首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metal removal capacity of cultures of two capsulated, exopolysaccharide-producing cyanobacteria, Cyanospira capsulata and Nostoc PCC7936, were tested using copper (II) as the model metal. C. capsulata cultures removed the greatest amount of copper, with a maximum per unit of biomass (q max) of 115.0±5.1 mg copper g−1 of protein, compared with 85.0±3.2 removed with Nostoc PCC7936 cultures. Water solutions of pure polysaccharides (RPSs) released into the culture medium by C. capsulata and Nostoc PCC7936 achieved q max values of 20.2±0.8 mg g−1 copper per polysaccharide dry weight with C. capsulata RPS and 11.0±1.5 mg g−1 with Nostoc PCC7936 RPS. Cultures of the two cyanobacteria also removed Zn (II) and Ni (II), in both single-metal systems and in multimetal systems with Cu; in the various single-metal systems more copper was removed than Zn or Ni, while in the multimetal systems a smaller amount of each individual metal was removed but the overall amount of all metal ions sorbed or the amount of copper sorbed in the copper-only system was almost the same with C. capsulata, and slightly higher with Nostoc PCC7936.  相似文献   

2.
Seven exopolysaccharide-producing cyanobacteria were tested with regard to their capability to remove Cr(VI) from the wastewater of a plating industry. The cyanobacterium which showed, under lab conditions, the most promising features with regard to both Cr(VI) removal (about 12 mg of Cr(VI) removed per gram of dry biomass) and growth characteristics (highest growth rate and simplest culture medium) was Nostoc PCC7936. Furthermore, in lab experiments, it was also found that a HCl pretreatment is essential to abate the concentration of Cr(VI) in solution and that the viability of the biomass is not necessary. Subsequently, three pilot devices were tested, one batch (a dialysis cell) and two flow-through systems (a filter press and a column filled with quartz grain). The best performances were obtained with the filter press, where it was observed a sharp decrease in the concentration of Cr(VI), partly due to the adsorption of the metal by the biomass (about 50%) and partly due to its reduction to Cr(III). The results are discussed in terms of the role played by the different components (biomass and polysaccharide) of the cyanobacterial cultures in the removal of Cr(VI).  相似文献   

3.
DNA was prepared from cyanobacteria freshly isolated from coralloid roots of natural populations of five cycad species: Ceratozamia mexicana mexicana (Mexico), C. mexicana robusta (Mexico), Dioon spinulosum (Mexico), Zamia furfuraceae (Mexico) and Z. skinneri (Costa Rica). Using the Southern blot technique and cloned Anabaena PCC 7120 nifK and glnA genes as probes, restriction fragment length polymorphisms of these cyanobacterial symbionts were compared. The five cyanobacterial preparations showed differences in the sizes of their DNA fragments hybridizing with both probes, indicating that different cyanobacterial species and/or strains were in the symbiotic associations. On the other hand, a similar comparison of cyanobacteria freshly collected from a single Encephalartos altensteinii coralloid root and from three independently subcultured isolates from the same coralloid root revealed that these were likely to be one and the same organism. Moreover, the complexity of restriction patterns shows that a mixture of Nostoc strains can associate with a single cycad species although a single cyanobacterial strain can predominate in the root of a single cycad plant. Thus, a wide range of Nostoc strains appear to associate with the coralloid roots of cycads.Non-standard abbreviations bp base pairs - kbp kilobase pairs - RFLP's restriction fragment length polymorphisms  相似文献   

4.
The influence of HCl pretreatment (0.1 mM) on sorption ofCu2+ and Ni2+ by Chlorella vulgariswas tested using single and binary metal solutions. The optimal initial pH forsorption was 3.5 for Cu2+ and 5.5 for Ni2+. Second orderrate kinetics described well sorption by untreated and acid-pretreated cells.The kinetic constant qe (metal sorption at equilibrium) for sorptionof test metals from single and binary metal solutions was increased afterpretreatment of the biomass with HCl. The Langmuir adsorption isotherm wasdeveloped for describing the various results for metal sorption. In single metalsolution, acid pretreatment enhanced qmax for Cu2+ andNi2+ sorption by approximately 70% and 65%, respectively.Cu2+ and Ni2+ mutually interfered with sorption of theother metal in the binary system. The combined presence of Cu2+ andNi2+ led to their decreased sorption by untreated biomass by 19% and88%, respectively. However, acid-pretreated biomass decreased Cu2+and Ni2+ sorption by 15 and 22%, respectively, when both the metalswere present in the solution. The results suggest a reduced mutual interferencein sorption of Cu2+ and Ni2+ from the binary metal systemdue to the acid pretreatment. Acid-pretreated cells sorbed twice the amount ofCu2+ and ten times that of Ni2+ than the untreated biomassfrom the binary metal system. Acid pretreatment more effectively enhanced thesorption of Ni2+ form the binary metal solution. The total metalsorption by untreated and acid-pretreated biomass depended on theCu2+ : Ni2+ ratio in the binary metal system. Acidpretreatment of C. vulgaris could be an effective andinexpensive strategy for enhancing Cu2+ and Ni2+ sorptionfrom single and binary metal solutions.  相似文献   

5.
Glutamine synthetase (GS) is the primary NH4 + assimilating enzyme of cyanobacteria. The specific activities and cellular protein concentration of GS in symbiotic cyanobacteria associated with the water fern Azolla caroliniana were determined and compared to free-living cultures of Nostoc sp. strain 7801, a strain originally isolated from symbiotic association with the bryophyte Anthoceros punctatus. Both the in vitro specific activity and concentration of GS in symbiotic cyanobacteria separated from A. caroliniana were approximately 3-fold lower than the free-living Nostoc sp. strain 7801 culture. These results imply depressed synthesis of GS by the symbiont associated with A. caroliniana.  相似文献   

6.
Many species of the filamentous N2‐fixing heterocyst‐forming Cyanobacteria of the genus Nostoc produce large amounts of extracellular polymeric substances (EPS), but hitherto no general model has been proposed of the factors that control their synthesis. Previously, we demonstrated a strong correlation between the presence of a glycocalyx (or EPS capsule) and diazotrophic growth in the genus Nostoc. When grown with nitrate, nude morphotypes lacking a glycocalyx were obtained for all the capsulated strains tested. CO2 availability was pro‐posed as a key factor that controls the synthesis of the capsule. To test this hypothesis, Nostoc PCC 7936 was cultured diazotrophically (N2) or with nitrate with different CO2 supplies. By tuning the pH and the supply of CO2, capsulated or nude mor‐photypes were obtained irrespective of the source of nitrogen. Exocellular polysaccharides were synthesized only when the fixed carbon exceeded the amount of nitrogen available. The glycocalyx is not needed for the optimal functioning of nitrogenase because diazotrophic cultures grew equally well, irrespective of whether they were capsulated or nude. Capsulated cultures possessed protein to carbohydrate ratios that ranged between 1 and 1.5, whereas in nude cultures the ratio ranged between 2 and 2.5. Low protein to carbohydrate ratios were indicative for either nitrogen‐limited or carbon‐oversaturated cultures. The results demonstrate that in Nostoc EPS serve as a sink for the excess fixed carbon under unbalanced C/N metabolism.  相似文献   

7.
A phylogenetic analysis of selected symbiotic Nostoc strain sequences and available database 16S rDNA sequences of both symbiotic and free-living cyanobacteria was carried out using maximum likelihood and Bayesian inference techniques. Most of the symbiotic strains fell into well separated clades. One clade consisted of a mixture of symbiotic and free-living isolates. This clade includes Nostoc sp. strain PCC 73102, the reference strain proposed for Nostoc punctiforme. A separate symbiotic clade with isolates exclusively from Gunnera species was also obtained, suggesting that not all symbiotic Nostoc species can be assigned to N. punctiforme. Moreover, isolates from Azolla filiculoides and one from Gunnera dentata were well nested within a clade comprising most of the Anabaena sequences. This result supports the affiliation of the Azolla isolates with the genus Anabaena and shows that strains within this genus can form symbioses with additional hosts. Furthermore, these symbiotic strains produced hormogonia, thereby verifying that hormogonia formation is not absent in Anabaena and cannot be used as a criterion to distinguish it from Nostoc.The GenBank accession numbers for the cyanobacterial 16S rRNA gene sequences determined in this study are AY742447-AY742454.  相似文献   

8.
The sizes of endonuclease digestion fragments of DNA from cyanobacteria in symbiotic association with Azolla caroliniana or Anthoceros punctatus, or in free-living culture, were compared by Southern hybridization using cloned nitrogenase (nif) genes from Anabaena sp. PCC 7120 as probes. The restriction fragment pattern produced by cyanobacteria isolated from A. caroliniana by culture through symbiotic association with Anthoceros differed from that of the major symbiotic cyanobacterium freshly separated from A. caroliniana. The results indicate that minor cyanobacterial symbionts occur in association with Azolla and that the dominant symbiont was not cultured in the free-living state. Both the absence of hybridization to an xisA gene probe and the mapping of restriction fragments indicated a contiguous nifHDK organization in all cells of the symbiont in association with Azolla. On the other hand, in the cultured isolate from Azolla and in Nostoc sp. 7801, the nifD and nifK genes are nominally separated by an interval of unknown length, compatible with the interruption of the nifHDK operon by a DNA element as observed in Anabaena sp. PCC 7120. In the above cultured strains, restriction fragments consistent with a contiguous nifHDK operon were also present at varying hybridization intensities, especially in Nostoc sp. 7801 grown in association with Anthoceros, presumably due to gene rearrangement in a fraction of the cells.Non-standard abbreviations bp base pairs - kb kilobase pairs - kd kilodaltons  相似文献   

9.
Kumar D  Gaur JP 《Bioresource technology》2011,102(3):2529-2535
The pH-dependent metal sorption by Oscillatoria- and Phormidium-dominated mats was effectively expressed by the Hill function. The estimated Hill functions can fruitfully predict the amount of metal sorbed at a particular initial pH. Pretreatment of biomass with 0.1 mmol L−1 HCl was more effective than pretreatment with CaCl2, HNO3, NaOH, and SDS in enhancing metal sorption ability of the biomass. Desorption of metal ions in the presence of 100 mmol L−1 HCl from metal-loaded mat biomass was completed within 1 h. After six cycles of metal sorption/desorption, sorption decreased by 6-15%. Only 6% and 11% of the biomass derived from the Oscillatoria sp.- and Phormidium sp.-dominated mats was lost during the cycling. The cyanobacterial mats seem to have better potential than several biomass types for use in metal sorption from wastewaters as they are ubiquitous, self-immobilized, and have good reusability.  相似文献   

10.
Batch cultures of Cyanospira capsulata, a heterocystous cyanobacterium possessing a thick polysaccharidic capsule, were characterized by increasing viscosity owing to the continuous release of a soluble polysaccharide (EPS) into the culture medium. Both capsulated trichomes and solubilized EPS contributed to the flow properties of whole cultures. A typical pseudoplastic behaviour, the more marked the more aged were the cultures, was evidenced.The production of EPS was investigated under different growth conditions by changing some nutritional and physical parameters known to affect the synthesis of exopolysaccharides in algae and cyanobacteria. Among the factors tested (Ca2+, Mg2+ or PO4−4 deficiencies, salinity and pH) only Mg2+ shortage caused a significant enhancement of the EPS production. Under continuous illumination in open ponds, the EPS productivity of batch cultures on standard mineral medium was about 5·8 g m−2 day−1, whereas under Mg2+ deficiency with a consequent increase of the cultures' viscosity  相似文献   

11.
Cyanobacterial biomass obtained from water blooms was successfully utilized as a material for lactic acid production. The starch contained in the biomass could be converted to D- and L-lactic acid with 80–90% yield by Lactobacillus amylovorus, in a manner similar to that contained in laboratory-cultured cyanobacterial biomass. The starch was also available for L-lactic acid production with similar high yields by L. agilis and L. ruminis that specifically produce L-lactic acid. The lactic acid production from the cyanobacterial biomass did not require any supplements such as yeast extract which are essential for lactic acid production from reagent soluble starch, indicating that nutrients contained in the cyanobacterial biomass might be effectively used for the production instead of the supplements. The starch content of the fresh cyanobacterial biomass from water bloom was increased from 10 to 19 and 24% by cultivation in 1 and 5% CO2 in air, respectively. Using such starch-rich biomass, the concentration of lactic acid produced was successfully increased without changes in the conversion yield. These results indicate that wastewater bloom cyanobacteria could be utilized for the production of a useful compound, lactic acid.  相似文献   

12.
Since the early 1950s, more than one hundred cyanobacterial strains,belonging to twenty different genera, have been investigated with regard tothe production and the released exocellular polysaccharides (RPS) into theculture medium. The chemical and rheological properties show that suchpolysaccharides are complex anionic heteropolymers, in about 80% casescontaining six to ten different monosaccharides and in about 90% casescontaining one or more uronic acids; almost all have non-saccharidiccomponents, such as peptidic moieties, acetyl, pyruvyl and/or sulphategroups. Based on such ingredients, cyanobacterial RPSs show promise asthickening or suspending agents, emulsifying or cation-chelating compoundsand the residual capsulated cyanobacterial biomass, following RPSextraction, could be an effective cation-chelating material. Indeed, wheneleven unicellular and filamentous RPS-producing cyanobacteria, selectedon the basis of the anion density of their RPSs and on the abundance oftheir outermost investments, were screened for their ability to removeCu2+ from aqueous solutions, a quick and most effective heavy metaladsorption was observed for the unicellular Cyanothece CE 4 and thefilamentous Cyanospira capsulata. These results suggest the possibilityto accomplish, through the exploitation of RPS-producing cyanobacteria,a multiproduct strategy to procure a wide range of biopolymers suited tovarious industrial applications, in addition to the residual biomass effectivein the recovery of heavy metals from polluted waters.  相似文献   

13.
Three by-products of fermentations containing Bacillus lentus, Aspergillus oryzae or Saccharomyces cerevisiae biomass were tested for the capacity to absorb Cu, Cd and Zn. The composition of the three biomasses was first determined and showed high contents of ashes in both B. lentus and A. oryzae biomass and high amounts of lipids in the bacterial biomass. Metal ion binding experiments were performed by contact of 0.1 g of biomass (protonated for all the metal tests and not protonated only for the Cd test) with 50 ml of solutions containing each of the metals in the concentration range from 10 to 500 mg/ml, at pH 4.5, 3.5 and 2.5. The final metal ion concentrations were determined using a plasma absorption spectrometer, and the metal removal levels for isotherm plots were determined using the Langmuir model. The results showed that B. lentus protonated biomass had the best sorption capacity for Cu and Cd, followed by protonated A. oryzae and S. cerevisiae biomass. The sorption of Zn was low for all tested biomasses, as also was the binding of all metals at acidic pH (2.5 and 3.5). A significant increase in Cd sorption was obtained using non-protonated biomass from B. lentus and A. oryzae.  相似文献   

14.
Miao X  Wu Q  Wu G  Zhao N 《Biotechnology letters》2003,25(5):391-396
The agp gene encoding ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis. By in vitro DNA recombination technology, agp deletion mutant (agp ) of cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutation led to a complete absence of glycogen biosynthesis. As compared with WT (wild type), a 60% decrease in ratio of the c-phycocyanine/chlorophyll a and no significant change in the carotenoid/chlorophyll a were observed in agp cells. The agp mutant had 38% less photosynthetic capacity when grown in light over 600 mol m–2 s–1. Under lower light intensity, the final biomass of the mutant strain was only 1.1 times of that of the WT strain under mixotrophic condition after 6 d culture. Under higher light intensity, however, the final biomass of the WT strain under mixotrophic conditions was 3 times that of the mutant strain after 6 d culture and 1.5 times under photoautotrophic conditions. The results indicate that there is a minimum requirement for glycogen synthesis for normal growth and development in cyanobacteria.  相似文献   

15.
We describe a strategy to establish cyanobacterial strains with high levels of H2 production that involves the identification of promising wild-type strains followed by optimization of the selected strains using genetic engineering. Nostoc sp. PCC 7422 was chosen from 12 other heterocystous strains, because it has the highest nitrogenase activity. We sequenced the uptake hydrogenase (Hup) gene cluster as well as the bidirectional hydrogenase gene cluster from the strain, and constructed a mutant (ΔhupL) by insertional disruption of the hupL gene. The ΔhupL mutant produced H2 at 100 μmoles mg chlorophyll a -1 h-1, a rate three times that of the wild-type. The ΔhupL cells could accumulate H2 to about 29% (v/v) accompanied by O2 evolution in 6 days, under a starting gas phase of Ar + 5% CO2. The presence of 20% O2 in the initial gas phase inhibited H2 accumulation of the ΔhupL cells by less than 20% until day 7.  相似文献   

16.
The ability of an Oscillatoria sp.–dominated cyanobacterial mat in sorbing methylene blue (MB), a cationic dye, was investigated using the batch contact method. The sorption of MB onto the powdered biomass was not significantly influenced by initial pH (2–10) and temperature (5–45°C) of the solution. MB sorption occurred slowly, requiring 1–8 h for the establishment of equilibrium. A slow attainment of equilibrium seems to be related with the large size of MB ions. The isotherm data of MB sorption by the mat biomass could effectively fit to Langmuir and Freundlich models. The maximum MB sorption capacity (q max) of the test biomass was 78.43 mg g?1, which changed little with variation in biomass concentration. Moreover, the test biomass could efficiently sorb MB from solution in presence of Na+, K+, and Ca2+, which usually occur at high concentrations in natural waters, and also in presence of Cd2+. These particular characteristics together with pH and temperature independence of the sorption process make the mat biomass an ideal MB sorbent.  相似文献   

17.
Summary The ability of Pseudomonas aeruginosa to accumulate Cd(II) ions from wastewater industries was experimentally investigated and mathematically modelled. From the potentiometric titration and non-ideal competitive analysis (NICA) model, it was found that the biomass contains three acidic sites. The values of proton binding (pK i =1.66±3.26×10−3, 1.92±1.63×10−4 and 2.16±3.79×10−4) and binding constant of cadmium metal ions (pK M1=1.99±2.45×10−3 and pK M2=1.67±4.08×10−3) on the whole surface of biomass showed that protonated functional groups and biosorption of Cd(II) ions could be attributed to a monodentate binding to one acidic site, mainly the carboxylic group. From the isothermal sorption experimental data and Langmuir model, it was also found that the value of Langmuir equilibrium (pK f) constant is 2.04±2.1×10−5 suggesting that the carboxyl group is the main active binding site. In addition, results showed that the maximum cadmium capacity (q max) and affinity of biomass towards cadmium metal ions (b) at pH 5.1 and 20 min were 96.5±0.06 mg/g and 3.40×10−3± 2.10×10−3, respectively. Finally, interfering metal ions such as Pb(II), Cu(II), Cr(III), Zn(II), Fe(II), Mn(II), Ca(II) and Mg(II) inhibited Cd(II) uptake. Comparing the biosorption of Cd(II) by various Pseudomonas isolates from contaminated environment samples (soil and sewage treatment plant) showed that maximum capacities and equilibrium times were different, indicating that there was a discrepancy in the chemical composition between biomasses of different strains.  相似文献   

18.
The present work deals with the biosorption performance of raw and chemically modified biomass of the brown seaweed Lobophora variegata for removal of Cd(II) and Pb(II) from aqueous solution. The biosorption capacity was significantly altered by pH of the solution delineating that the higher the pH, the higher the Cd(II) and Pb(II) removal. Kinetic and isotherm experiments were carried out at the optimal pH 5.0. The metal removal rates were conspicuously rapid wherein 90% of the total sorption occurred within 90 min. Biomass treated with CaCl2 demonstrated the highest potential for the sorption of the metal ions with the maximum uptake capacities i.e. 1.71 and 1.79 mmol g−1 for Cd(II) and Pb(II), respectively. Kinetic data were satisfactorily manifested by a pseudo-second order chemical sorption process. The process mechanism consisting of both surface adsorption and pore diffusion was found to be complex. The sorption data have been analyzed and fitted to sorption isotherm of the Freundlich, Langmuir, and Redlich–Peterson models. The regression coefficient for both Langmuir and Redlich–Peterson isotherms were higher than those secured for Freundlich isotherm implying that the biosorption system is possibly monolayer coverage of the L. variegata surface by the cadmium and lead ions. FT-IR studies revealed that Cd(II) and Pb(II) binding to L. variegata occurred primarily through biomass carboxyl groups accompanied by momentous interactions of the biomass amino and amide groups. In this study, we have observed that Lvariegata had maximum biosorption capacity for Cd(II) and Pb(II) reported so far for any marine algae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Cyanobacteria are widespread photosynthetic microorganisms among which some are able to fix atmospheric nitrogen. We investigated the impact of indigenous cyanobacteria strains (Nostoc) inoculation on physical characteristics of poorly aggregated soils from Guquka (Eastern Cape, South Africa). The soil aggregates (3–5 mm) were arranged into a layer of 10–20 mm thick, and sprayed with cyanobacteria solution. Subsequently the inoculated and un-inoculated samples were incubated (30°C, 80% humidity, continuous illumination at 100 μmol m−2 s−1). Their micromorphological characteristics and aggregate stability were investigated, after 1, 2, 3, 4 and 6 weeks of incubation, by using high resolution Cryo-SEM and aggregate breakdown tests. Micromorphological investigations revealed that the surface of un-inoculated samples remained uncovered, while the inoculated samples were partially covered by cyanobacteria material after one week of incubation. A dense superficial network of cyanobacterial filaments and extracellular polymer secretions (EPS) covered their surface after 4 and 6 weeks of incubation. Organo-mineral aggregates comprising cyanobacterial filaments and EPS were observed after 6 weeks of incubation. The results of aggregate breakdown tests showed no significant difference between un-inoculated samples after 1, 2, 3, 4 or 6 weeks, while they revealed improvement of aggregate stability for inoculated samples. The improvement of aggregate stability appeared in a short while following inoculation and increased gradually with time and cyanobacteria growth. The increase in aggregate stability is likely related to the changes induced in micromorphological characteristics by cyanobacterial filaments and EPS. It reflects the effect of coating, enmeshment, binding and gluing of aggregates and isolated mineral particles by cyanobacteria material. Our study presents new data demonstrating the improvement of soil physical quality in a few weeks after cyanobacteria inoculation. The interaction of the inocula and other biotic components is worthy of study before field application of cyanobacteria.  相似文献   

20.
Colonies of sixty-five filamentous cyanobacteria were screened for the production of temperate phages and/or antibiotics on solid medium. None of them was observed to release phages. However, seven N2-fixing strains were found to produce antibiotics very active against other cyanobacteria. The antibiotic produced by Nostoc sp. 78-11 A-E represents a bacteriocin of low molecular weight. Nostoc sp. ATCC 29132 appears to secrete, together with an antibiotic, a protein that inhibits its action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号