首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the role of tissue oxygenation as one of the control factors regulating tissue respiration, 31P-nuclear magnetic resonance spectroscopy (31P-NMR) was used to estimate muscle metabolites in isolated working muscle during varied tissue oxygenation conditions. O2 delivery (muscle blood flow x arterial O2 content) was varied to isolated in situ working dog gastrocnemius (n = 6) by decreases in arterial PO2 (hypoxemia; H) and by decreases in muscle blood flow (ischemia; I). O2 uptake (VO2) was measured at rest and during work at two or three stimulation intensities (isometric twitch contractions at 3, 5, and occasionally 7 Hz) during three separate conditions: normal O2 delivery (C) and reduced O2 delivery during H and I, with blood flow controlled by pump perfusion. Biochemical metabolites were measured during the last 2 min of each 3-min work period by use of 31P-NMR, and arterial and venous blood samples were drawn and muscle blood flow measured during the last 30 s of each work period. Muscle [ATP] did not fall below resting values at any work intensity, even during O2-limited highly fatiguing work, and was never different among the three conditions. Muscle O2 delivery and VO2 were significantly less (P < 0.05) at the highest work intensities for both I and H than for C but were not different between H and I. As VO2 increased with stimulation intensity, a larger change in any of the proposed regulators of tissue respiration (ADP, P(i), ATP/ADP.P(i), and phosphocreatine) was required during H and I than during C to elicit a given VO2, but requirements were similar for H and I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The precise role of the sympathetic nervous system in the regulation of skeletal muscle blood flow during exercise has been challenging to define in humans, partly because of the limited techniques available for measuring blood flow in active muscle. Recent studies using near-infrared (NIR) spectroscopy to measure changes in tissue oxygenation have provided an alternative method to evaluate vasomotor responses in exercising muscle, but this approach has not been fully validated. In this study, we tested the hypothesis that sympathetic activation would evoke parallel changes in tissue oxygenation and blood flow in resting and exercising muscle. We simultaneously measured tissue oxygenation with NIR spectroscopy and blood flow with Doppler ultrasound in skeletal muscle of conscious humans (n = 13) and anesthetized rats (n = 9). In resting forearm of humans, reflex activation of sympathetic nerves with the use of lower body negative pressure produced graded decreases in tissue oxygenation and blood flow that were highly correlated (r = 0.80, P < 0.0001). Similarly, in resting hindlimb of rats, electrical stimulation of sympathetic nerves produced graded decreases in tissue oxygenation and blood flow velocity that were highly correlated (r = 0.93, P < 0.0001). During rhythmic muscle contraction, the decreases in tissue oxygenation and blood flow evoked by sympathetic activation were significantly attenuated (P < 0.05 vs. rest) but remained highly correlated in both humans (r = 0.80, P < 0.006) and rats (r = 0.92, P < 0.0001). These data indicate that, during steady-state metabolic conditions, changes in tissue oxygenation can be used to reliably assess sympathetic vasoconstriction in both resting and exercising skeletal muscle.  相似文献   

3.
A number of medical applications of near-infrared spectroscopy are growing closer to clinical acceptance, and new techniques involving both spectroscopy and imaging are evolving rapidly. In vivo spectroscopy and, more recently, imaging techniques are largely based upon optical electronic transitions involving the metal centers of hemoglobin (blood), myoglobin (muscle) and cytochrome aa3 (mitochondria). The wide variety of near-IR based applications includes heart and stroke research, monitoring cerebral oxygenation of premature babies, and 'functional activation' (response of brain to mental tasks). All of these applications are founded upon changes in hemoglobin O2 saturation; these changes are monitored by following trends in the near-infrared absorptions of deoxyhemoglobin (760 nm) and oxyhemoglobin (920 nm). The same absorptions provide a basis for imaging regional variations in blood oxygenation. This report presents and discusses examples, both from the literature and from our recent work, of near-infrared spectroscopy and imaging in medical applications.  相似文献   

4.
We tested the hypothesis that contracting skeletal muscle can rapidly restore force development during reperfusion after brief total ischemia and that this rapid recovery depends on O(2) availability and not an alternate factor related to blood flow. Isolated canine gastrocnemius muscle (n = 5) was stimulated to contract tetanically (isometric contraction elicited by 8 V, 0.2-ms duration, 200-ms trains, at 50-Hz stimulation) every 2 s until steady-state conditions of muscle blood flow (controlled by pump perfusion) and developed force were attained (3 min). While maintaining the same stimulation pattern, muscle blood flow was then reduced to zero (complete ischemia) for 2 min. Normal blood flow was then restored to the contracting muscle; however, two distinct conditions of oxygenation (at the same blood flow) were sequentially imposed: deoxygenated blood (30 s), blood with normal arterial O(2) content (30 s), a return to deoxygenated blood (30 s), and finally a return to normal arterial O(2) content (90 s). During the ischemic period, force development fell to 39 +/- 6 (SE)% of normal (from 460 +/- 40 to 170 +/- 20 N/100 g). When muscle blood flow was restored to normal by perfusion with deoxygenated blood, developed force continued to decline to 140 +/- 20 N/100 g. Muscle force rapidly recovered to 310 +/- 30 N/100 g (P < 0.05) during the 30 s in which the contracting muscle was perfused with oxygenated blood and then fell again to 180 +/- 30 N/100 g when perfused with blood with low PO(2). These findings demonstrate that contracting skeletal muscle has the capacity for rapid recovery of force development during reperfusion after a short period of complete ischemia and that this recovery depends on O(2) availability and not an alternate factor related to blood flow restoration.  相似文献   

5.
Near-infrared (NIR) spectroscopy is a noninvasive optical technique that is increasingly used to assess muscle oxygenation during exercise with the assumption that the contribution of skin blood flow to the NIR signal is minor or nonexistent. We tested this assumption in humans by monitoring forearm tissue oxygenation during selective cutaneous vasodilation induced by locally applied heat (n = 6) or indirect whole body heating (i.e., heating subject but not area surrounding NIR probes; n = 8). Neither perturbation has been shown to cause a measurable change in muscle blood flow or metabolism. Local heating (approximately 41 degrees C) caused large increases in the NIR-derived tissue oxygenation signal [before heating = 0.82 +/- 0.89 optical density (OD), after heating = 18.21 +/- 2.44 OD; P < 0.001]. Similarly, whole body heating (increase internal temperature 0.9 degrees C) also caused large increases in the tissue oxygenation signal (before heating = -0.31 +/- 1.47 OD, after heating = 12.48 +/- 1.82 OD; P < 0.001). These increases in the tissue oxygenation signal were closely correlated with increases in skin blood flow during both local heating (mean r = 0.95 +/- 0.02) and whole body heating (mean r = 0.89 +/- 0.04). These data suggest that the contribution of skin blood flow to NIR measurements of tissue oxygenation can be significant, potentially confounding interpretation of the NIR-derived signal during conditions where both skin and muscle blood flows are elevated concomitantly (e.g., high-intensity and/or prolonged exercise).  相似文献   

6.
Seizure-associated pulmonary edema and cerebral oxygenation in the rat   总被引:1,自引:0,他引:1  
Cerebral partial pressure of O2 (PO2), relative changes in the ratio of reduced/oxidized cytochrome aa3, blood flow, and the arteriovenous difference in O2 content were measured during seizures with and without pulmonary edema. Seizures were induced with bicuculline (0.2-1.2 mg/kg iv) in rats anesthetized with 70% N2O and paralyzed with curare. Briefer seizures were accompanied by increased cerebral PO2 and increased oxidation of cytochrome aa3. Lung water content and arterial O2 partial pressure (PaO2) remained normal. Longer duration seizures were also accompanied initially by increases in cerebral oxygenation. Within minutes, however, PaO2 fell from a mean of 118 to 51 mmHg, and lung water content increased from 76.2 to 83.6%. Cerebral PO2 fell but most often rose back to or above control levels, while cytochrome aa3 became markedly reduced. Simultaneously, cerebral blood flow increased more than 300% above preseizure values and O2 delivery increased more than O2 consumption. The reductive shift of cytochrome aa3 was greater than that produced by lowering PaO2 to equivalent values in seizure-free rats. The reductive shift of cytochrome aa3, despite increased O2 delivery, may be indicative of derangements in cerebral O2 diffusion or energy metabolism.  相似文献   

7.
Summary The oxyhemoglobin saturation (HbO2) of single red blood cells within tumor microvessels (diameter: 3–12 µm) of DS-Carcinosarcoma was studied using a cryophotometric micromethod. In untreated control tumors (mean tissue temperature approx. 35° C) the measured values scattered over the whole saturation range from zero to 100 sat.%, the mean being 51 sat.%. Upon heating at 40° C for 30 min, the oxygenation of the tumor tissue significantly improved as compared with control conditions. After 40° C-hyperthermia a mean oxyhemoglobin saturation of 66 sat.% was obtained. In contradistinction to this, after 43° C-hyperthermia the tumor oxygenation was significantly lower and reached a mean HbO2 saturation value of 47 sat.%. A further temperature rise to 45° C caused the oxygenation to drop drastically (mean oxyhemoglobin saturation value: 24 sat.%). This is due to a severe restriction of nutritive blood flow.The changes in tumor oxygenation after hyperthermia seem to be predominantly mediated through changes in tumor blood flow, including tumor microcirculation, which showed a similar temperature dependence. Metabolic effects probably play a minor role in the oxyhemoglobin saturation distribution within tumor microvessels.Supported by the Deutsche Forschungsgemeinschaft (Va 57/2-1). Presented in part at the International Symposium on Biomedical Thermology, June 30 to July 4, 1981, Strasbourg, France  相似文献   

8.
This study attempts to clarify whether intensity of exercise influences functional sympatholysis during mild rhythmic handgrip exercise (RHG). We measured muscle oxygenation in both exercising and non-exercising muscle in the same arm in 11 subjects using near infrared spectroscopy (NIRS), heart rate, and blood pressure. We used the total labile signal to assess the relative muscle oxygenation by occlusion for 6 min. Subjects performed RHG (20 times/min) for 6 min at 10%, 20%, and 30% of maximal voluntary contraction (MVC) at random. We used a non-hypotensive lower body negative pressure (LBNP) of 220 mmHg for 2 min to elicit reproducible enhancement in muscle sympathetic nerve activity (MSNA) at rest and during RHG. LBNP caused decreases of 16.4% and 17.7% of the level of muscle oxygenation at rest (pre) in exercising (forearm) and non-exercising (upper arm) muscle respectively. Muscle oxygenation in non-exercising muscle with the application of LBNP during RHG did not change significantly at each intensity. In contrast, the decrease in muscle oxygenation in exercising muscle attenuated progressively as exercise intensity increased (10% MVC 8.8+/-2.8%, 20% MVC 7.1+/-2.0%, 30% MVC 4.6+/-3.0%), when LBNP was applied during RHG. The attenuation of the decrease in muscle oxygenation due to LBNP during RHG at 10%, 20%, and 30% was significantly different from that at rest (p<0.01). These findings indicate that functional sympatholysis during mild RHG might be attributed to exercise intensity.  相似文献   

9.
To determine the change in muscle oxygenation in response to progressively increasing work rate exercise, muscle oxyhemoglobin + oxymyoglobin saturation was measured transcutaneously with near infrared spectroscopy in the vastus lateralis muscle during cycle ergometry. Studies were done in 11 subjects while gas exchange was measured breath-by-breath. As work rate was increased, tissue oxygenation initially either remained constant near resting levels or, more usually, decreased. Near the work rate and metabolic rate where significant lactic acidosis was detected by excess CO2 production (lactic acidosis threshold, LAT), muscle oxygenation decreased more steeply. As maximum oxygen uptake ( ) was approached, the rate of desaturation slowed. In 8 of the 11 subjects, tissue O2 saturation reached a minimum which was sustained for 1–3 min before was reached. The LAT correlated with both the (r = 0.95,P < 0.0001) and the work rate (r = 0.94,P < 0.0001) at which the rate of tissue O2 desaturation accelerated. These results describe a consistent pattern in the rate of decrease in muscle oxygenation, slowly decreasing over the lower work rate range, decreasing more rapidly in the work rate range of the LAT and then slowing at about 80% of , approaching or reaching a minimum saturation at .  相似文献   

10.
The present study tests the hypothesis that skin on the plantar surface of the foot absorbs oxygen (O(2)) when immersed in water that has a high dissolved O(2) content. Healthy male and female subjects (24.2 ± 1.4 years) soaked each foot in tap water (1.7 ± 0.1 mg O(2)·L(-1); 30.7 ± 0.3 °C) or O(2)-infused water (50.2 ± 1.7 mg O(2)·L(-1); 32.1 ± 0.5 °C) for up to 30 min in 50 different experiments. Transcutaneous oximetry and near infrared spectroscopy were used to evaluate changes in skin PO(2), oxygenated haemoglobin, and cytochrome oxidase aa(3) that resulted from treatment. Compared with the tap water condition, tissue oxygenation index was 3.5% ± 1.3% higher in feet treated for 30 min with O(2)-infused water. This effect persisted after treatment, as skin PO(2) was higher in feet treated with O(2)-infused water at 2 min (237 ± 9 vs. 112 ± 5 mm HG) and 15 min (131 ± 1 vs. 87 ± 4 mm HG) post-treatment. When blood flow to the foot was occluded for 5 min, feet resting in O(2)-infused water maintained a 3-fold higher O(2) consumption rate than feet treated with tap water (9.1 ± 1.4 vs. 3.0 ± 1.0 μL·100 g(-1)·min(-1)). We estimate that skin absorbs 4.5 mL of O(2)·m(-2)·min(-1) from O(2)-infused water. Thus, skin absorbs appreciable amounts of O(2) from O(2)-infused water. This finding may prove useful and assist development of treatments targeting skin diseases with ischemic origin.  相似文献   

11.
A functional evaluation of skeletal muscle oxidative metabolism during dynamic knee extension (KE) incremental exercises was carried out following a 35-day bed rest (BR) (Valdoltra 2008 BR campaign). Nine young male volunteers (age: 23.5 ± 2.2 yr; mean ± SD) were evaluated. Pulmonary gas exchange, heart rate and cardiac output (by impedance cardiography), skeletal muscle (vastus lateralis) fractional O(2) extraction, and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined during incremental KE. Values at exhaustion were considered "peak". Peak heart rate (147 ± 18 beats/min before vs. 146 ± 17 beats/min after BR) and peak cardiac output (17.8 ± 3.3 l/min before vs. 16.1 ± 1.8 l/min after BR) were unaffected by BR. As expected, brain oxygenation did not decrease during KE. Peak O(2) uptake was lower after vs. before BR, both when expressed as liters per minute (0.99 ± 0.17 vs. 1.26 ± 0.27) and when normalized per unit of quadriceps muscle mass (46.5 ± 6.4 vs. 56.9 ± 11.0 ml·min(-1)·100 g(-1)). Skeletal muscle peak fractional O(2) extraction, expressed as a percentage of the maximal values obtained during a transient limb ischemia, was lower after (46.3 ± 12.1%) vs. before BR (66.5 ± 11.2%). After elimination, by the adopted exercise protocol, of constraints related to cardiovascular O(2) delivery, a decrease in peak O(2) uptake and muscle peak capacity of fractional O(2) extraction was found after 35 days of BR. These findings suggest a substantial impairment of oxidative function at the muscle level, "downstream" with respect to bulk blood flow to the exercising muscles, that is possibly at the level of blood flow distribution/O(2) utilization inside the muscle, peripheral O(2) diffusion, and intracellular oxidative metabolism.  相似文献   

12.
13.
The effects of mild hypoxia on brain oxyhemoglobin, cytochrome a,a3 redox status, and cerebral blood volume were studied using near-infrared spectroscopy in eight healthy volunteers. Incremental hypoxia reaching 70% arterial O2 saturation was produced in normocapnia [end-tidal PCO2 (PETCO2) 36.9 +/- 2.6 to 34.9 +/- 3.4 Torr] or hypocapnia (PETCO2 32.8 +/- 0.6 to 23.7 +/- 0.6 Torr) by an 8-min rebreathing technique and regulation of inspired CO2. Normocapnic hypoxia was characterized by progressive reductions in arterial PO2 (PaO2, 89.1 +/- 3.5 to 34.1 +/- 0.1 Torr) with stable PETCO2, arterial PCO2 (PaCO2), and arterial pH and resulted in increases in heart rate (35%) systolic blood pressure (14%), and minute ventilation (5-fold). Hypocapnic hypoxia resulted in progressively decreasing PaO2 (100.2 +/- 3.6 to 28.9 +/- 0.1 Torr), with progressive reduction in PaCO2 (39.0 +/- 1.6 to 27.3 +/- 1.9 Torr), and an increase in arterial pH (7.41 +/- 0.02 to 7.53 +/- 0.03), heart rate (61%), and ventilation (3-fold). In the brain, hypoxia resulted in a steady decline of cerebral oxyhemoglobin content and a decrease in oxidized cytochrome a,a3. Significantly greater loss of oxidized cytochrome a,a3 occurred for a given decrease in oxyhemoglobin during hypocapnic hypoxia relative to normocapnic hypoxia. Total blood volume response during hypoxia also was significantly attenuated by hypocapnia, because the increase in volume was only half that of normocapnic subjects. We conclude that cytochrome a,a3 oxidation level in vivo decreases at mild levels of hypoxia. PaCO is an important determinant of brain oxygenation, because it modulates ventilatory, cardiovascular, and cerebral O2 delivery responses to hypoxia.  相似文献   

14.
Near-infrared spectrometry (NIRS) is a well-known method used to measure in vivo tissue oxygenation and hemodynamics. This method is used to derive relative measures of hemoglobin (Hb) + myoglobin (Mb) oxygenation and total Hb (tHb) accumulation from measurements of optical attenuation at discrete wavelengths. We present the design and validation of a new NIRS oxygenation analyzer for the measurement of muscle oxygenation kinetics. This design optimizes optical sensitivity and detector wavelength flexibility while minimizing component and construction costs. Using in vitro validations, we demonstrate 1) general optical linearity, 2) system stability, and 3) measurement accuracy for isolated Hb. Using in vivo validations, we demonstrate 1) expected oxygenation changes during ischemia and reactive hyperemia, 2) expected oxygenation changes during muscle exercise, 3) a close correlation between changes in oxyhemoglobin and oxymyoglobin and changes in deoxyhemoglobin and deoxymyoglobin and limb volume by venous occlusion plethysmography, and 4) a minimal contribution from movement artifact on the detected signals. We also demonstrate the ability of this system to detect abnormal patterns of tissue oxygenation in a well-characterized patient with a deficiency of skeletal muscle coenzyme Q(10). We conclude that this is a valid system design for the precise, accurate, and sensitive detection of changes in bulk skeletal muscle oxygenation, can be constructed economically, and can be used diagnostically in patients with disorders of skeletal muscle energy metabolism.  相似文献   

15.
The present study examines the influence of ischemia on the muscle fibers and capillarization in rats. Muscle ischemia was achieved by a pneumatic tourniquet at a pressure of 300 mm Hg for 2, 4 and 6 h (groups I, II and III, respectively) to the right hindlimb above the knee. Numerous regenerative fibers were seen at 4 and, especially, 8 and 12 days after ischemia in groups II and III. The quantitative data revealed a significant decrease in the size of muscle fibers (regenerative fibers) in ischemic skeletal muscle, with a concomitant increase in fiber density. The capillary to fiber ratio shows a decrease at 4, 8 and 12 days after ischemia in the three experimental groups: in group I because of a decrease in capillary density; in groups II and III because of an increase in fiber density with respect to capillary density.  相似文献   

16.
Peripheral effects of endurance training in young and old subjects   总被引:4,自引:0,他引:4  
The effects of 12 wk of endurance training at 70% peak O2 consumption (VO2) were studied in 10 elderly (65.1 +/- 2.9 yr) and 10 young (23.6 +/- 1.8 yr) healthy men and women. Training had no effect on weight or body composition in either group. The elderly had more adipose tissue and less muscle mass than the young. Initial peak VO2 was lower in the elderly, but the absolute increase of 5.5-6.0 ml.kg-1.min-1 after training was similar for both groups. Muscle biopsies taken at rest showed that, before training, muscle glycogen stores were 61% higher in the young. Before training, glycogen utilization per joule during submaximal exercise was higher in the elderly. Glycogen stores and muscle O2 consumption increased significantly in response to training in the elderly only. After training, the proportion of energy derived from whole body carbohydrate oxidation during submaximal exercise declined in the young only. The absolute changes that training produced in peak VO2 were similar in both age groups, but the 128% increase in muscle oxidative capacity was greater in the elderly, suggesting that peripheral factors play an important role in the response of the elderly to endurance exercise.  相似文献   

17.
Near infrared (IR) spectroscopy can give continuous, direct information about cerebral oxygenation in vivo by providing signals from oxygenated and deoxygenated haemoglobin and cytochrome aa3. Due to a lack of precise spectral information and uncertainties about optical path length it has previously been impossible to quantify the data. We have therefore obtained the cytochrome aa3 spectrum in vivo from the brains of rats after replacing the blood with a fluorocarbon substitute. Near infrared haemoglobin spectra were also obtained, at various oxygenation levels, from cuvette studies of lysed human red blood cells. Estimates of optical path length have been obtained. The data were used to construct an algorithm for calculating the changes in oxygenated and deoxygenated haemoglobin and oxygenated cytochrome aa3 in tissue from changes in near IR absorption.  相似文献   

18.
The electron transport system coupled to the oxidation of methylamine in Pseudomonas AM1 was investigated by reconstituting it from the highly purified components. A mixture of methylamine dehydrogenase, cytochrome cH and cytochrome c oxidase (= cytochrome aa3) actively oxidized methylamine (161 mol of O2 consumed/mol of heme a of cytochrome c oxidase X min). In this system, addition of amicyanin did not affect the oxygen consumption rate. The oxygen consumption rate of the cell-free extract prepared from the cells cultivated in a copper-deficient medium was directly proportional to the amount of amicyanin added, and extrapolation to zero copper concentration gave a value of 28 mol of O2 consumed/mol of heme a of cytochrome c oxidase X min. These results suggest that methylamine oxidation in the bacterium can occur at least to some extent without participation of amicyanin.  相似文献   

19.
The purpose of the present study was to examine the effect of heating and cooling the forearm muscles on renal vascular responses to ischemic isometric handgrip (IHG). It was hypothesized that heating and cooling the forearm would augment and attenuate, respectively, renal vascular responses to IHG. Renal vascular responses to IHG were studied during forearm heating at 39 degrees C (n = 15, 26 +/- 1 yr) and cooling at 26 degrees C (n = 12, 26 +/- 1 yr). For a control trial, subjects performed the experimental protocol while the forearm was normothermic (approximately 34 degrees C). Muscle temperature (measured by intramuscular probe) was controlled by changing the temperature of water cycling through a water-perfused sleeve. The experimental protocol was as follows: 3 min at baseline, 1 min of ischemia, ischemic IHG to fatigue, and 2 min of postexercise muscle ischemia. At rest, renal artery blood velocity (RBV; Doppler ultrasound) and renal vascular conductance (RVC = RBV/mean arterial blood pressure) were not different between normothermia and the two thermal conditions. During ischemic IHG, there were greater decreases in RBV and RVC in the heating trial. However, RBV and RVC were similar during postexercise muscle ischemia during heating and normothermia. RVC decreased less during cooling than in normothermia while the subjects performed the ischemic IHG protocol. During postexercise muscle ischemia, RVC was greater during cooling than in normothermia. These results indicate that heating augments mechanoreceptor-mediated renal vasoconstriction whereas cooling blunts metaboreceptor-mediated renal vasoconstriction.  相似文献   

20.
This study was designed to investigate the role of tissue oxygenation in some of the factors that are thought to regulate muscle respiration and metabolism. Tissue oxygenation was altered by reductions in O2 delivery (muscle blood flow x arterial O2 content), induced by decreases in arterial PO2 (PaO2). O2 uptake (VO2) was measured in isolated in situ canine gastrocnemius at rest and while working at two stimulation intensities (isometric tetanic contractions at 0.5 and 1 contractions/s) on three separate occasions, with only the level of PaO2 (78, 30, and 21 Torr) being different for each occasion. Muscle blood flow was held constant (pump perfusion) at each work intensity for the three different levels of PaO2. Muscle biopsies were obtained at the end of each rest and work period. Muscle VO2 was significantly less (P less than 0.05) at both stimulation intensities for the hypoxemic conditions, whereas [ATP] was reduced only during the highest work intensity during both hypoxemic conditions (31% reduction at 21 Torr PaO2 and 17% at 30 Torr). For each level of PaO2, the relationships between the changes that occurred in VO2 and levels of phosphocreatine, ADP, and ATP/ADP.P(i) as the stimulation intensity was increased were significantly correlated; however, the slopes and intercepts of these lines were significantly different for each PaO2. Thus a greater change in any of the proposed regulators of tissue respiration (e.g., phosphocreatine, ADP) was required to achieve a given VO2 as PaO2 was decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号