首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gilchrist GW  Lee CE 《Genetica》2007,129(2):127-132
Introduced and invasive species are major threats native species and communities and, quite naturally, most scientists and managers think of them in terms of ecological problems. However, species introductions are also experiments in evolution, both for the alien species and for the community that they colonize. We focus here on the introduced species because these offer opportunities to study the properties that allow a species to succeed in a novel habitat and the constraints that limit range expansion. Moreover, an increasing body of evidence from diverse taxa suggests that the introduced species often undergo rapid and observable evolutionary change in their new habitat. Evolution requires genetic variation, which may be decreased or expanded during an invasion, and an evolutionary mechanism such as genetic drift or natural selection. In this volume, we seek to understand how natural selection produces adaptive evolution during invasions. Key questions include what is the role of biotic and abiotic stress in driving adaptation, and what is the source of genetic variation in introduced populations.  相似文献   

2.
Although ecological differences between native and introduced ranges have been considered to drive rapid expansion of invasive species, recent studies suggest that rapid evolutionary responses of invasive species to local environments may also be common. Such expansion across heterogeneous environments by adaptation to local habitats requires genetic variation. In this study, we investigated the source and role of standing variation in successful invasion of heterogeneous abiotic environments in a self-incompatible species, Lotus corniculatus. We compared phenotypic and genetic variation among cultivars, natives, and introduced genotypes, and found substantial genetic variation within both native and introduced populations. Introduced populations possessed genotypes derived from both cultivars and native populations, and had lower population differentiation, indicating multiple sources of introduction and population admixture among the sources in the introduced range. Both cultivars and introduced populations had similarly outperforming phenotypes on average, with increased biomass and earlier flowering compared with native populations, but those phenotypes were within the range of the variation in phenotypes of the native populations. In addition, clinal variation within introduced populations was detected along a climatic gradient. Multiple introductions from different sources, including cultivars, may have contributed to pre-adaptive standing variation in the current introduced populations. We conclude that both introduction of cultivar genotypes and natural selection in local environments contributed to current patterns of genetic and phenotypic variation observed in the introduced populations.  相似文献   

3.
Evolutionary biologists have been puzzled by the success of introduced species: despite founder effects that reduce genetic variability, invasive species are still successful at colonizing new environments. It is possible that the evolutionary processes during the post-colonization period may increase the genetic diversity and gene flow among invasive populations over time, facilitating their long-term success. Therefore, genetic diversity and population structure would be expected to show greater temporal variation for successful introduced populations than for native populations. We studied the population genetics of the walnut husk fly, Rhagoletis completa, which was introduced into California from the Midwestern US in the early 1900s. We used microsatellites and allozymes to genotype current and historic fly populations, providing a rare perspective on temporal variability in population genetic parameters. We found that introduced populations showed greater temporal fluctuations in allele frequencies than native populations. Some introduced populations also showed an increase in genetic diversity over time, indicating multiple introductions had occurred. Population genetic structure decreased in both native and introduced populations over time. Our study demonstrates that introduced species are not at equilibrium and post-colonization processes may be important in ameliorating the loss of genetic diversity associated with biological invasions.  相似文献   

4.
遗传多样性与外来物种的成功入侵: 现状和展望   总被引:3,自引:0,他引:3  
遗传多样性被认为是影响外来种入侵成功的重要因素之一。研究表明, 尽管外来种在入侵过程中可能受到奠基者效应的影响, 但是多次引种、种内或种间杂交等过程使得许多外来种在引入地的遗传多样性水平未必会显著低于原产地, 从而使得外来种可能通过快速进化来适应引入地的新生境。然而, 高水平的遗传多样性并非成功入侵的必要条件, 遗传变异的匮乏对一些外来种的入侵能力没有明显的影响, 甚至在一些生物入侵案例中, 遗传多样性的降低反而促进了入侵成功。针对遗传多样性与入侵成功之间的复杂关系, 本文在评述外来种遗传多样性的研究现状的基础上, 分析了遗传多样性对外来种的短期入侵成功和长期进化的影响机制, 从方法角度探讨了目前研究中存在的若干问题, 并对如何推进入侵生态学研究提出了一些看法。正如一些学者提出的, 入侵生态学需要与生态学其他分支整合起来, 才能加深对生物入侵及其相关的生态和进化过程的理解。  相似文献   

5.
Intentional or accidental introduction of species to new locations is predicted to result in loss of genetic variation and increase the likelihood of inbreeding, thus reducing population viability and evolutionary potential. However, multiple introductions and large founder numbers can prevent loss of genetic diversity and may therefore facilitate establishment success and range expansion. Based on a meta‐analysis of 119 introductions of 85 species of plants and animals, we here show a quantitative effect of founding history on genetic diversity in introduced populations. Both introduction of large number of individuals and multiple introduction events significantly contribute to maintaining or even increasing genetic diversity in introduced populations. The most consistent loss of genetic diversity is seen in insects and mammals, whereas introduced plant populations tend to have higher genetic variation than native populations. However, loss or gain of genetic diversity does not explain variation in the extent to which plant or animal populations become invasive outside of their native range. These results provide strong support for predictions from population genetics theory with respect to patterns of genetic diversity in introduced populations, but suggest that invasiveness is not limited by genetic bottlenecks.  相似文献   

6.
In this article we summarize estimates of genetic variation based on allozymes for 30 non-social spider species. Overall, these species show moderate levels of genetic variability (mean Ho = 6.8%) compared to other invertebrate species surveyed for allozymes, although a number of spiders possess only minimal variation. Fossorial spiders, especially those which are coastal dune dwellers, typically display less variation than other non-social arachnids. In general, differences in heterozygosity estimates between groups of non-social spiders in this article are not confounded by the varying mix of proteins that have been assayed by individual investigators. There is a significant positive relationship between genetic variability and gene flow (Nm), indicating that non-social spider populations which exhibit reduced variability are likely to be genetically isolated. Population bottlenecks, directional selection and environmental homogeneity have all been cited to account for reduced variability in particular non-social spiders. In addition, an analysis using the genus Lutica suggests that low genetic variation may be accompanied by decreased population fitness. Since the potential for evolutionary change is dependent on the existence of genetic variability, our findings indicate that a number of non-social spiders may be at risk in terms of long-term population viability. This conclusion should be verified/extended via a combination of more genetic surveys; genetic and ecological monitoring of populations and their fitnesses in the wild; and experimental studies of the mechanisms underlying fitness differences.  相似文献   

7.
8.
Identifying sources of genetic variation and reconstructing invasion routes for non‐native introduced species is central to understanding the circumstances under which they may evolve increased invasiveness. In this study, we used genome‐wide single nucleotide polymorphisms to study the colonization history of Centaurea solstitialis in its native range in Eurasia and invasions into the Americas. We leveraged this information to pinpoint key evolutionary shifts in plant size, a focal trait associated with invasiveness in this species. Our analyses revealed clear population genomic structure of potential source populations in Eurasia, including deep differentiation of a lineage found in the southern Apennine and Balkan Peninsulas and divergence among populations in Asia, eastern Europe and western Europe. We found strongest support for an evolutionary scenario in which western European populations were derived from an ancient admixture event between populations from eastern Europe and Asia, and subsequently served as the main genetic ‘bridgehead’ for introductions to the Americas. Introductions to California appear to be from a single source region, and multiple, independent introductions of divergent genotypes likely occurred into the Pacific Northwest. Plant size has evolved significantly at three points during range expansion, including a large size increase in the lineage responsible for the aggressive invasion of the California interior. These results reveal a long history of colonization, admixture and trait evolution in C. solstitialis, and suggest routes for improving evidence‐based management decisions for one of the most ecologically and economically damaging invasive species in the western United States.  相似文献   

9.
In classical evolutionary theory, genetic variation provides the source of heritable phenotypic variation on which natural selection acts. Against this classical view, several theories have emphasized that developmental variability and learning enhance nonheritable phenotypic variation, which in turn can accelerate evolutionary response. In this paper, I show how developmental variability alters evolutionary dynamics by smoothing the landscape that relates genotype to fitness. In a fitness landscape with multiple peaks and valleys, developmental variability can smooth the landscape to provide a directly increasing path of fitness to the highest peak. Developmental variability also allows initial survival of a genotype in response to novel or extreme environmental challenge, providing an opportunity for subsequent adaptation. This initial survival advantage arises from the way in which developmental variability smooths and broadens the fitness landscape. Ultimately, the synergism between developmental processes and genetic variation sets evolutionary rate.  相似文献   

10.
Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations.  相似文献   

11.
Invasive species offer excellent model systems for studying rapid evolutionary change. In this context, molecular markers play an important role because they provide information about pathways of introduction, the amount of genetic variation introduced, and the extent to which founder effects and inbreeding after population bottlenecks may have contributed to evolutionary change. Here, we studied microsatellite variation in eight polymorphic loci among and within 27 native and 26 introduced populations of garlic mustard (Alliaria petiolata), a European herb which is a current serious invader in North American deciduous forests. Overall, introduced populations were genetically less diverse. However, considerable variability was present and when compared to the probable source regions, no bottleneck was evident. Observed heterozygosity was very low and resulted in high inbreeding coefficients, which did not differ significantly between native and introduced populations. Thus, selfing seems to be equally dominant in both ranges. Consequently, there was strong population differentiation in the native (F(ST) = 0.704) and the introduced (F(ST) = 0.789) ranges. The high allelic diversity in the introduced range strongly suggests multiple introductions of Alliaria petiolata to North America. Out of six European regions, the British Isles, northern Europe, and central Europe had significantly higher proportions of alleles, which are common to the introduced range, and are therefore the most probable source regions. The genetic diversity established by multiple introductions, and the lack of inbreeding depression in this highly selfing species, may have contributed to the invasion success of Alliaria petiolata.  相似文献   

12.

Background  

Introductions of non-native species can significantly alter the selective environment for populations of native species, which can respond through phenotypic plasticity or genetic adaptation. We examined phenotypic and genetic responses of Daphnia populations to recent introductions of non-native fish to assess the relative roles of phenotypic plasticity versus genetic change in causing the observed patterns. The Daphnia community in alpine lakes throughout the Sierra Nevada of California (USA) is ideally suited for investigation of rapid adaptive evolution because there are multiple lakes with and without introduced fish predators. We conducted common-garden experiments involving presence or absence of chemical cues produced by fish and measured morphological and life-history traits in Daphnia melanica populations collected from lakes with contrasting fish stocking histories. The experiment allowed us to assess the degree of population differentiation due to fish predation and examine the contribution of adaptive plasticity in the response to predator introduction.  相似文献   

13.
The Common Wall Lizard (Podarcis muralis) has established more than 150 non-native populations in Central Europe, stemming from eight geographically distinct evolutionary lineages. While the majority of these introduced populations are found outside the native range, some of these populations also exist at the northern range margin in southwestern Germany. To (i) infer the level of hybridization in contact zones of alien and native lineages; and (ii) compare the genetic diversity among purebred introduced, native and hybrid populations, we used a combination of maternally inherited markers (mtDNA: cytb) and Mendelian markers (microsatellites). Our results suggest a rapid genetic assimilation of native populations by strong introgression from introduced lineages. Discordant patterns of mtDNA and nDNA variation within hybrid populations may be explained by directed mate choice of females towards males of alien lineages. In contrast to previous studies, we found a nonlinear relationship between genetic diversity and admixture level. The genetic diversity of hybrid populations was substantially higher than in introduced and native populations belonging to a single lineage, but rapidly reaching a plateau of high genetic diversity at an admixture level of two. However, even introduced populations with low founder sizes and from one source population retained moderate levels of genetic diversity and no evidence for a genetic bottleneck was found. The extent of introgression and the dominance of alien haplotypes in mixed populations indicate that introductions of non-native lineages represent a serious threat to the genetic integrity of native populations due to the rapid creation of hybrid swarms.  相似文献   

14.
The adaptation of organisms to their environment has been a subject of study for a long time. One method to study adaptations in populations involves comparing contemporary populations of the same species under different selective regimes, in what is known as a ??local adaptation?? study. A previous study of the cyclically parthenogenetic rotifer Brachionus plicatilis found high heritabilities for some life-history traits. Some of these life-history traits significantly differed among six populations from Eastern Spain and data suggested some traits to have higher evolutionary rates than neutral genetic markers. Here, by studying the same B. plicatilis populations, we examine the variation and possible local adaptation of their main life-history traits, closely related to fitness, in relation to habitat salinity and temperature. These environmental factors have been shown to play a key role in the ecological differentiation among co-generic species of B. plicatilis. The results obtained in this study show that: (1) the seasonality of rotifer populations from Eastern Spain has profoundly influenced sexual reproduction strategies; (2) salinity is probably a key factor in the ecological specialization of some populations; and (3) rotifer populations harbour high variability in their fitness components.  相似文献   

15.
Species introductions provide a rare opportunity to study rapid evolutionary and genetic processes in natural systems, often under novel environmental pressures. Few empirical studies have been able to characterize genetic founder effects associated with demographic bottlenecks at the earliest stages of species introductions. This study utilizes prior mitochondrial DNA information which identifies the putative source population for a recently established ( c . 7 years between import and sampling) species introduction. We investigated the evidence for a founder effect in a highly successful introduction of a Puerto Rican Anolis species that has established itself on Dominica to the localized exclusion of the native, endemic anole. Five highly polymorphic microsatellite loci were used to explore the partitioning of genetic diversity within and between native source, native nonsource, and introduced populations of Anolis cristatellus . Group comparisons reveal significantly lower allelic richness and expected heterozygosity in introduced populations compared to native populations; however, tests for heterozygosity excess relative to allelic richness failed to provide consistent evidence for a founder effect within introduced populations. Significant levels of within-population genetic variation were present in both native and introduced populations. We suggest that aspects of the reproductive ecology of Anolis (high fecundity, sperm storage and multiple paternity) offer an important mechanism by which genetic variation may be maintained following demographic bottlenecks and founder events in some squamate taxa.  相似文献   

16.
Most founding events entail a reduction in population size, which in turn leads to genetic drift effects that can deplete alleles. Besides reducing neutral genetic variability, founder effects can in principle shift additive genetic variance for phenotypes that underlie fitness. This could then lead to different rates of adaptation among populations that have undergone a population size bottleneck as well as an environmental change, even when these populations have a common evolutionary history. Thus, theory suggests that there should be an association between observable genetic variability for both neutral markers and phenotypes related to fitness. Here, we test this scenario by monitoring the early evolutionary dynamics of six laboratory foundations derived from founders taken from the same source natural population of Drosophila subobscura. Each foundation was in turn three‐fold replicated. During their first few generations, these six foundations showed an abrupt increase in their genetic differentiation, within and between foundations. The eighteen populations that were monitored also differed in their patterns of phenotypic adaptation according to their immediately ancestral founding sample. Differences in early genetic variability and in effective population size were found to predict differences in the rate of adaptation during the first 21 generations of laboratory evolution. We show that evolution in a novel environment is strongly contingent not only on the initial composition of a newly founded population but also on the stochastic changes that occur during the first generations of colonization. Such effects make laboratory populations poor guides to the evolutionary genetic properties of their ancestral wild populations.  相似文献   

17.
Native bird species show latitudinal gradients in body size across species (Bergmann's rule), but whether or not such gradients are recapitulated in the alien distributions of bird species are unknown. Here, we test for the existence of Bergmann's rule in alien bird species worldwide, and investigate the causes of the observed patterns. Published databases were used to obtain the worldwide distributions of established alien bird populations, the locations of alien bird introductions, and bird body masses. Randomisation tests and linear models were used to assess latitudinal patterns in the body masses of introduced and established alien bird populations. Established alien bird species exhibit Bergmann's rule, but this is largely explained by where alien bird species have been introduced: latitudinal variation in the body masses of established alien bird species simply reflects latitudinal variation in the body masses of introduced species. There is some evidence that body mass is implicated in whether or not established species’ alien ranges spread towards or contract away from the Equator following establishment. However, most alien bird ranges are encompassed by the latitudinal band(s) to which the species was introduced. Bergmann's rule in alien birds is therefore a consequence of where humans have introduced different species, rather than of natural processes operating after population introduction.  相似文献   

18.
Colonisation is a fundamental ecological and evolutionary process that drives the distribution and abundance of organisms. The initial ability of colonists to establish is determined largely by the number of founders and their genetic background. We explore the importance of these demographic and genetic properties for longer term persistence and adaptation of populations colonising a novel habitat using experimental populations of Tribolium castaneum. We introduced individuals from three genetic backgrounds (inbred – outbred) into a novel environment at three founding sizes (2–32), and tracked populations for seven generations. Inbreeding had negative effects, whereas outbreeding generally had positive effects on establishment, population growth and long‐term persistence. Severe bottlenecks due to small founding sizes reduced genetic variation and fitness but did not prevent adaptation if the founders originated from genetically diverse populations. Thus, we find important and largely independent roles for both demographic and genetic processes in driving colonisation success.  相似文献   

19.
Quantitative genetically based traits in dominant and keystone tree species can have extended effects on other biota and also on ecosystem processes. This has direct implications for managed plant systems, where choice of genetic stock in conservation or commercial plantings will affect the ecological and evolutionary trajectory of the associated biotic communities. Hence an understanding of genetic variation in quantitative traits, especially those that relate directly to fitness, should be incorporated into the management of species. In plants, quantitative traits such as foliar defences that mediate the complexity of biotic interactions (e.g. herbivory), may be key fitness traits to consider in the management of gene pools of species that are of high conservation value. In this paper we examine the interactions of an endangered eucalypt species, Eucalyptus morrisbyi and a marsupial herbivore, the common brushtail possum Trichosurus vulpecula. We investigate the genetic variability of resistance of plants sourced from two populations and genetic variability in foliage defences as key quantitative traits that may be essential for survival of this eucalypt species. Trichosurus vulpecula detect clear genetic divergence in the two E. morrisbyi populations as evidenced by their browsing preferences in the field. In addition, trees from the more susceptible population (Calverts Hill) suffered fitness consequences with lower flowering than trees from the more resistant population (Risdon Hills). Field feeding preferences were confirmed in captive feeding trials arguing differences were due to foliar attributes consistent with the genetic‐based differences observed in key chemical and physical foliage traits. Biotic interactions such as herbivory may affect populations of rare plant species. Results of this study highlight the need to understand the degree of genetic differentiation of resistance to herbivores and in the quantitative traits mediating these interactions in species of high conservation value, as these traits affect the adaptive potential of populations.  相似文献   

20.
Multiple introductions can play a prominent role in explaining the success of biological invasions. One often cited mechanism is that multiple introductions of invasive species prevent genetic bottlenecks by parallel introductions of several distinct genotypes that, in turn, provide heritable variation necessary for local adaptation. Here, we show that the invasion of Aegilops triuncialis into California, USA, involved multiple introductions that may have facilitated invasion into serpentine habitats. Using microsatellite markers, we compared the polymorphism and genetic structure of populations of Ae. triuncialis invading serpentine soils in California to that of accessions from its native range. In a glasshouse study, we also compared phenotypic variation in phenological and fitness traits between invasive and native populations grown on loam soil and under serpentine edaphic conditions. Molecular analysis of invasive populations revealed that Californian populations cluster into three independent introductions (i.e. invasive lineages). Our glasshouse common garden experiment found that all Californian populations exhibited higher fitness under serpentine conditions. However, the three invasive lineages appear to represent independent pathways of adaptation to serpentine soil. Our results suggest that the rapid invasion of serpentine habitats in California may have been facilitated by the existence of colonizing Eurasian genotypes pre‐adapted to serpentine soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号