首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A naturally arising point mutation in the env gene of HIV-1 activates the aberrant inclusion of the cryptic exon 6D into most viral messages, leading to inefficient viral replication. We set out to understand how a single nucleotide substitution could cause such a dramatic change in splicing. We have determined that the exon 6D mutation promotes binding of the SR protein SC35 to the exon. Mutant exon 6D sequences function as a splicing enhancer when inserted into an enhancer-dependent splicing construct. hnRNP H family proteins bind to the enhancer as well; their binding is dependent on the sequence GGGA located just downstream of the point mutation and depletion-- reconstitution studies show that hnRNP H is essential for enhancer activity. A polypurine sequence located further downstream in exon 6D binds SR proteins but acts as an exonic splicing silencer. hnRNP H is required for interaction of U1 snRNP with the enhancer, independent of the point mutation. We propose that SC35 binding to the point mutation region may convert the hnRNP H-U1 snRNP complex into a splicing enhancer.  相似文献   

2.
We have isolated and sequenced cDNA clones encoding the human U1-70K snRNP protein, and have mapped this locus (U1AP1) to human chromosome 19. The gene produces two size classes of RNA, a major 1.7-kb RNA and a minor 3.9-kb RNA. The 1.7-kb species appears to be the functional mRNA; the role of the 3.9-kb RNA, which extends further in the 5' direction, is unclear. The actual size of the hU1-70K protein is probably 52 kd, rather than 70 kd. The protein contains three regions similar to known nucleic acid-binding proteins, and it binds RNA in an in vitro assay. Comparison of the cDNA sequences indicates that there are multiple subclasses of mRNA that arise by alternative pre-mRNA splicing of at least four alternative exon segments. This suggests that multiple forms of the hU1-70K protein may exist, possibly with different functions in vivo.  相似文献   

3.
We have studied the interaction of two of the U1 small nuclear ribonucleoprotein (snRNP)-specific proteins, U1-70K and U1-A, with U1 small nuclear RNA (snRNA). The U1-70K protein is a U1-specific RNA-binding protein. Deletion and mutation analyses of a beta-galactosidase/U1-70K partial fusion protein indicated that the central portion of the protein, including the RNP sequence domain, is both necessary and sufficient for specific U1 snRNA binding in vitro. The highly conserved eight-amino-acid RNP consensus sequence was found to be essential for binding. Deletion and mutation analyses of U1 snRNA showed that both the U1-70K fusion protein and the native HeLa U1-70K protein bound directly to loop I of U1 snRNA. Binding was sequence specific, requiring 8 of the 10 bases in the loop. The U1-A snRNP protein also interacted specifically with U1 snRNA, principally with stem-loop II.  相似文献   

4.
P-element transposition in Drosophila is regulated by tissue-specific alternative splicing of the P-element transposase pre-mRNA. In somatic cells, the P-element somatic inhibitor (PSI) protein binds to exon 3 of the pre-mRNA and recruits U1 small nuclear ribonucleoprotein (snRNP) to the F1 pseudo-splice site. This abrogates binding of U1 snRNP to the genuine 5' splice site, thereby preventing excision of the third intron. Two homologous short sequences, referred to as the A and B boxes, near the C terminus of PSI bind to U1-70k protein within U1 snRNP. We have now mapped the AB box-binding site of U1-70k to a short proline-rich sequence at the C terminus. Our NMR study shows that the B box forms an anti-parallel helical hairpin in which four highly conserved aromatic residues form a cluster on one face of the first helix. This hydrophobic cluster interacts extensively with the proline-rich region of the U1-70k protein.  相似文献   

5.
6.
The U1 small nuclear ribonucleoprotein (snRNP)-specific U1C protein participates in 5′ splice site recognition and regulation of pre-mRNA splicing. Based on an RNA-Seq analysis in HeLa cells after U1C knockdown, we found a conserved, intra-U1 snRNP cross-regulation that links U1C and U1-70K expression through alternative splicing and U1 snRNP assembly. To investigate the underlying regulatory mechanism, we combined mutational minigene analysis, in vivo splice-site blocking by antisense morpholinos, and in vitro binding experiments. Alternative splicing of U1-70K pre-mRNA creates the normal (exons 7–8) and a non-productive mRNA isoform, whose balance is determined by U1C protein levels. The non-productive isoform is generated through a U1C-dependent alternative 3′ splice site, which requires an adjacent cluster of regulatory 5′ splice sites and binding of intact U1 snRNPs. As a result of nonsense-mediated decay (NMD) of the non-productive isoform, U1-70K mRNA and protein levels are down-regulated, and U1C incorporation into the U1 snRNP is impaired. U1-70K/U1C-deficient particles are assembled, shifting the alternative splicing balance back towards productive U1-70K splicing, and restoring assembly of intact U1 snRNPs. Taken together, we established a novel feedback regulation that controls U1-70K/U1C homeostasis and ensures correct U1 snRNP assembly and function.  相似文献   

7.
A R Krainer  A Mayeda  D Kozak  G Binns 《Cell》1991,66(2):383-394
SF2 is a protein factor essential for constitutive pre-mRNA splicing in HeLa cell extracts and also activates proximal alternative 5' splice sites in a concentration-dependent manner. This latter property suggests a role for SF2 in preventing exon skipping, ensuring the accuracy of splicing, and regulating alternative splicing. Human SF2 cDNAs have been isolated and overexpressed in bacteria. Recombinant SF2 is active in splicing and stimulates proximal 5' splice sites. SF2 has a C-terminal region rich in arginine-serine dipeptides, similar to the RS domains of the U1 snRNP 70K polypeptide and the Drosophila alternative splicing regulators transformer, transformer-2, and suppressor-of-white-apricot. Like transformer-2 and 70K, SF2 contains an RNP-type RNA recognition motif.  相似文献   

8.
9.
Splicing of rare, U12-type or AT-AC introns is mediated by a distinct spliceosome that assembles from U11, U12, U4atac, U6atac, and U5 snRNPs. Although in human cells the protein composition of minor and major snRNPs is similar, differences, particularly in U11 and U12 snRNPs, have been recently described. We have identified an Arabidopsis U11 snRNP-specific 35K protein as an interacting partner of an RS-domain-containing cyclophilin. By using a transient expression system in Arabidopsis protoplasts, we show that the 35K protein incorporates into snRNP. Oligo affinity selection and glycerol gradient centrifugation revealed that the Arabidopsis 35K protein is present in monomeric U11 snRNP and in U11/U12-di snRNP. The interaction of the 35K protein with Arabidopsis SR proteins together with its strong sequence similarity to U1-70K suggests that its function in splicing of minor introns is analogous to that of U1-70K. Analysis of Arabidopsis and Oryza sativa genome sequences revealed that all U11/U12-di-snRNP-specific proteins are conserved in dicot and monocot plants. In addition, we have identified an Arabidopsis gene encoding the homolog of U4atac snRNA and a second Arabidopsis gene encoding U6atac snRNA. Secondary structure predictions indicate that the Arabidopsis U4atac is able to form dimeric complexes with both Arabidopsis U6atac snRNAs. As revealed by RNaseA/T1 protection assay, the U4atac snRNA gene is expressed as an ~160-nt RNA, whereas the second U6atac snRNA gene seems to be a pseudogene. Taken together, our data indicate that recognition and splicing of minor, AT-AC introns in plants is highly similar to that in humans.  相似文献   

10.
11.
Frontotemporal dementia accounts for a significant fraction of dementia cases. Frontotemporal dementia with parkinsonism linked to chromosome 17 is associated with either exonic or intronic mutations in the tau gene. This highlights the involvement of aberrant pre-mRNA splicing in the pathogenesis of neurodegenerative disorders. Little is known about the molecular mechanisms of the splicing defects underlying these diseases. To establish a model system for studying the role of pre-mRNA splicing in neurodegenerative diseases, we have constructed a tau minigene that reproduces tau alternative splicing in both cultured cells and in vitro biochemical assays. We demonstrate that mutations in a nonconserved intronic region of the human tau gene lead to increased splicing between exon 10 and exon 11. Systematic biochemical analyses indicate the importance of U1 snRNP and, to a lesser extent, U6 snRNP in differentially recognizing wild-type versus intron mutant tau pre-mRNAs. Gel mobility shift assays with purified U1 snRNP and oligonucleotide-directed RNase H cleavage experiments support the idea that the intronic mutations destabilize a stem-loop structure that sequesters the 5' splice site downstream of exon 10 in tau pre-mRNA, leading to increases in U1 snRNP binding and in splicing between exon 10 and exon 11. Thus, mutations in nonconserved intronic regions that increase rather than decrease alternative splicing can be an important pathogenic mechanism for the development of human diseases.  相似文献   

12.
We cloned and sequenced a plant cDNA that encodes U1 small nuclear ribonucleoprotein (snRNP) 70K protein. The plant U1 snRNP 70K protein cDNA is not full length and lacks the coding region for 68 amino acids in the amino-terminal region as compared to human U1 snRNP 70K protein. Comparison of the deduced amino acid sequence of the plant U1 snRNP 70K protein with the amino acid sequence of animal and yeast U1 snRNP 70K protein showed a high degree of homology. The plant U1 snRNP 70K protein is more closely related to the human counter part than to the yeast 70K protein. The carboxy-terminal half is less well conserved but, like the vertebrate 70K proteins, is rich in charged amino acids. Northern analysis with the RNA isolated from different parts of the plant indicates that the snRNP 70K gene is expressed in all of the parts tested. Southern blotting of genomic DNA using the cDNA indicates that the U1 snRNP 70K protein is coded by a single gene.  相似文献   

13.
14.
15.
Salz HK  Mancebo RS  Nagengast AA  Speck O  Psotka M  Mount SM 《Genetics》2004,168(4):2059-2065
The conserved spliceosomal U1-70K protein is thought to play a key role in RNA splicing by linking the U1 snRNP particle to regulatory RNA-binding proteins. Although these protein interactions are mediated by repeating units rich in arginines and serines (RS domains) in vitro, tests of this domain's importance in intact multicellular organisms have not been carried out. Here we report a comprehensive genetic analysis of U1-70K function in Drosophila. Consistent with the idea that U1-70K is an essential splicing factor, we find that loss of U1-70K function results in lethality during embryogenesis. Surprisingly, and contrary to the current view of U1-70K function, animals carrying a mutant U1-70K protein lacking the arginine-rich domain, which includes two embedded sets of RS dipeptide repeats, have no discernible mutant phenotype. Through double-mutant studies, however, we show that the U1-70K RS domain deletion no longer supports viability when combined with a viable mutation in another U1 snRNP component. Together our studies demonstrate that while the protein interactions mediated by the U1-70K RS domain are not essential for viability, they nevertheless contribute to an essential U1 snRNP function.  相似文献   

16.
We have isolated and characterised two overlapping lambda EMBL3 clones carrying sequences of the gene for the murine U1RNA-associated 70-kDa protein. The two clones cover around 23 kb of the 70-kDa protein gene including its 3' end. Southern blot hybridisation revealed the existence of a single copy of the 70-kDa protein gene in the mouse genome. The 23-kb-long portion of the 70-kDa protein gene is divided into eight exons. While most of the exons are quite small and are widely scattered throughout the DNA sequence, the last one consists of about 830 bp and encodes 226 amino acids of the 70-kDa protein, including the C-terminus. The predicted amino acid sequence of the region of the 70-kDa protein encoded by the genomic clones reveals high conservation of structure when it is compared with the sequence of the human 70-kDa protein. Interestingly, all deletions, additions and substitutions are localised exclusively within the C-terminus of the protein, accounting for a 5'-3' polarity with respect to protein conservation. Moreover, the analysis of the genomic sequences predicts the existence of multiple subclasses of mRNAs that may arise by alternative pre-mRNA splicing. A 72-bp alternative exon harboring an in-frame termination codon was also found in the mouse 70-kDa gene and shows, surprisingly, 100% nucleotide identity to its human counterpart.  相似文献   

17.
We have investigated the structure of the small nuclear RNP (snRNP) U1 by combining EM of complete and partially protein-deficient particles with immunoelectron microscopy employing mAbs against known components of the U1 snRNP. It was found that the two main protuberances of this particle can be identified with the U1-specific proteins A and 70K. The 70K protuberance is the one lying closer to the 5' terminus of the snRNA, as identified by its 5'-terminal m3G cap. The round-shaped main body of U1 snRNP represents its core RNP domain containing the common snRNP proteins. Functional implications of these results are discussed. Our results may also point to the physical basis for the production of autoantibodies directed against specific groups of snRNP proteins. The physical grouping of the common proteins (Sm epitopes) and the specific proteins (RNP epitopes) could result in one or the other being presented to the immune system as is the case in patients suffering from SLE or MCTD, respectively.  相似文献   

18.
The dbf3 mutation was originally obtained in a screen for DNA synthesis mutants with a cell cycle phenotype in the budding yeast Saccharomyces cerevisiae. We have now isolated the DBF3 gene and found it to be an essential gene with an ORF of 7239 nucleotides, potentially encoding a large protein of 268 kDa. We also obtained an allele-specific high copy number suppressor of the dbf3-1 allele, encoded by the known SSB1 gene, a member of the Hsp70 family of heat shock proteins. The sequence of the Dbf3 protein is 58% identical over 2300 amino acid residues to a predicted protein from Caenorhabditis elegans. Furthermore, partial sequences with 61% amino acid sequence identity were deduced from two files of human cDNA in the EST nucleotide database so that Dbf3 is a highly conserved protein. The nucleotide sequence of DBF3 turned out to be identical to the yeast gene PRP8, which encodes a U5 snRNP required for pre-mRNA splicing. This surprising result led us to further characterise the phenotype of dbf3 which confirmed its role in the cell cycle and showed it to function early, around the time of S phase. This data suggests a hitherto unexpected link between pre-mRNA splicing and the cell cycle.  相似文献   

19.
The U1 small nuclear ribonucleoprotein particle (snRNP)-specific 70K and A proteins are known to bind directly to stem-loops of the U1 snRNA, whereas the U1-C protein does not bind to naked U1 snRNA, but depends on other U1 snRNP protein components for its association. Focusing on the U1-70K and U1-C proteins, protein-protein interactions contributing to the association of these particle-specific proteins with the U1 snRNP were studied. Immunoprecipitation of complexes formed after incubation of naked U1 snRNA or purified U1 snRNPs lacking their specific proteins (core U1 snRNP) with in vitro translated U1-C protein, revealed that both common snRNP proteins and the U1-70K protein are required for the association of U1-C with the U1 snRNP. Binding studies with various in vitro translated U1-70K mutants demonstrated that the U1-70K N-terminal domain is necessary and sufficient for the interaction of U1-C with core U1 snRNPs. Surprisingly, several N-terminal fragments of the U1-70K protein, which lacked the U1-70K RNP-80 motif and did not bind naked U1 RNA, associated stably with core U1 snRNPs. This suggests that a new U1-70K binding site is generated upon association of common U1 snRNP proteins with U1 RNA. The interaction between the N-terminal domain of U1-70K and the core RNP domain was specific for the U1 snRNP; stable binding was not observed with core U2 or U5 snRNPs, suggesting essential structural differences among snRNP core domains. Evidence for direct protein-protein interactions between U1-specific proteins and common snRNP proteins was supported by chemical crosslinking experiments using purified U1 snRNPs. Individual crosslinks between the U1-70K and the common D2 or B'/B protein, as well as between U1-C and B'/B, were detected. A model for the assembly of U1 snRNP is presented in which the complex of common proteins on the RNA backbone functions as a platform for the association of the U1-specific proteins.  相似文献   

20.
Splicing of the K-SAM alternative exon of the fibroblast growth factor receptor 2 gene is heavily dependent on the U-rich sequence IAS1 lying immediately downstream from its 5' splice site. We show that IAS1 can activate the use of several heterologous 5' splice sites in vitro. Addition of the RNA-binding protein TIA-1 to splicing extracts preferentially enhances the use of 5' splice sites linked to IAS1. TIA-1 can provoke a switch to use of such sites on pre-mRNAs with competing 5' splice sites, only one of which is adjacent to IAS1. Using a combination of UV cross-linking and specific immunoprecipitation steps, we show that TIA-1 binds to IAS1 in cell extracts. This binding is stronger if IAS1 is adjacent to a 5' splice site and is U1 snRNP dependent. Overexpression of TIA-1 in cultured cells activates K-SAM exon splicing in an IAS1-dependent manner. If IAS1 is replaced with a bacteriophage MS2 operator, splicing of the K-SAM exon can no longer be activated by TIA-1. Splicing can, however, be activated by a TIA-1-MS2 coat protein fusion, provided that the operator is close to the 5' splice site. Our results identify TIA-1 as a novel splicing regulator, which acts by binding to intron sequences immediately downstream from a 5' splice site in a U1 snRNP-dependent fashion. TIA-1 is distantly related to the yeast U1 snRNP protein Nam8p, and the functional similarities between the two proteins are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号