首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of cytochrome P-450 heme in the liver has been studied by a new approach. In rats, hepatic heme was labeled by administration of a tracer pulse of [5-14C]δ-aminolevulinic acid (ALA), and its degradation was analyzed in terms of labeled carbon monoxide (14CO) excretion, which is a specific degradation product of the labeled heme. Within minutes after administration of [5-14C]ALA, 14CO was detectable and increased after 2 h to an “early peak,” reflecting the elimination of labeled heme from a rapidly turning over pool in the liver. Beyond the early peak, the rate of 14CO production decreased in a log-linear manner, consistent with the degradation of heme in stable hepatic hemoproteins. From the rate at which 14CO production declined during this phase, from the predominant labeling of cytochrome P-450 heme by the administered [5-14C]ALA and from the known turnover characteristics of this hemoprotein in the liver, it could be inferred that production of 14CO—between 16 and 30 h after administration of labeled ALA—largely reflected degradation of cytochrome P-450 heme. This approach, which permits serial measurements in a single animal, was used to study the effect on cytochrome P-450 heme of administered heme or endotoxin, both of which are potent stimulators of hepatic heme oxygenase activity. Both of these substances caused marked acceleration of the degradation of cytochrome P-450 heme, the effect occurring over the same dose range as that for stimulation of hepatic heme oxygenase. The findings suggest that stimulation of this enzyme activity in the liver is closely related to the rate of degradation of cytochrome P-450 heme.  相似文献   

2.
3.
Induction of heme oxygenase mRNA by cobalt protoporphyrin in rat liver   总被引:1,自引:0,他引:1  
The effect of cobaltic(III)-protoporphyrin on heme oxygenase activity and mRNA content was examined in vivo in the adult male rat liver. The activity of heme oxygenase, the rate-limiting enzyme in the degradation of heme, was enhanced, as expected, by cobalt protoporphyrin (25 mumol/kg body weight) in a time-dependent manner. Levels of enzyme activity were increased 2-fold by 8-16 h following treatment and were 6-fold higher than baseline values by 48 h. Administration of cobalt protoporphyrin resulted in a marked increase in heme oxygenase mRNA in the liver. Within 2 h of treatment, mRNA levels had increased 7.9-fold. The induction of heme oxygenase mRNA was maximal at 8 h when the levels were 58.5-fold above baseline. At every time point tested, the increase in heme oxygenase mRNA was several fold greater than that of enzyme activity.  相似文献   

4.
Mechanism of heme degradation by heme oxygenase   总被引:5,自引:0,他引:5  
Heme oxygenase catalyzes the three step-wise oxidation of hemin to alpha-biliverdin, via alpha-meso-hydroxyhemin, verdoheme, and ferric iron-biliverdin complex. This enzyme is a simple protein which does not have any prosthetic groups. However, heme and its two metabolites, alpha-meso-hydroxyhemin and verdoheme, combine with the enzyme and activate oxygen during the heme oxygenase reaction. In the conversion of hemin to alpha-meso-hydroxyhemin, the active species of oxygen is Fe-OOH, which self-hydroxylates heme to form alpha-meso-hydroxyhemin. This step determines the alpha-specificity of the reaction. For the formation of verdoheme and liberation of CO from alpha-meso-hydroxyhemin, oxygen and one reducing equivalent are both required. However, the ferrous iron of the alpha-meso-hydroxyheme is not involved in the oxygen activation and unactivated oxygen is reacted on the 'activated' heme edge of the porphyrin ring. For the conversion of verdoheme to the ferric iron-biliverdin complex, both oxygen and reducing agents are necessary, although the precise mechanism has not been clear. The reduction of iron is required for the release of iron from the ferric iron-biliverdin complex to complete total heme oxygenase reaction.  相似文献   

5.
The role of a microsomal enzyme system, heme oxygenase, in the regulation of intracellular heme concentration and of the heme biosynthetic pathway was investigated. It was determined that alterations in heme oxygenase activity were not consistent with the observed alterations of heme biosynthesis produced by the administration of various drugs. It is concluded that heme oxygenase does not play a role in the regulation of heme biosynthesis under these circumstances.  相似文献   

6.
7.
Method for microassay of microsomal heme oxygenase activity   总被引:1,自引:0,他引:1  
An isotope dilution technique for the estimation of microsomal heme oxygenase activity is described. The method is based on the measurement of bilirubin-14C formation from hemin-14C in the presence of excessive NADPH-dependent biliverdin reductase. The procedure is specific and sufficiently sensitive for use in the measurement of microsomal heme oxygenase activity in needle biopsy specimens.  相似文献   

8.
It has been suggested that diabetes induces an increase in oxidative stress; the increased expression of heme-oxygenase 1 (HO-1) in liver is believed to be a sensitive marker of the stress response. The aim of this study was to examine whether diabetes is able to induce HO-1 expression in liver. The specific mRNA was amplified by RT/PCR and calibrated with amplified β-actin mRNA.

The mRNA HO-1 levels in the liver of spontaneously diabetic rats were increased by 1.8 fold compared with non diabetics; this supports the hypothesis of weak but significant oxidative damage due to chronic hyperglycaemia. This work represents the first in vivo study exploring the semi-quantitative expression of HO-1 in the liver of spontaneously diabetic rats.  相似文献   

9.
Nitric oxide and S-nitrosothiols modulate a variety of important physiological activities. In vascular cells, agents that release NO and donate nitrosonium cation (NO(+)), such as S-nitrosoglutathione, are potent inducers of the antioxidant protein heme oxygenase 1 (HO-1) (Foresti, R., Clark, J. E., Green, C. J., and Motterlini, R. (1997) J. Biol. Chem. 272, 18411-18417; Motterlini, R., Foresti, R., Bassi, R., Calabrese, V., Clark, J. E., and Green, C. J. (2000) J. Biol. Chem. 275, 13613-13620). Here, we report that Angeli's salt (AS) (0.25-2 mm), a compound that releases nitroxyl anion (NO(-)) at physiological pH, induces HO-1 mRNA and protein expression in a concentration- and time-dependent manner, resulting in increased heme oxygenase activity in rat H9c2 cells. A time course analysis revealed that NO(-)-mediated HO-1 expression is transient and gradually disappears within 24 h, in accordance with the short half-life of AS at 37 degrees C (t(12) = 2.3 min). Interestingly, multiple additions of AS at lower concentrations (50 or 100 microm) over a period of time still promoted a significant increase in heme oxygenase activity. Experiments performed using a NO scavenger and the NO electrode confirmed that NO(-), not NO, is the species involved in HO-1 induction by AS; however, the effect on heme oxygenase activity can be amplified by accelerating the rate of NO(-) oxidation. N-Acetylcysteine almost completely abolished AS-mediated induction of HO-1, whereas a glutathione synthesis inhibitor (buthionine sulfoximine) significantly decreased heme oxygenase activation by AS, indicating that sulfydryl groups are crucial targets in the regulation of HO-1 expression by NO(-). We conclude that NO(-), in analogy with other reactive nitrogen species, is a potent inducer of heme oxygenase activity and HO-1 protein expression. These findings indicate that heme oxygenase can act both as a sensor to and target of redox-based mechanisms involving NO and extend our knowledge on the biological function of HO-1 in response to nitrosative stress.  相似文献   

10.
11.
Although heme oxygenase (HO) has been suggested to be involved in the regulation of cardiovascular function through production of carbon monoxide (CO), the pathophysiological significance of HO in hypertensive organ damage remains unknown. We examined the effects of inducing HO-1 mRNA by stannous chloride (SnCl2) on cardiac hypertrophy in stroke-prone spontaneously hypertensive rats (SHR-SP/Izm). Chronic administration of SnCl2 resulted in a significant decrease in left ventricular (LV) weight/body weight ratio and LV brain natriuretic peptide (BNP) mRNA levels as a marker of cardiac hypertrophy and a significant increase in LV HO-1 mRNA levels and LV cGMP contents in SHR-SP/Izm, while there was no significant change in systemic blood pressure. These results provide the first evidence that induction of HO in the heart attenuates cardiac hypertrophy in load-independent mechanism in genetically hypertensive rats.  相似文献   

12.
Heme administration in vivo results in the suppression of synthesis of rat hepatic δ-aminolevulinic acid (ALA) synthetase and induction of rat hepatic heme oxygenase. Intravenous heme administration in vivo results in the appearance of cyclic progressively damped oscillations of both hepatic ALA synthetase activity and hepatic heme oxygenase activity. Heme oxygenase induction precedes in time the induction of ALA synthetase. ALA synthetase oscillations are observed in hepatic cell cytosol and mitochondrial fractions as well as in the total homogenate. Cycloheximide pretreatment abolishes both the ALA synthetase and heme oxygenase oscillations, while actinomycin D pretreatment has only a minimal effect on the induction of heme oxygenase. These results suggest that hepatic heme metabolism is closely regulated by rapid changes in the capacity to synthesize and catabolize heme, and the cyclic oscillations following intravenous heme may be a manifestation of the feedback regulation processes involved. This regulatory capacity is dependent on protein synthesis, and the primary site of regulation may be at the translational level on the endoplasmic reticulum.  相似文献   

13.
The synthesis of 34-kDa stress protein was enhanced, with a simultaneous increase in heme oxygenase activity, when mouse macrophages were exposed to diethylmaleate or sodium arsenite. After 7 h of exposure to the sulfhydryl agents, the 34-kDa protein was the most actively synthesized protein. Immunoblot analysis showed that the induced 34-kDa protein reacted with an antibody raised against bovine heme oxygenase. Cadmium ions or 1-chloro-2,4-dinitrobenzene also induced the 34-kDa protein which reacted with the antibody. Treatments of the cells with buthionine sulfoximine or hydrogen peroxide weakly induced the protein, while diamide treatment or heat shock was without effect. These results are consistent with our previous findings that heavy metal ions including arsenite and cadmium ions induce heme oxygenase (32-kDa stress protein) in human cell lines [Taketani, S., Kohno, H., Yoshinaga, T., & Tokunaga, R. (1989) FEBS Lett. 245, 173-176], and also suggest that the formation of glutathione conjugate with sulfhydryl-reactive agents may mediate the induction of the stress protein in mouse peritoneal macrophages.  相似文献   

14.
delta 12-Prostaglandin (PG)J2 stimulated the synthesis of a 31,000-dalton protein (termed p31) and the induction of cellular heme oxygenase activity in porcine aortic endothelial cells. A good correlation was observed between the time courses and dose dependencies of the induction of p31 synthesis and that of heme oxygenase activity by delta 12-PGJ2. Hemin, a known inducer of heme oxygenase, also induced p31 synthesis as well as heme oxygenase activity in the cells. On two-dimensional gel electrophoresis, p31 induced by delta 12-PGJ2 exhibited an isoelectric point of 5.4, which coincided exactly with that induced by hemin. These results indicate that the p31 induced by delta 12-PGJ2 in porcine aortic endothelial cells is heme oxygenase.  相似文献   

15.
Datta, P. K., Moulder, J. E., Fish, B. L., Cohen, E. P. and Lianos, E. A. Induction of Heme Oxygenase 1 in Radiation Nephropathy: Role of Angiotensin II. Radiat. Res. 155, 734-739 (2001). In a rat model of radiation-induced nephropathy, we investigated changes in expression of heme oxygenase 1 (Hmox1, also known as HO-1), an enzyme that catalyzes conversion of heme into biliverdin, carbon monoxide and iron. The study explored whether radiation induces Hmox1 expression in the irradiated kidney and whether angiotensin II (AII) mediates Hmox1 expression in glomeruli isolated from irradiated kidneys. To assess the effects of radiation on Hmox1 expression, rats received 20 Gy bilateral renal irradiation and were randomized to groups receiving an AII type 1 (AT(1)) receptor antagonist (L-158,809) or no treatment. Drug treatment began 9 days prior to bilateral renal irradiation and continued for the duration of the study. Estimation of Hmox1 levels in glomerular protein lysates assessed by Western blot analysis revealed a significant increase in Hmox1 protein at 50 and 65 days postirradiation. In animals treated with the AT(1) receptor antagonist, there was no induction of Hmox1, suggesting that AII may be a mediator of Hmox1 induction. To confirm that AII stimulates Hmox1 expression, animals were infused with 200, 400 or 800 ng/kg min(-1) of AII for 18-19 days, and Hmox1 protein levels in glomeruli were assessed. There was a significant induction of Hmox1 in glomeruli of animals infused with 800 ng/kg min(-1) of AII. These studies demonstrate that glomerular Hmox1 expression is elevated in the middle phase of radiation nephropathy and that AII can increase glomerular Hmox1 levels.  相似文献   

16.
Prostaglandins (PGs) originate from the degradation of membranar arachidonic acid by cyclooxygenases (COX-1 and COX-2). The prostaglandin actions in the nervous system are multiple and have been suggested to play a significant role in neurodegenerative disorders. Some PGs have been reported to be toxic and, interestingly, the cyclopentenone PGs have been reported to be cytoprotective at low concentration and could play a significant role in neuronal plasticity. They have been shown to be protective against oxidative stress injury; however, the cellular mechanisms of protection afforded by these PGs are still unclear. It is postulated that the cascade leading to neuronal cell death in acute and chronic neurodegenerative conditions, such as cerebral ischemia and Alzheimer's disease, would be mediated by free radical damage. We tested the hypothesis that the neuroprotective action of cyclopentanone could be caused partially by an induction of heme oxygenase 1 (HO-1). We and others have previously reported that modulation of HO total activity may well have direct physiological implications in stroke and in Alzheimer's disease. HO acts as an antioxidant enzyme by degrading heme into iron, carbon monoxide, and biliverdin that is rapidly converted into bilirubin. Using mouse primary neuronal cultures, we demonstrated that PGs of the J series induce HO-1 in a dose-dependent manner (0, 0.5, 5, 10, 20, and 50 micro g/ml) and that PGJ(2) and dPGJ(2) were more potent than PGA(2), dPGA(2), PGD(2), and PGE(2). No significant effects were observed for HO-2 and actin expression. In regard to HO-3 expression found in rat, with its protein deducted sequence highly homologous to HO-2, no detection was observed in HO-2(-/-) mice, suggesting that HO-3 protein would not be present in mouse brain. We are proposing that several of the protective effects of PGJ(2) could be mediated through beneficial actions of heme degradation and its metabolites. The design of new mimetics based on the cyclopentenone structure could be very useful as neuroprotective agents and be tested in animal models of stroke and Alzheimer's disease.  相似文献   

17.
18.
A sensitive and facile assay for heme oxygenase (HO) has been developed. The basis of the assay is the detection of [14C]bilirubin formation in a coupled enzyme assay involving HO and biliverdin reductase actions, respectively. Separation of substrate from product is accomplished by thin-layer chromatography with subsequent quantitation by liquid scintillation counting of radioactive material present on chromatograms. As little as 20 micrograms of total cellular protein derived from cells growing in a standard 25-cm2 culture flask is sufficient for detection of HO enzyme activity using this assay. The reaction is inhibited by tin-protoporphyrin (10 microM final concentration), a specific inhibitor of HO. The linearity of the enzyme reaction with respect to incubation time and amount of protein used was established. Comparison of the new HO assay with a spectrophotometric assay was made, and good agreement of the results from both methods was found. The assay described here should facilitate measurements of this important heme-degrading enzyme in tissue culture studies and cases where limited amounts of material are available.  相似文献   

19.
20.
1. The effect of in vivo administration of 6 compounds on the activity of delta-aminolevulinic acid (ALA) synthetase and heme oxygenase were determined. 2. The order of decreasing potency in reducing ALA synthetase activity was heme, bilirubin, protoporphyrin IX, bilirubin dimethyl ester, CoCl2 and FeCl3. 3. The chelating agents EDTA and deferoxamine did not prevent heme's repression of ALA synthetase or induction of heme oxygenase activity. 4. The dose response, time course, enzyme subcellular distribution and chelation antagonism studies all suggest that heme itself, and not iron, regulates the rate limiting enzymatic steps of rat hepatic heme synthesis and degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号