首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The covering of the eggs in Russian sturgeon Acipenser gueldenstaedtii consists of three envelopes (the vitelline envelope, chorion and extrachorion) and is equipped with multiple micropyles. The most proximal to the oocyte is the vitelline envelope that consists of four layers of filamentous and trabecular material. The structural components of this envelope are synthesized by the oocyte (primary envelope). The chorion encloses the vitelline envelope. The extrachorion covers the external surface of the egg. Examination of the arrangement of layers that comprise the egg envelopes together with the ultrastructure of follicular cells revealed that the chorion and extrachorion are secondary envelopes. They are secreted by follicular cells and are built of homogeneous material. During formation of egg envelopes, the follicular cells gradually diversify into three morphologically different populations: 1) cells covering the animal oocyte region (cuboid), (2) main body cells (cylindrical) and (3) micropylar cells. The apical surfaces of follicular cells from the first two populations form processes that remain connected with the oocyte plasma membrane by means of gap junctions. Micropylar cells are located at the animal region of the oocyte. Their apical parts bear projections that form a barrier to the deposition of materials for egg envelopes, resulting in the formation of the micropylar canal.  相似文献   

2.
The egg capsule of Isohypsibius granulifer granulifer Thulin 1928 (Eutardigrada: Hypsibiidae) is composed of two shells: the thin vitelline envelope and the multilayered chorion. The process of the formation of the egg shell begins in middle vitellogenesis. The I. g. granulifer vitelline envelope is of the primary type (secreted by the oocyte), but the chorion should be regarded as a mixed type: primary (secreted by the oocyte), and secondary (produced by the cells of gonad wall). During early choriogenesis, the parts of the chorion are produced and then connected into a permanent layer. The completely developed chorion consists of three layers: (1) the inner, medium electron dense layer; (2) the middle labyrinthine layer; (3) the outer, medium electron dense layer. After the formation of the chorion, a vitelline envelope is secreted by the oocyte.  相似文献   

3.
The paired ovaries of the investigated species are composed of 20-30 ovarioles of a telotrophic-meroistic type. Each ovariole is subdivided into an apical tropharium (=trophic chamber) and a vitellarium that contains a single developing oocyte. This oocyte is surrounded by a mono-layered follicular epithelium that is responsible for synthesis of precursors of egg envelopes. In Orthezia, synthesis and secretion of precursors of egg envelopes (=choriogenesis) and accumulation of reserve substances in the oocyte cytoplasm (=vitellogenesis) start at the same time. The egg capsule is composed of two envelopes: an internal, thick vitelline envelope and an external, very thin chorion. The egg surface is covered with numerous, irregularly arranged waxy filaments of spiral shape. Eggs are devoid of the micropylar, aeropylar and hydropylar openings.  相似文献   

4.
The acrosome reaction of newt sperm is induced at the surface of egg jelly and the acrosome-reacted sperm acquire the ability to bind to the vitelline envelope. However, because the substance that induces the acrosome reaction has not been identified, the mechanism by which the acrosome-reacted sperm bind to the vitelline envelope remains unclear. We found here that a Dolichos biforus agglutinin (DBA) specifically mimicked the acrosome reaction immediately upon its addition in the presence of milimolar level Ca(2+). Fluorescein isothiocyanate-labeled DBA bound specifically to the acrosomal cap of the intact sperm in the presence of a Ca(2+)-chelating agent, EDTA, suggesting that binding of DBA to the native receptor for the egg jelly substance on the acrosomal region took the place of the egg jelly substance-induced acrosome reaction. In contrast, the sperm that had been acrosome reacted by DBA treatment did not bind to the vitelline envelope of the egg whose jelly layers were removed. Subsequent addition of jelly extract caused the sperm binding to vitelline envelope, indicating that the egg jelly of the newt contains substances that are involved in not only inducing the acrosome reaction but also binding to the vitelline envelope. This is the first demonstration of the involvement of egg jelly substance in the binding of acrosome-reacted sperm to the vitelline envelope.  相似文献   

5.
Synbranchus marmoratus is a protogynous diandric teleost fish widely distributed throughout South America. The aim of this work was to study the ultrastructure of the vitelline envelope and the relationship among oocyte and their follicular cells during oogenesis. During perinucleolar stage, the oocyte and the follicular cells form microvillar processes that project into the perivitelline space. The oocyte secretes a dense and amorphous material, which appears as the first evidence of the vitelline envelope (VE) development. The VE passes from a double to a multilayered structure during oocyte growth. In mature oocytes, the VE reach a mean thickness of 11 microm, having up to 30 layers. Oocyte microvilli are thinner than the follicular ones and were seen in contact with the follicular plasmalema, however we could not find any contact between the follicular microvilli and the oolemma. Before ovulation, microvillar processes retract and the pore canals seem to collapse. An outer electron dense layer occludes the superficial pore and forms a continuous layer. No jelly or adhesive coatings were seen at least in ovulated eggs sampled from ovarian lumen. Follicular cell and oocyte cytological characteristics do not differ from those described in other teleosts species.  相似文献   

6.
The follicular epithelium and theca of oocytes in Serrasalmus spilopleura differentiates during the initial primary growth phase. The follicular cells are squamous and the thecal cells are disposed in two layers. During the secondary growth phase, follicular cells become cuboidal, acquire characteristics typical of protein- or glycoprotein-producing cells, and show dilated intercellular spaces. Formation of the egg envelope in S. spilopleura begins in the previtellogenic oocytes as a layer of amorphous electron-dense material is laid down on the oolemma. During vitellogenesis, another layer of electron-dense material appears beneath the first layer. Also during this phase, a layer of amorphous, less electron-dense material is formed adjacent to the follicular epithelium. The secondary egg envelope appears at the postvitellogenic phase and is composed of a filamentous and undulant material. The morphology of the egg envelopes in S. spilopleura reflects not only its oviparous nature but also the fact that its eggs are adhesive.  相似文献   

7.
Summary This communication presents results of studies on the formation and structure of the vitelline envelopes in three species of mites: Euryparasitus emarginatus (Gamasida), Erythraeus phalangoides (Actinedida), and Hafenrefferia gilvipes (Oribatida). In E. emarginatus and E. phalangoides, in which the oocytes are not covered with follicular cells, the material of the vitelline envelope appears first in vesicles under the surface of the oocytes prior to secretion by exocytosis. The formed vitelline envelope is built of a homogeneous material which is perforated by numerous channels containing oocyte microvilli. Later, as the microvilli are retracted, the channels disappear. In both of these species the formed vitelline envelope is incomplete and the micropylar orifice occurs as a transitional structure.In H. gilvipes follicular cells encircling the oocyte contain granules filled with material that is subsequently secreted into the perivitelline space forming the vitelline envelope on the oocyte surface. The inner layer of the vitelline envelope is granular, whereas the outer part is more homogeneous. Both lack channels containing microvilli and micropyle.  相似文献   

8.
The ultrastructure of the formation of the egg shell in the longidorid nematode Xiphinema diversicaudatum is described. Upon fertilization a vitelline membrane, which constitutes the vitelline layer of the egg shell, is formed. The chitinous layer is secreted in the perivitelline space, between the vitelline layer and the egg cell membrane. On completion of the chitinous layer, the material of the lipid layer is extruded from the egg cytoplasm to the outer surface, through finger-like projections. Both chitinous and lipid layers are secreted by granules in the egg cytoplasm that disappear as the layers are completed. Chitinous and lipid layers are formed during the passage of the egg through the oviduct. The vitelline layer is enriched with secretions produced by the oviduct cells and then by phospholipids secreted by the cells of the pars dilatata oviductus. The inner uterine layer is also formed by deposition of secretory products apposed on the egg shell in the distal uterine region and Z-differentiation. In the proximal part of the uterus, the egg has a discontinuous electron-dense layer, the external uterine layer. Tangential sections between chitinous and uterine layers revealed the presence of holes, possibly egg pores, delimited by the two uterine layers.  相似文献   

9.
The architecture and transformation of the vitelline envelope of the developing oocyte into the chorion of the mature egg of Fundulus heteroclitus have been examined by scanning and transmission electron microscopy. The mature vitelline envelope is structurally complex and consists of about nine strata. The envelope is penetrated by pore canals that contain microvilli arising from the oocyte and macrovilli from follicle cells. During the envelope's transformation into the chorion, the pore canals are lost and the envelope becomes more fibrous and compact and its stratified nature less apparent. The micropyle, of pore, through which the sperm gains access to the enclosed egg is located at the bottom of a small funnel-shaped depression in the envelope. Internally, the micropyle opens on the apex of a cone-like elevation of the chorion. During the development of the envelope, structured chorionic fibrils, the components of which are presumed to be synthesized by the follicle cells, become attached to its surface. These chorionic fibrils are though to aid in the attachment of the egg to the substratum and perhaps to help prevent water loss during low tides when the egg may be exposed.  相似文献   

10.
The external morphology and fine structure of the eggshell of Ommatissus binotatus Fieber (Homoptera : Tropiduchidae) was investigated by light, scanning and transmission electron microscopy. The egg surface has 2 main regions: a specialized area and an unspecialized egg capsule. The specialized area is characterized by a large respiratory plate containing the operculum and a short respiratory horn. The latter consists of an external hollow tube and an internal coneshaped projection hosting a micropylar canal. The eggshell has 4 layers: the vitelline envelope, a wax layer, the chorion and an outer mucous layer. The chorion has inner, intermediate and outer parts. The functions of the different parts of the eggshell are discussed. Characters useful to define the eggs and the oviposition habit in the family Tropiduchidae were provided. The size and morphology of the egg, plate, respiratory horn and operculum are suggested as useful characters for ootaxonomic analysis.  相似文献   

11.
Summary The follicle cells of Foucartia squamulata are involved in the formation of both vitelline membrane and chorion. Precursors for these egg coverings are synthesized by the rough endoplasmic reticulum and condensed within dictyosomes. The vitelline membrane and the chorion appear on the oocyte surface simultaneously, which is an unusual phenomenon for insects. The follicular epithelium has not been found to contribute to vitellogenesis in the species under study.  相似文献   

12.
The newly laid egg of Carcinus maenas is attached to a maternal ovigerous seta by a funiculus which consists of the two superimposed vitelline envelopes 1a + 1b, highly stretched and concurrently showing important structural alterations. The funiculus is glued to the specialized seta merely owing to the strong adhesiveness of its external face comprising the outermost vitelline envelope 1a, without any added adhesive. The subjacent envelope 2, originated from the cortical reaction, is not involved in such a funiculus elaboration. In the course of the embryonic development, four new coatings are successively secreted from the ectodermal embryonic cells, underneath the (1a + 1b + 2) fertilization envelope or embryonic capsule. They will remain until hatching in this concentric order, thus giving evidence of successive embryonic moulting cycles, with apolysis but without exuviation. In addition, the successive secretory phases, regarding to the embryonic envelope elaborations, happen in presence of high concentrations of the ecdysteroid ponasterone A which might be involved consequently in such secretory processes.  相似文献   

13.
The egg of the olive fly, Dacus oleae (Diptera, Tephritidae), is laid inside olives and the larva eventually destroys the fruit. The oocyte is surrounded by several distinct layers which are produced during choriogenesis. The chorion covering the main body of the egg outside of the vitelline membrane includes a "wax" layer, an innermost chorionic layer, an endochorion consisting of inner and outer layers separated by pillars and cavities similar to their counterparts in Drosophila melanogaster, as well as inner and outer exochorionic layers. The anterior pole is shaped like an inverted cup, which is chiefly hollow around its base and has very large openings communicating with the environment. Holes through the surface of the endochorion result from deposition of endochorionic substance around follicular cell microvilli. An opening at the apex of the cup provides an entrance for sperm entering the micropylar canal, which traverses the endochorion and continues into a "pocket" in a thickened vitelline protrusion. The micropylar canal is formed by deposition of endochorion and vitelline membrane around an elongated pair of follicular cell extensions. These extensions later degenerate and leave an empty canal about 5 microns in diameter and the narrower pocket about 1 micron in diameter. Respiration is thought to be facilitated by openings at the base of the anterior pole as well as by openings through the "plastron" around the main body of the shell.  相似文献   

14.
The binding of antibiotics (gentamicin, oleandomycin and chloramphenicol) to vitelline and fertilization envelopes and their extracts was investigated by immunohistochemical and immunocytochemical techniques and immunoblot analysis using mature and artificially activated eggs of the fish Oncorhynchus masou. Binding of antibiotics was detected in the vitelline and fertilization envelope outermost layers, the fertilization envelope inner surface and cortical alveolus exudates, with differences in immunoreactive intensity and deposition. The fertilization envelope outermost layer had the capacity to bind much greater amounts of the antibiotics than the vitelline envelope outermost layer. The greater capacity was caused by the deposition of cortical alveolus exudates, which were known to be responsible for functional roles of protection against bacteria, fungi and noxious materials. Treatment of the vitelline and fertilization envelopes with neuraminidase markedly reduced the binding of gentamicin and chloramphenicol but slightly increased that of oleandomycin; binding of the latter to the vitelline and fertilization envelope outermost layers was considerably reduced after treatment with alpha-fucosidase. Treatment of the two envelopes with alpha-mannosidase, beta-galactosidase or beta-SdD-glucosaminidase did not cause any alteration in immunoreactive intensity or number of immunoreactive deposits. Immunoblot analysis of the vitelline or fertilization envelope extracts indicated that many of the antibiotic-binding substances were glycoproteins, and several major bands were bound by all three antibiotics. These results suggest that the vitelline or fertilization envelopes may have the ability to protect the egg itself, or the embryo, respectively, by trapping antibiotics, and the trapping may be related to the presence of carbohydrate moieties, such as sialyl or fucosyl residues. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
Summary The ability of the vitelline and fertilization envelopes of rainbow trout eggs to trap toxins was investigated using cholera enterotoxin B and staphylococcal enterotoxin B in cytochemical or immunocytochemical experiments. Extracts from both envelopes were investigated by immunoblot analysis to identify toxin-binding proteins after SDS-PAGE. Binding studies of cholera enterotoxin B to vitelline envelopes and fertilization envelopes revealed a greater reactive intensity in the former. Treatment with neuraminidase enhanced the reactive intensity (or deposit) in the vitelline envelope and fertilization envelope outermost layers, with more conspicuous reactivity in the former. Cytochemical experiments showed that exogenous ganglioside GM1 considerably enhanced cholera enterotoxin B binding to vitelline and fertilization envelopes. This enhancement was shown by an intense reactivity following the occurrence of new binding sites on the vitelline envelope inner surface and the inner wall of the zona radiata, a simultaneous extreme reduction in the reactivity of the vitelline envelope outermost layer, and a striking increase in reactive products in the fertilization envelope outermost layer. The surface region of the vitelline or fertilization envelope outermost layer was the binding site for staphylococcal enterotoxin B, and neuraminidase treatment caused a considerable reduction of reactive products in these areas. Immunoblot analysis of cholera enterotoxin Bor staphylococcal enterotoxin B-binding substances in extracts from the vitelline envelopes or fertilization envelopes demonstrated that the great majority of the binding substances are glycoproteins. The present results suggest that glycoproteins constituting the vitelline envelope or fertilization envelope may contribute to the protection of the egg itself or the embryo by trapping noxious toxins.  相似文献   

16.
The newly laid egg of the lobster Homarus gammarus is surrounded by a vitelline coat. Just after fertilization, a new subjacent envelope (2), originating from the cortical reaction, is deposited beneath the vitelline coat. In the course of embryonic development, five new coatings (envelopes 3 to 7) are secreted successively from the ectodermal embryonic cells. These will remain until hatching, freeing the mysis larva in concentric order without exuviation. The concentration of both the two major ecdysteroids (ponasterone A and 20-hydroxyecdysone) and their respective precursors (25-deoxyecdysone and ecdysone) were determined as a function of the secretory phase for three embryonic envelopes (2, 3 and 6). We determined that the secretory processes proceed in the presence of high titers of 20-hydroxyecdysone during the onset of envelope secretion and of ponasterone A in the last phase of secretion.  相似文献   

17.
At fertilization, the glycocalyx (vitelline layer) of the sea urchin egg is transformed into an elevated fertilization envelope by the association of secreted peptides and the formation of intermolecular dityrosine bonds. Dityrosine cross-links are formed by a secreted ovoperoxidase that exists in a Ca2+-stabilized complex with proteoliaisin in the fertilization envelope. By using purified proteins, we now show that proteoliaisin is necessary and sufficient to link ovoperoxidase to the egg glycocalyx. Specifically, we have found that ovoperoxidase can associate with the vitelline layer only when complexed with proteoliaisin; proteoliaisin binds to the vitelline layer independently of its association with ovoperoxidase; proteolytic modification of the vitelline layer is not required for this interaction to occur; the binding of proteoliaisin to the vitelline layer is mediated by the synergistic action of the two major seawater divalent cations, Ca2+ and Mg2+; the number of proteoliaisin-binding sites on the vitelline layer of unfertilized eggs is equivalent to the amount of proteoliaisin secreted at fertilization; and the binding of ovoperoxidase to the vitelline layer, via proteoliaisin, permits the in vitro cross-linking of these two in vivo substrates. The association of purified ovoperoxidase and proteoliaisin with the vitelline layer of unfertilized eggs reconstitutes part of the morphogenesis of the fertilization envelope.  相似文献   

18.
N D Holland 《Tissue & cell》1979,11(3):445-455
The egg coats of an ophiuroid echinoderm (Ophiopholis aculeata) are described by electron microscopy before and after fertilization. The unfertilized egg is closely invested by a vitelline coat about 40 A thick, and the peripheral cytoplasm is crowded with cortical granules five or six deep. During the cortical reaction, which rapidly follows insemination, exocytosis of cortical granules takes place. Some of the cortical granule material is evidently added to the vitelline coat to form a composite structure, the fertilization envelope, which is made up of a 400 A thick middle layer separating inner and outer dense layers, each about 50 A thick. The elevation of the fertilization envelope from the egg surface creates a perivitelline space in which the hyaline layer soon forms. The hyaline layer is about 2 micron thick, finely granular, and apparently derived from cortical granule material. The extracellular layers of the early developmental stages of ophiuroids and echinoids are quite similar in comparison to those of asteroids; this finding helps support Hyman's argument that the ophiuroids are more closely related to the echinoids than to the asteroids.  相似文献   

19.
The block to polyspermy in Xenopus laevis involves an interaction between a cortical granule lectin, released at fertilization, and a ligand located in the egg extracellular matrix. The egg extracellular matrix in X. laevis consists of a vitelline envelope and three distinct jelly layers, designated J1, J2 and J3. To localize cortical granule lectin ligand in the egg extracellular matrix, we used enzyme-linked lectin assays that showed that cortical granule lectin ligands were absent in J2, J3 and the vitelline envelope. Cortical granule lectin bound to a ligand(s) in J1 in a galactose-dependent fashion. In addition, we separated egg jelly macromolecules electrophoretically and, in conjunction with western blotting, have shown that J1 contains two major, high molecular weight ligands for cortical granule ligand. Finally, using confocal microscopy, we demonstrated that the ligand(s) for cortical granule lectin occupies a 20–30 μm thick band in a region of J1 just proximal to the vitelline envelope.  相似文献   

20.
An amphibian egg recovered from the body cavity is enclosed by a coelomic egg envelope. Upon transport down the oviduct, the envelope is converted to the vitelline envelope. The coelomic and vitelline envelopes are distinct in terms of sperm penetrability, ultrastructural morphology, and radioiodination profiles. In this study, the macromolecular compositions of these two envelopes were determined. Isolated envelopes were compared by one- and two-dimensional gel electrophoresis, peptide mapping, and radiolabeling. A protein with a molecular weight of 57,000 (57K) was present in the vitelline envelope but was absent in the coelomic envelope. A glycoprotein with a molecular weight of 43K in the coelomic envelope was converted to a component with a molecular weight of 41K in the vitelline envelope. The 43K-molecular weight component of the coelomic envelopes could be radioiodinated by lactoperoxidase but no labeling of the 41K-molecular weight component occurred in the vitelline envelope. Peptide mapping using limited proteolysis established that the 43K-molecular weight component of the coelomic envelope was a precursor to the 41K-molecular weight component of the vitelline envelope. These molecular alterations may underlie the ultrastructural and physiological changes occurring in these envelopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号