首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.

Background  

Bacterial leaf blight causes significant yield losses in rice crops throughout Asia and Africa. Although both the Asian and African strains of the pathogen, Xanthomonas oryzae pv. oryzae (Xoo), induce similar symptoms, they are nevertheless genetically different, with the African strains being more closely related to the Asian X. oryzae pv. oryzicola (Xoc).  相似文献   

3.
4.

Background  

Salmonella enterica serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, S. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, S. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. S. Typhi has 5% of genes as pseudogenes, much more than S. Typhimurium which contains 1%. As a consequence, S. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in S. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of S. Typhimurium. In S. Typhi, sseJ is a pseudogene. Therefore, we suggest that sseJ inactivation in S. Typhi has an important role in the development of the systemic infection.  相似文献   

5.

Introduction  

Recent genome-wide and candidate gene association studies in large numbers of systemic lupus erythematosus (SLE) patients have suggested approximately 30 susceptibility genes. These genes are involved in three types of biological processes, including immune complex processing, toll-like receptor function and type I interferon production, and immune signal transduction in lymphocytes, and they may contribute to the pathogenesis of SLE. To better understand the genetic risk factors of SLE, we investigated the associations of seven SLE susceptibility genes in a Chinese population, including FCGR3A, FCGR2A, TNFAIP3, TLR9, TREX1, ETS1 and TNIP1.  相似文献   

6.
We constructed a Pichia pastoris expression vector with two strongly inducible promoters (an alcohol oxidase 1 promoter and a formaldehyde dehydrogenase 1 promoter) based on pPIC9 k. To test the function of these promoters, the vector was used to co-express two genes that encode for green fluorescent protein (GFP) and a portion of a gelatin gene (an intra- and extracellular protein). The gelatin gene was placed under the control of PAOX1, while the GFP was under the control of PFLD1. The two proteins were simultaneously expressed upon induction with 0.5% (v/v) methanol. The two promoters functioned effectively and their coexistence on one vector did not affect their efficiency in protein expression. Thus, it was possible to simultaneously induce the expression of at least two proteins from one vector, using two different promoters.  相似文献   

7.
8.
9.
A novel lipase gene, lipJ08, was cloned from Candida rugosa ATCC14830, along with the already reported five lipase genes (lip1–lip5). Nucleotide sequencing indicated that the lipJ08 gene contains a 1650 bp open reading frame (ORF) without introns. The deduced amino acid sequence corresponds to 534 amino acid residues, including a putative signal sequence of 15 amino acid residues. Seventeen of the non-universal serine codons (CTG) of lipJ08 were converted into universal serine codons (TCT) by PCR-based mutagenesis. The native and codon-optimized lipJ08 genes were expressed in Pichia pastoris. The hydrolytic activity of the recombinant LIPJ08 was 4.7 U/ml, whereas the activity of the recombinant wild-type lipase could not be detected.  相似文献   

10.

Background  

Rice CEBiP recognizes chitin oligosaccharides on the fungal cell surface or released into the plant apoplast, leading to the expression of plant disease resistance against fungal infection. However, it has not yet been reported whether CEBiP is actually required for restricting the growth of fungal pathogens. Here we evaluated the involvement of a putative chitin receptor gene in the basal resistance of barley to the ssd1 mutant of Magnaporthe oryzae, which induces multiple host defense responses.  相似文献   

11.
In this paper, we provide the first report of utilizing recombinant fungal whole cells in enzymatic biodiesel production. Aspergillus oryzae, transformed with a heterologous lipase-encoding gene from Fusarium heterosporum, produced fully processed and active forms of recombinant F. heterosporum lipase (FHL). Cell immobilization within porous biomass support particles enabled the convenient usage of FHL-producing A. oryzae as a whole-cell biocatalyst for lipase-catalyzed methanolysis. The addition of 5% water to the reaction mixture was effective in both preventing the lipase inactivation by methanol and facilitating the acyl migration in partial glycerides, resulting in the final methyl ester content of 94% even in the tenth batch cycle. A comparative study showed that FHL-producing A. oryzae attained a higher final methyl ester content and higher lipase stability than Rhizopus oryzae, the previously developed whole-cell biocatalyst. Although both FHL and R. oryzae lipase exhibit 1,3-regiospecificity towards triglyceride, R. oryzae accumulated a much higher amount of sn−2 isomers of partial glycerides, whereas FHL-producing A. oryzae maintained a low level of the sn−2 isomers. This is probably because FHL efficiently facilitates the acyl migration from the sn−2 to the sn−1(3) position in partial glycerides. These findings indicate that the newly developed FHL-producing A. oryzae is an effective whole-cell biocatalyst for enzymatic biodiesel production.  相似文献   

12.
13.
Aspergillus oryzae has received attention as a host for heterologous protein production. However, A. oryzae has 134 protease genes, which is recognized to be one of the major reasons for the proteolytic degradation of heterologously produced proteins. We previously reported that double disruption of the protease genes (tppA and pepE) improved heterologous protein (human lysozyme) production by A. oryzae. In this study, we performed successive round of five protease genes (tppA, pepE, nptB, dppIV, and dppV) disruption in A. oryzae by pyrG marker recycling with highly efficient gene-targeting background (ΔligD). The multiple disruption of protease genes were confirmed by Southern blot analysis. Furthermore, the quintuple protease gene disruptants showed the maximum production level of bovine chymosin (CHY) that was 34% higher than those of the double protease gene disruptant (ΔtppA ΔpepE). Consequently, we successfully constructed a multiple protease gene disruptant bearing enhanced levels of CHY productivity. We presented the first evidence that the quintuple disruption of the protease genes improved the production level of a heterologous protein by A. oryzae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Genome sequence analysis of Xanthomonas oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experimental evidence supporting this. In this study, biochemical analyses of xanthan produced by a defined set of X. oryzae gum mutant strains allowed us to preliminarily assign functions to most of the gum gene products: biosynthesis of the pentasaccharide repeating unit for GumD, GumM, GumH, GumK, and GumI, xanthan polymerization and transport for GumB, GumC, GumE, and GumJ, and modification of the pentasaccharide repeating unit for GumF, GumG, and GumL. In addition, we found that the exopolysaccharides are essential but not specific for the virulence of X. oryzae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Sang-Yoon Kim and Jeong-Gu Kim contributed equally to this work.  相似文献   

15.

Background  

Previous studies have suggested that variations in DNA repair genes of W-Beijing strains may have led to transient mutator phenotypes which in turn may have contributed to host adaptation of this strain family. Single nucleotide polymorphism (SNP) in the DNA repair gene mutT1 was identified in MDR-prone strains from the Central African Republic. A Mycobacteriumtuberculosis H37Rv mutant inactivated in two DNA repair genes, namely ada/alkA and ogt, was shown to display a hypermutator phenotype. We then looked for polymorphisms in these genes in Central African Republic strains (CAR).  相似文献   

16.
17.
A fusion gene was constructed by combining the cry1Ac gene of Bacillus thuringiensis strain 4.0718 with a neurotoxin gene, hwtx-1, which was synthesized chemically. In this process, an enterokinase recognition site sequence was inserted in frame between two genes, and the fusion gene, including the promoter and the terminator of the cry1Ac gene, was cloned into the shuttle vector pHT304 to obtain a new expression vector, pXL43. A 138-kDa fusion protein was mass-expressed in the recombinant strain XL002, which was generated by transforming pXL43 into B. thuringiensis acrystalliferous strain XBU001. Quantitative analysis indicated that the expressed protein accounted for 61.38% of total cellular proteins. Under atomic force microscopy, there were some bipyramidal crystals with a size of 1.0 × 2.0 μm. Bioassay showed that the fusion crystals from recombinant strain XL002 had a higher toxicity than the original Cry1Ac crystal protein against third-instar larvae of Plutella xylostella, with an LC50 (after 48 h) value of 5.12 μg/mL. The study will enhance the toxicity of B. thuringiensis Cry toxins and set the groundwork for constructing fusion genes of the B. thuringiensis cry gene and other foreign toxin genes and recombinant strains with high toxicity. LiQiu Xia and XiaoShan Long contributed equally to this work.  相似文献   

18.
In the present study, we used gene manipulation to construct a recombinant Aspergillus oryzae strain overexpressing lipase and investigated its application to the optical resolution of chiral compounds. A. oryzae niaD300, which was derived from the wild-type strain RIB40, was used as the host strain. The tglA gene, which encodes a triacylglycerol lipase, was cloned from the A. oryzae niaD300 chromosomal genome, then reintroduced, with and without a secretion-signal sequence, into the genome and expressed under the control of the improved glaA promoter of plasmid pNGA142. The resulting recombinant strain overexpressing A. oryzae lipase was immobilized within biomass-support particles and used as a whole-cell biocatalyst. The immobilized lipase-overexpressing strain with secretion-signal sequence showed high activity and was used to selectively synthesize (R)-1-phenylethyl acetate from (RS)-1-phenylethanol and vinyl acetate. After 48 h reaction at 30°C with molecular sieve 4A, the yield and enantiomeric excess (%ee) of (R)-1-phenylethyl acetate reached approximately 90 and 95%ee, respectively. The whole-cell biocatalyst for optical resolution of chiral compounds produced in this study maintained its activity over 25 batch-reaction cycles.  相似文献   

19.
Nucleotide sequence encoding the truncated insecticidal Cry1Ca1 protein from Bacillus thuringiensis was extensively modified based on the codon usage of rice genes. The overall G + C contents of the synthetic cry1Ca1 coding sequence were raised to 65% with an additional bias of enriching for G and C ending codons as preferred by monocots. The synthetic gene was introduced into the Chinese japonica variety, Xiushui 11, by Agrobacterium-mediated transformation. Transgenic rice plants harboring this gene were highly resistant to Chilo suppressalis and Spodoptera litura larvae as revealed by insect bioassays. High levels of Cry1Ca1 protein were obtained in the leaves of transgenic rice, which were effective in achieving 100% mortality of S. litura and C. suppressalis larvae. The levels of Cry1Ca1 expression in the leaves of these transgenic plants were up to 0.34% of the total soluble proteins. The larvae of C. suppressalis and S. litura could consume a maximum of 1.89  and 4.89 mm2 of transgenic leaf area whereas the consumption of non-transgenic leaves by these larvae was significantly higher; 58.33 and 61.22 mm2, respectively. Analysis of R1 transgenic plants indicated that the cry1Ca1 was inherited by the progeny plants and provided complete protection against C. suppressalis and S. litura larvae.  相似文献   

20.

Background  

Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States and is caused by a range of uropathogens. Biofilm formation by uropathogens that cause CAUTI is often mediated by cell surface structures such as fimbriae. In this study, we characterised the genes encoding type 3 fimbriae from CAUTI strains of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Citrobacter koseri and Citrobacter freundii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号