首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a complex medium with the energy source as the limiting nutrient factor and under anaerobic growth conditions, Streptococcus agalactiae fermented 75% of the glucose to lactic acid and the remainder to acetic and formic acids and ethanol. By using the adenosine triphosphate (ATP) yield constant of 10.5, the molar growth yield suggested 2 moles of ATP per mole of glucose from substrate level phosphorylation. Under similar growth conditions, pyruvate was fermented 25% to lactic acid, and the remainder was fermented to acetic and formic acids. The molar growth yield suggested 0.75 mole of ATP per mole of pyruvate from substrate level phosphorylation. Under aerobic growth conditions about 1 mole of oxygen was consumed per mole of glucose; about one-third of the glucose was converted to lactic acid and the remainder to acetic acid, acetoin, and carbon dioxide. Molar growth yields indicated 5 moles of ATP per mole of glucose. Estimates based on products of glucose degradation suggested that about one-half of the ATP was derived from substrate level phosphorylation and one-half from oxidative phosphorylation. Addition of 0.5 m 2,4-dinitrophenol reduced the growth yield to that occurring in the absence of oxygen. Aerobic pyruvate degradation resulted in 30% of the substrate becoming reduced to lactic acid and the remainder being converted to acetic acid and carbon dioxide, with small amounts of formic acid and acetoin. The molar growth yields and products found suggested that 0.70 mole of ATP per mole of pyruvate resulted from substrate level phosphorylation and 0.4 mole per mole of pyruvate resulted from oxidative phosphorylation.  相似文献   

2.
The examination of the effect of N2, air and O2 on the glucose to 2,3-butanediol fermentation byBacillus polymyxa showed that N2 sparging resulted in best 2,3-butanediol production at low yeast extract concentration (0.5%, w/v) whereas aeration produced best results with high yeast extract levels (1.2%, w/v). However, under all atmospheric conditions, improvements in rates and yields of 2,3-butanediol production and rates of glucose utilization were observed with high yeast extract. Regardless of the yeast extract levels, highest concentrations of ethanol and acetoin were obtained with N2 sparging and aeration respectively. No acetoin accumulated under anaerobic (N2) conditions and no ethanol accumulated with aeration. The rate of glucose utilization, in all fermentations, was highest under N2 and lowest with O2 sparging. In addition to the biochemical results, morphological observations with O2, N2 and air sparging are also reported.NRCC No. 23868  相似文献   

3.
Laube  V. M.  Groleau  D.  Martin  S. M. 《Biotechnology letters》1984,6(4):257-262
In the xylose fermentation of Bacillus polymyxa strain 9035, best 2,3-butanediol yields were obtained with 1.0 % yeast extract, 4–6 % xylose, shaking at 125 rpm and incubation at 30°C. Under these conditions, mannose, galactose, L-arabinose, cellobiose, starch and glucose were readily metabolized and yielded significant amounts of diol. Diol production from xylan was also demonstrated. In addition, the screening of a number of B. polymyxa strains on xylose revealed that only strains 9031-1 and 9035 used xylose extensively and produced significant amounts of diol. The latter strain proved best under scaled-up conditions.NRCC #22775  相似文献   

4.
Summary The reducing sugars, glucose, and ethanol produced during growth of the anaerobes Clostridium thermocellum and Acetivibrio cellulolyticus on cellulose were assayed. Zymomonas mobilis was grown under similar conditions and could ferment glucose to ethanol. The ethanol production by the cellulolytic bacteria alone and in co-culture with Zymomonas is described. Approximately 27% of a 1% cellulose substrate could be converted to ethanol by this co-culture.  相似文献   

5.
Summary Growth ofKluyveromyces fragilis NRC 2475 and the production of ethanol by the yeast were studied in the media containing one of the following sugars: glucose, lactose, galactose, or a glucose-galactose (50% 50%) mixture as a carbon source.The largest biomass yield and the lowest yield of ethanol were obtained in the medium containing glucose. The medium containing galactose gave the lowest yield of biomass and the largest yield of ethanol. When lactose was used for the growth and production of ethanol the obtained results for both biomass and ethanol were between those obtained with glucose and galactose.The ethanol productivities, expressed in terms of ethanol produced either per unit of cells, or per unit of cells and time, were the highest in the system with galactose and the lowest in that with glucose.  相似文献   

6.
The bioconversion of sugars present in wood hemicellulose to 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations was investigated. When K. pneumoniae was grown under finite air conditions in the presence of added acetic acid, 50 g of D-glucose and D-xylose per liter could be converted to 25 and 27 g of butanediol per liter, respectively. The efficiency of bioconversion decreased with increasing sugar substrate concentrations (up to 200 g/liter). Butanediol production at low sugar substrate concentrations was less efficient when the organism was grown under aerobic conditions; however, final butanediol values were higher for cultures grown on an initial sugar concentration of 150 g/liter, particularly when the inoculum was first acclimatized to high sugar levels. When a double fed-batch approach (daily additions of sugars together with yeast extract) was used under aerobic conditions, up to 88 and 113 g of combined butanediol and acetyl methyl carbinol per liter could be obtained from the utilization of 190 g of D-xylose and 226 g of D-glucose per liter, respectively.  相似文献   

7.
The bioconversion of sugars present in wood hemicellulose to 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations was investigated. When K. pneumoniae was grown under finite air conditions in the presence of added acetic acid, 50 g of D-glucose and D-xylose per liter could be converted to 25 and 27 g of butanediol per liter, respectively. The efficiency of bioconversion decreased with increasing sugar substrate concentrations (up to 200 g/liter). Butanediol production at low sugar substrate concentrations was less efficient when the organism was grown under aerobic conditions; however, final butanediol values were higher for cultures grown on an initial sugar concentration of 150 g/liter, particularly when the inoculum was first acclimatized to high sugar levels. When a double fed-batch approach (daily additions of sugars together with yeast extract) was used under aerobic conditions, up to 88 and 113 g of combined butanediol and acetyl methyl carbinol per liter could be obtained from the utilization of 190 g of D-xylose and 226 g of D-glucose per liter, respectively.  相似文献   

8.
Summary The fermentation of D-xylose byPachysolen tannophilus Y2460,Pichia stipitis Y7124,Kluyveromyces marxianus Y2415 andCandida shehatae Y12878 was investigated in aerobic, anaerobic and microaerophilic batch cultures. The aeration rate greatly influenced the fermentations; growth, rate of ethanol production and oxidation of ethanol are affected. Of the strains tested,Pichia stipitis appears superior; under anaerobic conditions it converts D-xylose (20 g/l) to ethanol with a yield of 0.40 g/l and it exhibits the highest ethanol specific productivity (3.5 g of ethanol per g dry cell per day) under microaerophilic conditions.  相似文献   

9.
Dissimilatory nitrate reduction metabolism, of the natural xylose-fermenting fungus Fusarium oxysporum, was used as a strategy to achieve anaerobic growth and ethanol production from xylose. Beneficial alterations of the redox fluxes and thereby of the xylose metabolism were obtained by taking advantage of the regeneration of the cofactor NAD(+) during the denitrification process. In batch cultivations, nitrate sustained growth under anaerobic conditions (1.21 g L(-1) biomass) and simultaneously a maximum yield of 0.55 moles of ethanol per mole of xylose was achieved, whereas substitution of nitrate with ammonium limited the growth significantly (0.15 g L(-1) biomass). Using nitrate, the maximum acetate yield was 0.21 moles per mole of xylose and no xylitol excretion was observed. Furthermore, the network structure in the central carbon metabolism of F. oxysporum was characterized in steady state. F. oxysporum grew anaerobically on [1-(13)C] labelled glucose and unlabelled xylose in chemostat cultivation with nitrate as nitrogen source. The use of labelled substrate allowed the precise determination of the glucose and xylose contribution to the carbon fluxes in the central metabolism of this poorly described microorganism. It was demonstrated that dissimilatory nitrate reduction allows F. oxysporum to exhibit typical respiratory metabolic behaviour with a highly active TCA cycle and a large demand for NADPH.  相似文献   

10.
Steam-exploded aspenwood chips were acid hydrolysed to their component sugars. Near theoretical solvent yields were achieved in both the acetone-butanol-ethanol (ABE) fermentation and 2,3-butanediol fermentation of these liberated sugars. When Clostridium acetobutylicum was grown on wood hydrolysates, final butanol yields of 9.0 g/L (0.26 g of butanol per g of sugar consumed) were obtained. When Klebsiella pneumoniae was grown on the wood hydrolysates, final butanediol concentrations exceeded 20 g/L, resulting in a bioconversion efficiency approaching 0.5 g of butanediol per g of sugar utilised.  相似文献   

11.
Summary Previously steam explosion had been used to enhance the enzymatic hydrolysis of lignocellulosic substrates to glucose. The conditions for pretreating aspen wood chips were optimized so that highest amounts of undegraded hemicellulose could be obtained after washing the steam exploded chips. The hemicellulose rich water soluble fractions showing highest pentosan yields were then acid hydrolysed to their composite sugars. Approximately 65–75% of the total reducing sugars detected in the wood hydrolysates were in the form of monosaccharides with D-xylose being the major component. Klebsiella pneumoniae was grown in media containing these wood hydrolysates as the substrate and 2,3-butanediol yields of 0.4–0.5 g per g of monosaccharide utilised were obtained.  相似文献   

12.
Streptococcus bovis H13/1 was grown in a glucose-limited chemostat. A concomitant increase in dilution rate and glucose supply per unit time caused both an increase in lactate production per mole of glucose fermented and a linear increase in growth yield over the dilution rate range 0.052 to 0.141/h. When the dilution rate was increased with no change in glucose supply per unit time there was a reduction in lactate production and an increase in that of acetate and ethanol coinciding with a non-linear increase in growth yield. YMaxglu = 38.6 and a maintenance coefficient, ms = 0.290 mmol/l glucose/g cells/h were calculated. The results also suggested an interaction between the formate and CO2 pools.  相似文献   

13.
Summary The initial transfer of fructosyl units in the utilization of sucrose led to the formation of fructose, oligomers or levan and was apparently controlled by the concentrations of sugars in the medium. In continuous fermentation, the rather low levels of monomeric sugars in the broth prevented the formation of sorbitol and oligomers, whereas the production of levan was increased compared to that in batch fermentation. The fructooligomers contained approximately one mole of glucose per two, three or four moles of fructose. The overall ethanol production rate was limited by the uptake rates of glucose and especially of fructose, which was decreased due to transfructosylation reactions.  相似文献   

14.
Summary Hexose and pentose sugars, produced by hydrogen-fluoride solvolysis of aspen wood chips, were totally consumed in a coculture fermentation by Zymomonas mobilis and a mutant of Clostridium saccharolyticum. Z. mobilis converted the glucose to ethanol, while the mutant, which was improved in both ethanol production and tolerance, converted the xylose component to ethanol. A high conversion efficiency of wood sugars to ethanol was obtained, and the cells after the fermentation were successfully used for cell recycle.NRCC no. 23211  相似文献   

15.
Summary The effect of oxygen availability on d-xylose and D-glucose metabolism by Pichia stipitis, Candida shehatae and Pachysolen tannophilus was investigated. Oxygen was not required for fermentation of d-xylose or d-glucose, but stimulated the ethanol production rate from both sugars. Under oxygen-limited conditions, the highest ethanol yield coefficient (Ye/s) of 0.47 was obtained on d-xylose with. P. stipitis, while under similar conditions C. shehatae fermented d-xylose most rapidly with a specific productivity (qpmax) of 0.32 h-1. Both of these yeasts fermented d-xylose better and produced less xylitol than. P. tannophilus. Synthesis of polyols such as xylitol, arabitol, glycerol and ribitol reduced the ethanol yield in some instances and was related to the yeast strain, carbon source and oxygen availability. In general, these yeasts fermented d-glucose more rapidly than d-xylose. By contrast Saccharomyces cerevisiae fermented d-glucose at least three-fold faster under similar conditions.Nomenclature qpmax maximum specific rate of ethanol production (g ethanol per g dry biomass per hour) - Ye/s ethanol yield (g ethanol per g substrate utilized) - Yp/s polyol yield (g polyol per g substrate utilized) - Yx/s biomass yield (g dry biomass per g substrate utilized) - max maximum specific growth rate (per hour)  相似文献   

16.
Streptococcus bovis H13/1 was grown in a glucose-limited chemostat. A concomitant increase in dilution rate and glucose supply per unit time caused both an increase in lactate production per mole of glucose fermented and a linear increase in growth yield over the dilution rate range 0.052 to 0.141/h. When the dilution rate was increased with no change in glucose supply per unit time there was a reduction in lactate production and an increase in that of acetate and ethanol coinciding with a non-linear increase in growth yield. YgluMax= 38.6 and a maintenance coefficient, ms= 0.290 mmol/l glucose/g cells/h were calculated. The results also suggested an interaction between the formate and CO2 pools.  相似文献   

17.
Summary The main product of fermentation byKlebsiella oxytoca is 2,3-butanediol. This organism also produces acetic acid, ethanol, and acetoin. In this report, product inhibition due to 2,3-butanediol and acetic acid is considered. Although the acetate ion has little effect on growth, acetic acid is a strong inhibitor. Acetic acid inhibits growth more strongly than it inhibits respiration. The neutral product 2,3-butanediol is not a strong inhibitor; its effect on growth is no more than is expected by the decrease in water activity it causes. The effect of 2,3-butanediol on respiration can also be explained by a decreased water activity. It appears that it is possible to accumulate as much as 130 g/L butanediol while as little as 0.45 g/L acetic acid completely inhibits growth.  相似文献   

18.
The respiratory quotient (RQ) was found to be a suitable control parameter for optimum oxygen supply for the production of 2,3-butanediol + acetoin under microaerobic conditions. In laboratory scale continuous cultures optimum production of 2,3-butanediol + acetoin was obtained at an RQ value between 4.0 to 4.5. This agreed well with optimum RQ value (4.0) stoichiometrically derived from the bioreactions involved. In fed-batch cultures product concentrations as high as 102.9 g/L (96.0 g/L butanediol + 6.9 g/L acetoin) can be achieved within 32 h cultivation with an RQ control algorithm for oxygen supply. Under similar conditions only 85.7 g/L product (77.6 g/L butanediol + 8.1 g/L acetoin) was obtained with control of constant oxygen supply rate throughout the cultivation.In pilot scale batch cultures under identical oxygen supply rate the achievable RQ value was found to be strongly influenced by the reactor type and scale. The initial oxygen supply rate influenced the achievable RQ as well. However, in all the reactors studied the specific product formation rate of cells in the exponential growth phase was only a function of RQ. The same optimum RQ value as found in continuous cultures was obtained. It was thus concluded that RQ can be used as a control parameter for optimum production of 2,3-butanediol + acetoin in both laboratory and pilot plant scale reactors. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
Summary Carbon dioxide can be used as the fluid continuous phase for the fermentation of 10 to 40 % aqueous solutions of glucose into ethanol with Saccharomyces cerevisiae using a closed circuit consisting of a fluidized bed of small solid yeast particles, a cooled condenser for the sampling of water and ethanol and a blower. At 18°C, a fermentation of 12 moles glucose per min per g dry weight of yeast was achieved.  相似文献   

20.
We investigated the production of 2,3-butanediol by two enterobacteria isolated from an environmental consortium, Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1, in a bioprocess using acid and enzymatic hydrolysates of soybean hull as substrates. Cultivations were carried out in orbital shaker under microaerophilic conditions, at 30°C and 37°C, for both bacteria. Both hydrolysates presented high osmotic pressures, around 2,000 mOsm/kg, with varying concentrations of glucose, xylose, and arabinose. Both bacteria were able to grow in the hydrolysates, at both temperatures, and they efficiently converted sugars into 2,3-butanediol, showing yields varying from 0.25 to 0.51 g/g of sugars and maximum 2,3-butanediol concentrations varying from 6.4 to 21.9 g/L. Other metabolic products were also obtained in lower amounts, notably ethanol, which peaked at 3.6 g/L in cultures using the enzymatic hydrolysate at 30°C. These results suggest the potential use of these recently isolated bacteria to convert lignocellulosic biomass hydrolysates into value-added products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号