首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to examine superficial quadriceps femoris (QF) EMG and torque at perceived voluntary contraction efforts. Thirty subjects (15 males, 15 females) performed 9, 5 s, sub-maximal contractions at prescribed levels of perceived voluntary effort at points 1-9 on an 11-point scale (0-10), in a random order. Surface electromyograms (EMG) of the vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscles, as well as QF peak torque (PT), average torque (AT), and torque coefficient of variation (C.V.), were sampled. The raw EMG signals were full-wave rectified and integrated over the middle three s of each contraction. The sampled EMG signals, and PT and AT at each perceived exertion level were normalized to the average of three maximal voluntary contractions. The normalized EMG and torque values at each perceived exertion level were then compared to equivalent percent values (i.e., 10% at a perceived level of 1). The results demonstrated that at all perceived exertion levels, with the exception of the RF at a level of 2 which was equivalent to 20%, and the VL and RF muscles at a level 1 in which activation was greater than 10%, activation was significantly less than the equivalent percent value at each point on the scale. VM EMG was found to be less than the VL and RF from contraction levels 3-9. PT was shown to be less than the equivalent percent values at contraction levels 6-9. The AT was found to be lower than the expected percent value at perceived effort levels 2-9. Torque C.V. was not found to be different across the range of perceived effort. The major findings of this study suggested that humans over-estimate voluntary QF muscle torque when guided by perceptual sensations. It is also suggested that the produced EMG signals revealed a reliance on the VL muscle for knee extensor torque generation at sub-maximal levels.  相似文献   

2.
Muscle fatigue is both multifactorial and task dependent. Electrical stimulation may assist individuals with paralysis to perform functional activities [functional electrical stimulation (FES), e.g., standing or walking], but muscle fatigue is a limiting factor. One method of optimizing force is to use stimulation patterns that exploit the catchlike property of skeletal muscle [catchlike-inducing trains (CITs)]. Although nonisometric (dynamic) contractions are important parts of both normal physiological activation of skeletal muscles and FES, no previous studies have attempted to identify the effect that the load being lifted by a muscle has on the fatigue produced. This study examined the effects of load on fatigue during dynamic contractions and the augmentation produced by CITs as a function of load. Knee extension in healthy subjects was electrically elicited against three different loads. The highest load produced the least excursion, work, and average power, but it produced the greatest fatigue. CIT augmentation was greatest at the highest load and increased with fatigue. Because CITs were effective during shortening contractions for a variety of loads, they may be of benefit during FES applications.  相似文献   

3.
We examined the relationships between morphology and muscle-tendon dynamics of the quadriceps femoris muscle of 11 men using velocity-encoded phase-contrast magnetic resonance imaging (MRI). Thigh muscle electromyography and joint range of motion were first measured outside the MRI scanner during knee extension-flexion tasks that were performed at a rate of 40 times/min with elastic bands providing peak resistance of 5.2 kp (SD 0.4) to the extension. The same movement was repeated inside the MRI scanner bore where tissue velocities and muscle morphology were recorded. The average displacement in the proximal and distal halves of the rectus femoris and vastus intermedius aponeuroses was different (P = 0.049), reflecting shortening (1.6%), but the tensile strain along the length of the aponeuroses was uniform. The aponeurosis behavior varied among individuals, and these individual patterns were best explained by the differences in relative cross-sectional area of rectus femoris to vastus muscles (r = 0.71, P = 0.014). During dynamic contraction, considerable deformation of muscles in the axial plane caused an anatomic measure such as muscle thickness to change differently (decrease or increase) in different sites of measurement. For example, when analyzed from the axial images, the vastus lateralis thickness did not change (P = 0.946) in the frontal plane through femur but increased in a 45 degrees oblique plane between the frontal and sagittal planes (P = 0.004). The present observations of the heterogeneity and individual behavior emphasize the fact that single-point measurements do not always reflect the overall behavior of muscle-tendon unit.  相似文献   

4.
The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.  相似文献   

5.
A dynamometer for measurement under static and dynamic conditions is presented. At different load levels, force, velocity, work and power can be measured in explosive leg extensions. Measurements on 53 subjects at different load levels (0-125.5 kg) were carried out. Peak power ranged from 2611 to 1746 W, force from 1351 to 1899 N, velocity from 1.61 to 0.89 m X s-1 and work from 329 to 605 J. Between trial correlation coefficients ranged from 0.72 to 0.95. The dynamometer is compared with others, and it is concluded that data obtained by this dynamometer have a greater practical validity.  相似文献   

6.
The effect of muscle length on neural drive (here termed "neural activation") was investigated from electromyographic activities and activation levels (twitch interpolation). The neural activation was measured in nine men during isometric and concentric (30 and 120 degrees /s) knee extensions for three muscle lengths (35, 55, and 75 degrees knee flexion, i.e., shortened, intermediate, and lengthened muscles, respectively). Long (76 degrees ), medium (56 degrees ), and short (36 degrees ) ranges of motion were used to investigate the effect of the duration of concentric contraction. Neural activation was found to depend on muscle length. Reducing the duration of contraction had no effect. Neural activation was higher with short muscle length during isometric contractions and was weaker for shortened than for intermediate and lengthened muscles performing 120 degrees /s concentric contractions. Muscle length had no effect on 30 degrees /s concentric neural activation. Peripheral mechanisms and discharge properties of the motoneurons could partly explain the observed differences in the muscle length effect. We thus conclude that muscle length has a predominant effect on neural activation that would modulate the angular velocity dependency.  相似文献   

7.
This study aimed to compare voluntary and stimulated exercise for changes in muscle strength, growth hormone (GH), blood lactate, and markers of muscle damage. Nine healthy men had two leg press exercise bouts separated by 2 wk. In the first bout, the quadriceps muscles were stimulated by biphasic rectangular pulses (75 Hz, duration 400 mus, on-off ratio 6.25-20 s) with current amplitude being consistently increased throughout 40 contractions at maximal tolerable level. In the second bout, 40 voluntary isometric contractions were performed at the same leg press force output as the first bout. Maximal voluntary isometric strength was measured before and after the bouts, and serum GH and blood lactate concentrations were measured before, during, and after exercise. Serum creatine kinase (CK) activity and muscle soreness were assessed before, immediately after, and 24, 48, and 72 h after exercise. Maximal voluntary strength decreased significantly (P < 0.05) after both bouts, but the magnitude of the decrease was significantly (P < 0.05) greater for the stimulated contractions (-22%) compared with the voluntary contractions (-9%). Increases in serum GH and lactate concentrations were significantly (P < 0.05) larger after the stimulation compared with the voluntary exercise. Increases in serum CK activity and muscle soreness were also significantly (P < 0.05) greater for the stimulation than voluntary exercise. It was concluded that a single bout of electrical stimulation exercise resulted in greater GH response and muscle damage than voluntary exercise.  相似文献   

8.
Maximal and submaximal activation level of the right knee-extensor muscle group were studied during isometric and slow isokinetic muscular contractions in eight male subjects. The activation level was quantified by means of the twitch interpolation technique. A single electrical impulse was delivered, whatever the contraction mode, on the femoral nerve at a constant 50 degrees knee flexion (0 degrees = full extension). Concentric, eccentric (both at 20 degrees /s velocity), and isometric voluntary activation levels were then calculated. The mean activation levels during maximal eccentric and maximal concentric contractions were 88.3 and 89.7%, respectively, and were significantly lower (P < 0.05) with respect to maximal isometric contractions (95.2%). The relationship between voluntary activation levels and submaximal torques was linearly fitted (P < 0.01): comparison of slopes indicated lower activation levels during submaximal eccentric compared with isometric or concentric contractions. It is concluded that reduced neural drive is present during 20 degrees /s maximal concentric and both maximal and submaximal eccentric contractions. These results indicate a voluntary activation dependency on both tension levels and type of muscular actions in the human knee-extensor muscle group.  相似文献   

9.
We examined muscle sympathetic nerve activity (MSNA) in thenonexercising lower limb during repetitive static quadricepscontraction paradigm at 25% maximal voluntary contraction in eightmen. Subjects performed 20-s contractions with 5-s rest periods for upto 12 contractions. Although the workload was constant, we found that MSNA amplitude rose as a function of contraction number [0.6 ln (amplitude/min)/contraction]; this suggests chemicalsensitization of the muscle reflex response. We employedsignal-averaging techniques and then integrated the data to examine theonset latency of the MSNA response as a function of the 25-scontraction-rest period. We observed an onset latency of ~4-6 s.Moreover, although the onset latency did not appear to vary as afunction of contraction number, the rate of MSNA increase tookapproximately four contractions to reach a steady-state rate of rise;this suggests contraction-induced sensitization. The onset latencyreported here is similar to findings in recent animal studies, but itis at odds with latencies determined in prior human handgripcontraction studies. We believe our data suggest that1) mechanically sensitive afferentscontribute importantly to the MSNA response to the paradigm employedand 2) these afferents may besensitized by the chemical products of muscle contraction.  相似文献   

10.
The validation of a new dynamometer for evaluation of dynamic muscle work is presented. The device was based on a precise measurement of load displacements of any machine using gravitational loads as external resistance. It allowed, through a sensor consisting of an infrared photo interrupter, the calculation of velocity, force and power during concentric, eccentric and stretch-shortening cycle activity. To validate the dynamometer 33 male and female track and field athletes (12 throwers and 21 jumpers) participated in the study. The throwers (4 women and 8 men) were asked to perform half-squat exercises on a slide machine with a load of 100% of the subject's body mass. The day-to-day reproducibility of half-squat exercises gave a correlation coefficient ofr = 0.88, 0.97 and 0.95 for average push-off force (AF), average push-off velocity (AV), and average push-off power (AP) respectively. Comparison of half-squat measurements was performed against jumping and running test evaluation by the jumpers (7 women and 14 men). The interrelationships among the different variables studied demonstrated a strong correlation between AF, AV and AP and sprinting and jumping parameters (r = 0.53–0.97;P < 0.05–0.001). Using values of AF, AV and AP developed in half-squat exercises executed with different loads, ranging from 35% to 210% of the subject's body mass, it was also possible to establish the force-velocity and power-velocity relationships for both male and female jumpers. In any individual case, the maximal error due to the measurement system was calculated to be less than 0.3%, 0.9% and 1.2% for AF, AV, and AP respectively. Given the accuracy of the ergometer, the high reliability found between 2 days of measurements, and the specificity of the results it is suggested that the dynamic dynamometer would be suitable for evaluation of athletes performing specific skills. In addition, because single and multiple joint movements involving appropriate muscle groups can be easily performed, physiological characteristics could be evaluated for both athletic and rehabilitation purposes. Therefore, because of its simplicity of use and application, and its low cost the dynamometer would be suitable for both laboratory and field conditions.  相似文献   

11.
The purpose of this study was to evaluate gender and muscle differences in electromyographic (EMG) amplitude and median frequency mean and standard deviation during maximal voluntary contractions of the quadriceps femoris. Thirty recreationally active volunteers were assessed for isometric EMG activity of the vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscles during three 5-s maximal isometric voluntary contractions (MVCs). Median frequency of the three muscles was assessed through a power spectral analysis (fast Fourier transformation, Hanning window processing, 512 points). The power spectral analysis was performed during the middle 3 s of each contraction over 11 consecutive, 512 ms epochs overlapping each other by half their length (256 ms). The median frequency (F(med)) for each of the 11 windows was determined for each muscle. The mean and standard deviation of the F(med) across the 11 overlapping windows were then calculated for each contraction and muscle. EMG amplitude was determined by calculating the root mean square (RMS-50 ms time constant) over the same contraction period for each muscle. The mean amplitude and standard deviation about the mean value were then determined. A three-factor ANOVA with repeated measures was performed on the calculated F(med) mean and standard deviation values, and RMS standard deviations, to assess any gender, muscle, or trial differences, or interactions. A two-factor (gender by muscle) ANOVA with repeated measures was performed on the RMS mean amplitude for each muscle. Intraclass correlation coefficients (ICCs-2,1), standard errors of measurement (SEMs), and associated 95% confidence intervals were then calculated for maximal quadriceps torque and F(med) for each muscle. The results from this study demonstrated that the VL muscle displayed significantly higher F(med) values than the RF and VM muscles. The RF muscle showed significantly higher F(med) values (mean of 11 overlapping windows) than the VM muscle. Intrasession reliability was found to be high for the calculated mean values (ICC=0.85-0.96), but was shown to be low for variability (ICC=0.13-0.45). The major findings of this study support the notion that the EMG signal is "quasi-random" in nature, as demonstrated by the reproducible F(med) means and unreliable variability.  相似文献   

12.
The purpose of this study was to examine the acute effects of static versus dynamic stretching on peak torque (PT) and electromyographic (EMG), and mechanomyographic (MMG) amplitude of the biceps femoris muscle (BF) during isometric maximal voluntary contractions of the leg flexors at four different knee joint angles. Fourteen men ((mean +/- SD) age, 25 +/- 4 years) performed two isometric leg flexion maximal voluntary contractions at knee joint angles of 41 degrees , 61 degrees , 81 degrees , and 101 degrees below full leg extension. EMG (muV) and MMG (m x s(-2)) signals were recorded from the BF muscle while PT values (Nm) were sampled from an isokinetic dynamometer. The right hamstrings were stretched with either static (stretching time, 9.2 +/- 0.4 minutes) or dynamic (9.1 +/- 0.3 minutes) stretching exercises. Four repetitions of three static stretching exercises were held for 30 seconds each, whereas four sets of three dynamic stretching exercises were performed (12-15 repetitions) with each set lasting 30 seconds. PT decreased after the static stretching at 81 degrees (p = 0.019) and 101 degrees (p = 0.001) but not at other angles. PT did not change (p > 0.05) after the dynamic stretching. EMG amplitude remained unchanged after the static stretching (p > 0.05) but increased after the dynamic stretching at 101 degrees (p < 0.001) and 81 degrees (p < 0.001). MMG amplitude increased in response to the static stretching at 101 degrees (p = 0.003), whereas the dynamic stretching increased MMG amplitude at all joint angles (p 相似文献   

13.
The objective of the present study was to examine the superficial quadriceps femoris (QF) muscle electromyogram (EMG) during dynamic sub-maximal knee extension exercise between young adult men and women. Thirty subjects completed, in a random order, 2 sub-maximal repetitions of single-leg knee extensions at 20-90% of their one-repetition maximum (1RM). Vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscle integrated EMG (IEMG) during each sub-maximal lift was normalized to the respective 1RM for concentric, isometric and eccentric modes. The EMG median frequency (f(med)) was determined over the isometric mode. Men attained a significantly (p<0.05) greater knee angular velocity than the women during the concentric mode (83.6+/-19.1 degrees /s and 67.4+/-19.8 degrees /s, respectively). RF IEMG was significantly lesser than the VM (p=0.014) and VL (p<0.001) muscles, when collapsed across all contraction modes, loads, and sex. Overall IEMG was significantly greater during the concentric (p<0.001) and isometric (p<0.001) modes, than the eccentric mode. Men generated significantly (p=0.03) greater VL muscle IEMG than the women, while the opposite pattern emerged for the RF muscle. VM f(med) (105.1+/-11.1Hz) was significantly lesser than the VL (180.3+/-19.5Hz) and RF (127.7+/-13.9Hz) muscles across all lifting intensities, while the men (137.7+/-10.7Hz) generated greater values than the women (129.0+/-11.4Hz). The findings demonstrate a reduction in QF muscle activation across the concentric to eccentric transition, which may be related to the mode-specific velocity pattern.  相似文献   

14.
The purposes of this study were to clarify the effects of static stretching for 30 seconds and dynamic stretching on leg extension power. Eleven healthy male students took part in this study. Each subject performed static stretching and dynamic stretching on the 5 muscle groups in the lower limbs and nonstretching on separate days. Leg extension power was measured before and after the static stretching, dynamic stretching, and nonstretching. No significant difference was found between leg extension power after static stretching (1788.5 +/- 85.7 W) and that after nonstretching (1784.8 +/- 108.4 W). On the other hand, leg extension power after dynamic stretching (2022.3 +/- 121.0 W) was significantly (p < 0.01) greater than that after nonstretching. These results suggest that static stretching for 30 seconds neither improves nor reduces muscular performance and that dynamic stretching enhances muscular performance.  相似文献   

15.
From knee extension moments measured with a dynamometer, the quadriceps muscle force, the patellar ligament force and the reaction force in the patellofemoral joint at various knee angles (0-90 degrees) were estimated. The information needed to calculate the combined effect of both patellofemoral and tibiofemoral joint on the mechanical advantage of the muscle was obtained from lateral-view radiographs of autopsy knees. The results show that the smallest quadriceps force (2,000 N) is exerted at maximal extension, and the largest force (8,000 N) at about 75 degrees of flexion. The patellar ligament force reaches a maximum (5,000 N) at 60 degrees. The reaction force in the patellofemoral joint is the smallest (1,000 N) at extension and is of the same values as the muscle force in a range from 75 to 90 degrees. Especially at large flexion angles, the value of the estimated forces is considerably larger (by 100%) than reported in the literature. This difference is attributed to the influence of the patellofemoral joint on the mechanical advantage of the muscle, which has not been taken into account in other studies.  相似文献   

16.
The greater fluctuations in motor output that are often exhibited by old adults can be reduced with strength training. The purpose of the study was to determine the effect of strength and steadiness training by old adults on fluctuations in force and position during voluntary contractions with the quadriceps femoris muscle. Healthy old adults (65-80 yr) completed 16 wk of heavy-load (80% of maximum, n = 11) strength training, heavy-load steadiness training (n = 6), or no training (n = 9). Steadiness training required subjects to match the angular displacement about the knee joint to a constant-velocity template. The Heavy-Load group experienced a 5.5% increase in muscle volume, a 25% increase in maximal voluntary contraction force, and a 26% increase in the one-repetition (1-RM) load. The Heavy-Load Steady group experienced increases of 11.5, 31, and 36%, respectively. The maximal electromyogram signal of quadriceps femoris increased by 51% in the two training groups. The coefficient of variation (CV) for force during submaximal isometric contractions did not change with training for any group. Although both training groups also experienced a reduction in CV for force during anisometric contractions with a 50% 1-RM load, the standard deviation of position did not change with time for any group. The Heavy-Load Steady group also experienced a reduction in CV for force during the training contractions performed with the 80% 1-RM load. Thus strength training reduced the force fluctuations of the quadriceps femoris muscles during anisometric contractions but not during isometric contractions.  相似文献   

17.
We tested the hypothesis that static contraction causes greater reflex cardiovascular responses than dynamic contraction at equivalent workloads [i.e., same tension-time index (TTI), holding either contraction time or peak tension constant] in chloralose-anesthetized cats. When time was held constant and tension was allowed to vary, dynamic contraction of the hindlimb muscles evoked greater increases (means +/- SE) in mean arterial pressure (MAP; 50 +/- 7 vs. 30 +/- 5 mmHg), popliteal blood velocity (15 +/- 3 vs. 5 +/- 1 cm/s), popliteal venous PCO(2) (15 +/- 3 vs. 3 +/- 1 mmHg), and a greater decrease in popliteal venous pH (0.07 +/- 0.01 vs. 0.03 +/- 0.01), suggesting greater metabolic stimulation during dynamic contraction. Similarly, when peak tension was held constant and time was allowed to vary, dynamic contraction evoked a greater increase in blood velocity (13 +/- 1 vs. -1 +/- 1 cm/s) without causing any differences in other variables. To investigate the reflex contribution of mechanoreceptors, we stretched the hindlimb dynamically and statically at the same TTI. A larger reflex increase in MAP during dynamic stretch (32 +/- 8 vs. 24 +/- 6 mmHg) was observed when time was held constant, indicating greater mechanoreceptor stimulation. However, when peak tension was held constant, there were no differences in the reflex cardiovascular response to static and dynamic stretch. In conclusion, at comparable TTI, when peak tension is variable, dynamic muscle contraction causes larger cardiovascular responses than static contraction because of greater chemical and mechanical stimulation. However, when peak tensions are equivalent, static and dynamic contraction or stretch produce similar cardiovascular responses.  相似文献   

18.
The purpose of the present study was to clarify the effect of static stretching on muscular performance during concentric isotonic (dynamic constant external resistance [DCER]) muscle actions under various loads. Concentric DCER leg extension power outputs were assessed in 12 healthy male subjects after 2 types of pretreatment. The pretreatments included (a) static stretching treatment performing 6 types of static stretching on leg extensors (4 sets of 30 seconds each with 20-second rest periods; total duration 20 minutes) and (b) nonstretching treatment by resting for 20 minutes in a sitting position. Loads during assessment of the power output were set to 5, 30, and 60% of the maximum voluntary contractile (MVC) torque with isometric leg extension in each subject. The peak power output following the static stretching treatment was significantly (p < 0.05) lower than that following the nonstretching treatment under each load (5% MVC, 418.0 +/- 82.2 W vs. 466.2 +/- 89.5 W; 30% MVC, 506.4 +/- 82.8 W vs. 536.4 +/- 97.0 W; 60% MVC, 478.6 +/- 77.5 W vs. 523.8 +/- 97.8 W). The present study demonstrated that relatively extensive static stretching significantly reduces power output with concentric DCER muscle actions under various loads. Common power activities are carried out by DCER muscle actions under various loads. Therefore, the result of the present study suggests that relatively extensive static stretching decreases power performance.  相似文献   

19.
The study was conducted first, to determine the possibility of a dichotomy between circadian rhythm of maximal torque production of the knee extensors of the dominant and non-dominant legs, and second, to determine whether the possible dichotomy could be linked to a change in the downward drive of the central nervous system and/or to phenomena prevailing at the muscular level. The dominant leg was defined as the one with which subjects spontaneously kick a football. Tests were performed at 06:00, 10:00, 14:00, 18:00, and 22:00 h. To distinguish the neural and muscular mechanisms that influence muscle strength, the electromyographic and mechanical muscle responses associated with electrically evoked and/or voluntary contractions of the human quadriceps and semi-tendinosus muscles for each leg were recorded and compared. The main finding was an absence of interaction between time-of-day and dominance effects on the torque associated with maximal voluntary contraction (MVC) of both quadriceps. A significant time-of-day effect on MVC torque of the knee extensors was observed for the dominant and non-dominant legs when the data were collapsed, with highest values occurring at 18:00 h (p < 0.01). From cosinor analysis, a circadian rhythm was documented (p < 0.001) with the peak (acrophase) estimated at 18:18 +/- 00:12 h and amplitude (one-half the peak-to-trough variation) of 3.3 +/- 1.1%. Independent of the leg tested, peripheral mechanisms demonstrated a significant time-of-day effect (p < 0.05) on the peak-torque of the single and doublet stimulations, with maximal levels attained at 18:00 h. The central activation of the quadriceps muscle of each leg remained unchanged during the day. The present results confirmed previous observations that muscle torque changes in a predictable manner during the 24 h period, and that the changes are linked to modifications prevailing at the muscular, rather than the neural, level. The similar rhythmicity observed in this study between the dominant and non-dominant legs provides evidence that it is not essential to test both legs when simple motor tasks are investigated as a function of the time of day.  相似文献   

20.
Several EMG-based approaches to muscle fatigue assessment have recently been proposed in the literature. In this work, two multivariate fatigue indices developed by the authors: a generalized mapping index (GMI) and the first component of principal component analysis (PCA) were compared to three univariate indices: Dimitrov’s normalized spectral moments (NSM), Gonzalez-Izal’s waveletbased indices (WI), and Talebinejad’s fractal-based Hurst Exponent (HE). Nine healthy participants completed two repetitions of fatigue tests during isometric, cyclic and random fatiguing contractions of the biceps brachii. The fatigue assessments were evaluated in terms of a modified sensitivity to variability ratio yielding the following scores (mean ± std.dev.): PCA: (12.6 ± 5.6), GMI: (11.5 ± 5.4), NSM: (10.3 ± 5.4), WI: (8.9 ± 4.6), HE: (8.0 ± 3.3). It was shown that PCA statistically outperformed WI and HE (p < 0.01) and that GMI outperformed HE (p < 0.02). There was no statistical difference among NSM, WI and HE (p > 0.2). It was found that taking the natural logarithm of NSM and WI, although reducing the parameters’ sensitivity to fatigue, increased SVR scores by reducing variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号