seven classic submontane rivers in riparian ecosystems of the Changbai Mountains in eastern Jilin Province, China, elevation ranging from 351 to 942 m.

Methods

Joint species distribution models (JSDMs) were applied to examine the relative importance of abiotic and potential species associations driving the abundance and cooccurrence of bird species along submontane riparian zones. The abiotic factors were examined with a focus on the scaly-sided Merganser and the coexisting bird species potentially sharing or interacting within the same niche.

Results

We found that the co-occurrence patterns of submontane riparian bird species were dominantly driven by numerous positive correlations when incorporating abiotic variables. The scaly-sided Merganser exhibited the greatest number of correlations with other species and exhibited significant responses to most of the measured environmental variables. Land cover diversity, proportion of gravel bars, and channel width were the most common environmental factors affecting riparian bird species distribution.

Conclusions

Using JSDM, we found that the indicator roles of the scaly-sided Merganser are mainly derived from shared environmental responses with coexisting riparian bird species; moreover, the composition of submontane riparian bird communities is affected by both environmental variables and potential species associations. Our results verified the central role of the scaly-sided Merganser as an indicator species in submontane riparian ecosystems due to their strict physical environment preferences and extensive connections with other sympatric riparian bird species, primarily through shared environmental intersections. Our results emphasize the crucial necessity for simultaneously considering environmental predictors and potential species associations in modelling species distributions and to better realizing the roles of indicators in practical applications.  相似文献   

9.

Background  

Genome size and gene content in bacteria are associated with their lifestyles. Obligate intracellular bacteria (i.e., mutualists and parasites) have small genomes that derived from larger free-living bacterial ancestors; however, the different steps of bacterial specialization from free-living to intracellular lifestyle have not been studied comprehensively. The growing number of available sequenced genomes makes it possible to perform a statistical comparative analysis of 317 genomes from bacteria with different lifestyles.  相似文献   

10.

Background  

Examination of ancient gene families can provide an insight into how the evolution of gene structure can relate to function. Functional homologs of the evolutionarily conserved transforming acidic coiled coil (TACC) gene family are present in organisms from yeast to man. However, correlations between functional interactions and the evolution of these proteins have yet to be determined.  相似文献   

11.

Background  

In Eukaryotic genomes, different features including genes are not uniformly distributed. The integration of annotation information and genomic position of functional DNA elements in the Eukaryotic genomes opened the way to test novel hypotheses of higher order genome organization and regulation of expression.  相似文献   

12.

Background  

The enormity of the information contained in large data sets makes it difficult to develop intuitive understanding. It would be useful to have software that allows visualization of possible correlations between properties that can be associated with a core data set. In the case of bacterial genomes, existing visualization tools focus on either global properties such as variations in composition or detailed local displays of the features that comprise the annotation. It is not easy to visualize other information in the context of this core information.  相似文献   

13.

Introduction

Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates.

Results

We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB.

Conclusion

Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study.  相似文献   

14.

Background  

The bananaquit (Coereba flaveola) is a small nectivorous and frugivorous emberizine bird (order Passeriformes) that is an abundant resident throughout the Caribbean region. We used multi-gene analyses to investigate the evolutionary history of this species throughout its distribution in the West Indies and in South and Middle America. We sequenced six mitochondrial genes (3744 base pairs) and three nuclear genes (2049 base pairs) for forty-four bananaquits and three outgroup species. We infer the ancestral area of the present-day bananaquit populations, report on the species' phylogenetic, biogeographic and evolutionary history, and propose scenarios for its diversification and range expansion.  相似文献   

15.

Background  

Although it is not difficult for state-of-the-art gene finders to identify coding regions in prokaryotic genomes, exact prediction of the corresponding translation initiation sites (TIS) is still a challenging problem. Recently a number of post-processing tools have been proposed for improving the annotation of prokaryotic TIS. However, inherent difficulties of these approaches arise from the considerable variation of TIS characteristics across different species. Therefore prior assumptions about the properties of prokaryotic gene starts may cause suboptimal predictions for newly sequenced genomes with TIS signals differing from those of well-investigated genomes.  相似文献   

16.

Background

Animal mitochondrial genomes are physically separate from the much larger nuclear genomes and have proven useful both for phylogenetic studies and for understanding genome evolution. Within the phylum Arthropoda the subphylum Crustacea includes over 50,000 named species with immense variation in body plans and habitats, yet only 23 complete mitochondrial genomes are available from this subphylum.

Results

I describe here the complete mitochondrial genome of the crustacean Squilla mantis (Crustacea: Malacostraca: Stomatopoda). This 15994-nucleotide genome, the first described from a hoplocarid, contains the standard complement of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a non-coding AT-rich region that is found in most other metazoans. The gene order is identical to that considered ancestral for hexapods and crustaceans. The 70% AT base composition is within the range described for other arthropods. A single unusual feature of the genome is a 230 nucleotide non-coding region between a serine transfer RNA and the nad1 gene, which has no apparent function. I also compare gene order, nucleotide composition, and codon usage of the S. mantis genome and eight other malacostracan crustaceans. A translocation of the histidine transfer RNA gene is shared by three taxa in the order Decapoda, infraorder Brachyura; Callinectes sapidus, Portunus trituberculatus and Pseudocarcinus gigas. This translocation may be diagnostic for the Brachyura. For all nine taxa nucleotide composition is biased towards AT-richness, as expected for arthropods, and is within the range reported for other arthropods. Codon usage is biased, and much of this bias is probably due to the skew in nucleotide composition towards AT-richness.

Conclusion

The mitochondrial genome of Squilla mantis contains one unusual feature, a 230 base pair non-coding region has so far not been described in any other malacostracan. Comparisons with other Malacostraca show that all nine genomes, like most other mitochondrial genomes, share a bias toward AT-richness and a related bias in codon usage. The nine malacostracans included in this analysis are not representative of the diversity of the class Malacostraca, and additional malacostracan sequences would surely reveal other unusual genomic features that could be useful in understanding mitochondrial evolution in this taxon.  相似文献   

17.

Background  

The introduction of next generation sequencing approaches has caused a rapid increase in the number of completely sequenced genomes. As one result of this development, it is now feasible to analyze large groups of related genomes in a comparative approach. A main task in comparative genomics is the identification of orthologous genes in different genomes and the classification of genes as core genes or singletons.  相似文献   

18.

Background  

It is well known that gene expression is dependent on chromatin structure in eukaryotes and it is likely that chromatin can play a role in bacterial gene expression as well. Here, we use a nucleosomal position preference measure of anisotropic DNA flexibility to predict highly expressed genes in microbial genomes. We compare these predictions with those based on codon adaptation index (CAI) values, and also with experimental data for 6 different microbial genomes, with a particular interest in experimental data from Escherichia coli. Moreover, position preference is examined further in 328 sequenced microbial genomes.  相似文献   

19.
20.

Background

Mammalian genomes commonly harbor endogenous viral elements. Due to a lack of comparable genome-scale sequence data, far less is known about endogenous viral elements in avian species, even though their small genomes may enable important insights into the patterns and processes of endogenous viral element evolution.

Results

Through a systematic screening of the genomes of 48 species sampled across the avian phylogeny we reveal that birds harbor a limited number of endogenous viral elements compared to mammals, with only five viral families observed: Retroviridae, Hepadnaviridae, Bornaviridae, Circoviridae, and Parvoviridae. All nonretroviral endogenous viral elements are present at low copy numbers and in few species, with only endogenous hepadnaviruses widely distributed, although these have been purged in some cases. We also provide the first evidence for endogenous bornaviruses and circoviruses in avian genomes, although at very low copy numbers. A comparative analysis of vertebrate genomes revealed a simple linear relationship between endogenous viral element abundance and host genome size, such that the occurrence of endogenous viral elements in bird genomes is 6- to 13-fold less frequent than in mammals.

Conclusions

These results reveal that avian genomes harbor relatively small numbers of endogenous viruses, particularly those derived from RNA viruses, and hence are either less susceptible to viral invasions or purge them more effectively.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0539-3) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号